Open Watcom C/C++

Programmer’s Guide

Version 2.0

Uien Watcom

Notice of Copyright

Copyright [J 2002-2024 the Open Watcom Contributors. Portions Copyright U 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

Portions of this manual are reprinted with permission from Tenberry Software, Inc.

ii

Preface

The Open Watcom C/C++ Programmer’s Guide includes the following major components:

* DOS Programming Guide

* The DOS/4AGW DOS Extender

* Windows 3.x Programming Guide

* Windows NT Programming Guide

* OS/2 Programming Guide

* Novell NLM Programming Guide

* Mixed Language Programming

e Common Problems

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on a variety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for a variety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result is type-set quality copy
containing integrated text and graphics.

Many users have provided valuable feedback on earlier versions of the Open Watcom C/C++ compilers and
related tools. Their comments were greatly appreciated. If you find problems in the documentation or have

some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual
DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.
0S/2 is a trademark of International Business Machines Corp. IBM Developer’s Toolkit, Presentation
Manager, and OS/2 are trademarks of International Business Machines Corp. IBM is a registered
trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows NT is a
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

il

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.
UNIX is a registered trademark of The Open Group.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

v

Table of Contents

1 Open Watcom C/C++ Application DeVEIOPMENTcoccruiriiririniinienienieieieteeeteeeeeeee st saesaeeene

DOS Programming Guidec.ceceervueenueennee.

2 Creating 16-bit DOS Applications
2.1 The Sample Application

2.2 Building and Running the Sample DOS Applicationcecceeeererieninienenieneeieseeeseeie e
2.3 Debugging the Sample DOS APPLCALIONc.eeruiiiiriiiieiieeieiteeert ettt s

3 Creating 32-bit Phar Lap 386|DOS-Extender APPHCAIONSc.covvveueueiririereiiirisieieeresieeeneneseeieeeseseesenenes

3.1 The Sample Application

3.2 Building and Running the Sample 386|DOS-Extender Applicationcccoceeeeeceerinccceeecceene
3.3 Debugging the Sample 386|DOS-Extender APpliCAtioNc.ceeueueueeeiereieirieieieieieieieieeeeieeenevenenenes

4 Creating 32-bit DOS/4GW Applications

4.1 The Sample Application

4.2 Building and Running the Sample DOS/4GW APPLICAtionccccevirieririienienieneeieneeieniteieeeeiene
4.3 Debugging the Sample DOS/AGW APPLCALIONoueruiiitiiiiniieiieiieie ettt

5 32-bit Extended DOS Application DevVeIOPMENtcccecevuiririiriinrenienierieieeeeeteteeeieee st saesaeneneens

5.1 Introductioncceeeeveeveveicnnnnnnnns

5.2 How can I write directly to video memory using a DOS extender?cccccoevveviiniienieeniieeneenienne
5.2.1 Writing to Video Memory under Tenberry Software DOS/AGW cccooviiviiiniiniiiieeieeeee
5.2.2 Writing to Video Memory under the Phar Lap 386|DOS-EXtenderc.cocovevuvuveveveriveenenennns

5.3 How do I get information about free memory in the 32-bit environment?ccccoocevveevenrencnnennen.
5.3.1 Getting Free Memory Information under DOS/AGW ccoooiiiiiiiniiiiniienceeeceteeeteee
5.3.2 Getting Free Memory Information under the Phar Lap 386|DOS-Extenderccccceeueueunnsee
5.3.3 Getting Free Memory Information in the 32-bit Environment under Windows 3.Xcc.cc......

5.4 How do I access the first megabyte in the extended DOS environment?cccceceviriienenrenenenne
5.4.1 Accessing the First Megabyte under Tenberry Software DOS/AGW cccoceviviniencnincncnnenne.
5.4.2 Accessing the First Megabyte under the Phar Lap 386|DOS-Extendercococeovririeueeenennne

5.5 How do I spawn a protected-mode appliCation?ccceccueeriieriierniieriieenieenieeniteste et e e et e b esaeesaeees
5.5.1 Spawning Protected-Mode Applications Under Tenberry Software DOS/AGW c.........
5.5.2 Spawning Protected-Mode Applications Under Phar Lap 386|DOS-Extendercccccceueueeeee

5.6 How Can I Use the Mouse Interrupt (0x33) with DOS/AGW? ..c.oooiiiiiiiiiiieieeeeeeeeeceee

5.7 How Do I Simulate a Real-Mode Interrupt with DOS/AGW?cociiiiiiiiiiiiiieeeeeeeeee

5.8 How do you install a bi-modal interrupt handler using DOS/AGW?cccooiiiiiiiiiiniiieeeeeeee

The DOS/4AGW DOS Extenderccccveveeeeen.

6 The Tenberry Software DOS/4AGW DOS EXIENAETcocueiriiiiiiiiiiiiieeieeiteeieete ettt

7 Linear Executablescccccoevveeeiieeenns
7.1 The Linear Executable Format
7.1.1 The Stub Program

7.2 Memory USecccceveeeeneeneencennene.

8 Configuring DOS/AGW cooiviiens

8.1 The DOS4G Environment Variable
8.2 Changing the Switch Mode Setting

17
17
18
18
19
19
20
21
22
24
24
25
26
26
27
28
32
33

39

41

43
43
43
44

47
47
48

Table of Contents

8.3 Fine Control of MemMOTY USAZE ...c..covevverieriiieieieieiieieteitetesie sttt st sttt ettt ettt ere e sae e
8.3.1 Specifying a Range of Extended MemOTyccccocirviiiiiiiniiiinieieiceeeeeeeeee e
8.3.2 USING EXIa MEIMOTY ..eevuiiiiieriiiiiieeieeiee sttt ettt ettt et e st e st e sabe s bt e s bt e e bt esbeesabeesaaesabeesasesaseens

8.4 Setting RUNUME OPLOMNSviiiiiiiiiiiieiiieiterte ettt et et e et e st e e e stte e bt e satesbeesatesabeesabesnseensaesseenseesas

8.5 Controlling Address Line 20c.cocuieiiiiiiiniiiiieie ettt ettt sbe et e sbe et esateesbaessbeenbeesnbeeseens

9.2 Changing the DEfaullsccccoiiiriiiiiiiiiieiiee sttt ettt
9.2.1 ThE .VMUOC FIIE ..ttt ettt ettt st s st a e

10 Interrupt 21TH FUNCHONScocviiiiiiiiieiiiieieeiee ettt ettt ettt e st e s e s ne s e esneene
10.1 Functions 25H and 35H: Interrupt Handling in Protected Modecccccoeviiiniiiiiiniinieiniciieeiee
JO1.T 32-Bit GALES c.nveneeieeiieiieienieeteett ettt ettt ettt et et este st e st et e s bt et sbe et e eae et e e e saeeaeesaeemeenaee

10.1.2 Chaining 16-bit and 32-bit HaNdIETSccccociiriiiiniiriiiinieeieenieeieeite sttt

10.1.3 Getting the Address of the Interrupt Handlerc..cccoovieviniininiininininicnereeeececeeee

11 Interrupt 31H DPMI FUNCHONSveitiiiiiiieiiniieiietenieete sttt ettt ettt s e e b e s e e sbeenaeas
11.1 Using Interrupt 31H FUNCON CallScceiiiiiiiiiiiiieiieieetete ettt st
11.2 Int31H FUnction CallScocuoiuiiiiiieieiieeeteee ettt ettt b e b et b et e eae et saeenae st e naeeneas

11.2.1 Local

Descriptor Table (LDT) Management SEIVICESc.ccovereruereerienieneeerenenenenensessensenne

11.2.2 DOS Memory Management SEIVICESccceeeerririeruieieerienienieenteneeresieeneseresseesnesseesesseenesaee
11.2.3 INLEITUPE SETVICES ..eeeuviiiiiiiieiiieitesite ettt et et et e st et e st e sbtesabe e bt e s bt e beesabeesatesabeessteenseenseas
11.2.4 Translation SEIVICEScccciviviiiiiiiiiiiiiiiiiiii ettt s
11.2.5 DPMI VEISION ...oouiiiiiiiiiiiiiicieiccceete ettt
11.2.6 Memory Management SEIVICEScccceuererierierienierieniietenieetesteetesieessesseesuesssessesssessessenseens
11.2.7 Page LOCKING SEIVICES ...ccueruiiriiiiiriiiiiiieie sttt ettt et sttt st sttt st e b sabe s b eanenieeas
11.2.8 Demand Paging Performance Tuning ServiCesc..ccoceeveriemerienenienienienienienieeeeneeeee e
11.2.9 Physical Address Mappingccccceceeeeieieereniineniensenteteteeeeetesteseesesiesaessessesaessessessessennennens
11.2.10 Virtual Interrupt State FUNCLIONSc.cocuiiiiiiiiieiieiee et s
11.2.11 Vendor Specific EXIENSIONScccoueriirieiiirieieientntieteste sttt ettt et sae e e s sneneens
11.2.12 COPrOCESSOT STALUS ...cuveeuriiieiieiieieeteie et ettt ettt e et et st esae et esae s s e neeanesseennesseennesneennene

12 Utilities
12.1 DOS4GW
12.2 PMINFO ..

I2.3 PRIVATXM oottt sttt sttt ettt s e st

12.4 RMINFO .

13 Error Messages .

13.1 Kernel EIror MESSAZEScccueiuiiiiiiiiiiiieiieiiete ettt ettt s et
13. 2 DOS/AG EITOTS ..ottt sttt sttt sttt ae e et eae s et e nesaeenesaeenesanens

14 DOS/4AGW Commonly ASked QUESLIONScc.eeriiiriieriieiiienieeitee st eiee sttt esieesiteebtesteebeesabeesseesaseessaesaseenne
14.1 Access to TeChNICAl SUPPOTT ...ooouiiiiiiiiiiiiieeieete ettt sttt et sb e e s e e s b e sbeesabeesaeesaes
14.2 Differences Within the DOS/4G Product LNcccccceeviiiiriiiniiiiniienieeie ettt

14.3 Addressing

14.4 Interrupt and Exception Handlingc..cocooiiiiiiiiiniiiiiieeeeeecee sttt
14.5 Memory ManQ@EIMENLc.eoueeieruieientieieeteeteettenteettestesate bt sete bt eatesbeeseesbeesteebeentesbeentesaeeneesneensesaean
14.6 DOS, BIOS, ANd IMOUSE SEIVICES ..eeveeeeeeeeeeeeeeeeeeeee e et eeee e e e e eeeeeeeeeeteeeeeeseeeeseseesesaaessessneeaeeeeeeeees
147 VATtUA] MEIMOTYeeitiiiiitieiieeteeee ettt ettt sttt et e st e et e e s et e e st et e en s e sseenseeseeneesseensesneesesneensesneensesneans

14.8 Debugging

vi

49
49
50
51
52

53
53
54
54

55
58
58
59
59

61
61
62
62
67
69
71
78
79
80
81
82
83
85
85

87
88
89
91
92

95
95
98

103
103
104
107
108
110
111
111
114

14.9 Compatibility

Table of Contents

Windows 3.X Programming GUIAEccceevueiriiiiiiiiieiiienieeie ettt sttt sttt e st e bt e satesbeesabeeaeesateenaaesaneen

15 Creating 16-bit Windows 3.X APPLCATIONScoviriiriiriiiiinieiertenie sttt e e
15.1 The Sample GUI APPICALIONeruviruirieriiiieniiiieniteteettete ettt ettt st ettt sb et st eaee e eae
15.2 Building and Running the GUI APPLICAtIONcc.coeeviiiiiniiiiiniiiienieeiesiteeetee et s

15.3 Debugging the

GUI APPLICATION ..ttt ettt ettt sttt st et e b e b e e te st eneesbeeneeeae

16 Porting Non-GUI Applications to 16-bit WINAOWS 3.Xccccriruerierierienieieieieteenenese e seesseseneennen

16.1 Console Devic

e in a Windowed ENVITONMENTcccoouviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeersveer e e e

16.2 The Sample NON-GUI APPLICALION ...covviiiiiiiiiiiniiiiiieniteeiee sttt ettt ebee st e saeesiteesbeesaeeenne
16.3 Building and Running the Non-GUI AppliCationcceceevieriiiiiiieiieeniienieeeenee et

16.4 Debugging the

NON-GUI APPHCALION ..evvtiiiiiiiiiiiieiieie ettt st e s ebeesane s

16.5 Default Windowing Library FUNCHONSccccoiiiiiiiiiniiiiinietincetetetentenieetese et

17 Creating 32-bit Windows 3.X APPLCALIONS ..c..eeieruiriiertiiieniieienitenie ettt ettt et st e e st et sbe et siee st eaeenaeene
17.1 The Sample GUI APPIICALIONooutitiiieiiieiiniciieettete ettt ettt ettt ettt et s b et bt e b bt e e eaeenaeenes
17.2 Building and Running the GUI APPLICAtIONcc.oeieiiiiieriieieiteeieei ettt s

17.3 Debugging the

GUI APPLCALION ..uviiiiiiiriiniiiientceteeteste sttt ettt ettt sttt sae et se e n e

18 Porting Non-GUI Applications to 32-bit WINAOWS 3.X ..cccueiriiriiiiiienieiiienieeiee ettt

18.1 Console Devic

e in a Windowed ENVIrONMENTcc..eoeeviiiiviiieiiiiiiieee et e e eeenreeeeeeeerreeeeeen

18.2 The Sample NON-GUI APPLICALION ...eovviiriieiiieniiiiiienieeitesteeiee et esieesteesbeesbeebeesabeesseessseesseesaseenne
18.3 Building and Running the Non-GUI Applicationcccccoveevierienienienienieniceienceecseeie e

18.4 Debugging the

NON-GUI APPIICALION ..ottt ettt s

18.5 Default Windowing Library FUNCHONScc.cociiiiiiiiiiiiiiiiienieieteeeteeetese ettt

19 The Open Watcom 32-bit Windows 3.X EXtENAETccccceviriririreniniinicnienicicicieeeeeeeceeeesie e

19.1 Pointers

19.2 Implementation OVETVIEWcoccecueriieiiinieiieiietieeete ettt ettt s e e s n et e e sne e e sneennenaee
19.3 SYSIEIN STIUCTUTE ..euuvieiieeiiietieeteeite ettt ettt et e bt e et e e bt e st e e sbtesate e bt e eabe e baeeabeenbaesabeenbaesateensaesaneens
19.4 SYSIEIN OVETVIEW ..etiiiiiiiiieiieeitenite ettt ete st e bt et e st e e bt e s bt e satesabeessbeeabeesbaesnbeenbaesabeenatesaseesssesnseens
19.5 Steps to Obtaining a 32-bit APPLICALIONc.eevviriiieriiieriieiiieniteeie et eteestee st esieesbeesitesbeeseaesseenaneens

20 Windows 3.x 32-bit
20.1 WINDOWS.H

Programming OVEIVIEWcc.ceieriirieriiriinieetenieete ettt ettt sttt et sae e

20.2 ENVITONIMENT INOLES ...eeiiuiviviiiiieiieieeeeeiieeeeeeeeeateeeeeeeaaaeeesseeaaeeeessessataeessssnssseeeessasssaseesssessaseesssannreeeeas

20.3 Floating-point

2500101 F21 5 o) o AR

20.4 MUItIPIe INSLANCESevevirentinieieiieteiteitetett ettt sttt ettt ettt ettt ebesae st ebesbesaeebenbesaesensennens
20.5 Pointer HANAIINGc..cooviiiiiiiiiiiecee ettt s e e s

20.5.1 When To
20.5.2 When To

Convert InCOMING POINLETSoviuiiiiiiiiiiiiiiiienieeite ettt
Convert OUtZ0ING POINLEISovcuieriiiiiiiiiieiieeie ettt st

20.5.2.1 SendMessage and SendDIgIteMMESSAZEc.eevveervirriieriierienieeiie e eiee e eieesteeeeesanees

20.5.3 GlobalAl
20.5.4 Callback

10C aNA LLOCALALLOC .evvveiiiiiiiiiie ettt e e e e eeataa e e e e eeaaareeeeeenes
FUNCHON POINTEISvvvviiiiiiiiiiii ettt e et e e e eeatar e e e e eeaaaeeeeeenns

20.5.4.1 WiINdOW SUD-CIASSINEverveeuiiriieiiniieiieitete ettt sttt sttt sbe et et e bt s esbe e naes

20.6 Calling 16-Dit DLLS ..co.coiitiriitirietinieieniet ettt ettt sttt sttt
20.6.1 Making DLL Calls TranSPAreNtcccceceeeeriereeriereerieettenteetesteeseesteestesteeneesseesesseensesneessesneas
20.7 Far Pointer Manipulationc.ccocoeoerieriiieieinieceeeteee sttt ettt eet et eseebe s b e st neseesaensennene

20.8 _16 Functions

vii

117

119

121
121
122
122

125
125
126
126
127
128

129
129
130
131

133
133
134
134
136
137

139
139
140
141
141
142

143
143
144
144
145
145
146
146
147
148
148
151
152
153
154
155

Table of Contents

21 Windows 32-Bit Dynamic Link LIDIariescccccccoeceiiniiiniinininnenenciereecteteeeeeeeee e 157
21.1 Introduction to 32-Bit DLLScoceiiiiiiiiiiiiitete ettt ettt e s st 157
21.2 A Sample 32-bit DLLcooiiiiiiiiiiieiceee ettt ettt e s st st 158
21.3 Calling Functions in a 32-bit DLL from a 16-bit Applicationccccceeviervierniiriieenienieenieeeeene 160
21.4 Writing a 16-bit Cover for the 32-bit DLLcccciiiiiiiiiiiiiiteieetee ettt 161
21.5 Creating and Debugging Dynamic Link Librariesccoccoccevvervieniniiniiniiiniennicncencneencseeneeeenne 162

21.5.1 Building the APPIICALIONSccceerueriiriiriiniieienieeieeie ettt ettt st be et s 163
21.5.2 Installing the Examples under WINdOWScc.cocieriiriininiienieieneeie ettt 163
21.5.3 Running the EXaMPIEScccueriiriiiiiiiiieieeiet ettt st sttt e naeeae 163
21.5.4 Debugging a 32-bit DLLc.oooiiiiiiiiiieieeee ettt ettt st sttt 163
21.5.5 SUMMATY ..ottt ettt et et et a e e e s e st e e s e e e e s e e seesaeens 164

22 Interfacing Visual Basic and Open Watcom C/CH+ DLLScooiiiiiiiiiiiiiiienieeiteeieeee et 165
22.1 Introduction to Visual Basic and DLLSc...ccccocieririiiiniinienieinceeecceeeseeeee et 165
22.2 A WOrKing EXAMPIE ...ccveivuiiiiieiiiiiieeieete ettt ste et ste et esateebeesateesbeessbeenbaesabeenseesaseenseesnss 166
22.3 Sample Visual Basic DLL Programsc.ccccceceeieriirieninienieienieeeenieetesieetesieeiesieesiesseeseeeneesseene 168

22.3.1 Source Code for VBDLL32.DLLooceiiiiiiiiiiiieiieieniteteeteieete ettt s sinens 168
22.3.2 Source code for COVERIO.DLLccoiiiiiiiiiiiiiiiienieeteneeteseee ettt 169
22.4 Compiling and Linking the EXamplescoccoiiiiiiiiiiiiiee e 170
23 WIN386 Library Functions and MaCTOSccccueeueeriririrriniinenientenienienteteeeteseeateaeeseeressesae st sesaeseensenne 171
ATLOCATIAS 1O ..ottt ettt ettt et ettt e e s st et e e st ente e st eteeneeseeneesaeensesseensesneensesneans 172
ATTOCHUZEATIAS 1O ..ttt ettt ettt st e st st e st e s beesbaeebeenaee s 173
LCAILTO ettt st st st et r e enesbeenneeae 174
DEfINEDLLENITY ...eiiuiiiiteeiieieeteerite ettt sttt sttt e st e bt e sabe e beesabeebeesabeesaesaseensaesasesnbaesasesnseens 176
DefiNEUSEIPIOCTOoouiiiiiiiiiiiiitecee ettt sttt st be e nbe e 177
FIEEALLASTO ..ttt ettt sttt sttt st ae st e be et e beeabe b ens 179
FreCHUZEATIAS IO ...oueiiiiiiiiiiiiee ettt sttt st st st s bt et s bt et e e b et eae 180
FreeIndirectFunctionHandlec..cooiiiiiiiiiiiiieieeee et 181
GetIndirectFunctioNHANAIEcccooiiiiiiiiiie ettt 183
GEIPTOCTO ...ttt ettt et s bttt e bt e st esatesateesbaesaneenne 185
InVOKEINAITECtFUNCHIONcouviiiiiiiiiiiiieieeitee ettt ettt e 188
MAPATASTOFIALeiiniiiiiiiieetee ettt ettt ettt et e st e beesbt e e bt e sabesabeesabesnseens 190
MK FPLO ettt sttt ettt ae e bt et sat et sat et st be s beean et e 191
MK P32 ettt sttt ettt et e ae e a et s bt et sae et sttt beeen et e 192
MEK _LOCALS2 ..ottt ettt sttt sttt st bt et e s bt et s bt eane s bt ease bt ennesbeennenne 193
PASS_WORD_AS_POINTERccciiiiiiiiiiiite ettt sttt 194
REICASEPIOCTO ..ttt ettt et b ettt sbeenbesaeenbesanens 195

24 32-bit Extended Windows Application Developmentc..cccceeeeieiriirininienenieneneneteeeeeeeeeeeeenens 197
24.1 Can you call 16-bit code from a 32-bit COAE?ccceviriririniniririenereceeeeeee e e 197
24.2 Can I WinExec another Windows application?ccccooceeviiiienieienieiieneeieneereeeere e 197
24.3 How do I add my WiIindOWS TESOUICES?c.eeeuerruierieiniierieeniiesteeniteeseesteesbeesteesateesseesaseesseessessseesas 198
24.4 What size of function pointers passed t0 WINAOWS?cocceerierriieriiinieniieiiienieeiee st eiee st esvee e 198
24.5 Why are 32-bit callback routines FAR?ccciiiiiiiiiniiiiieieeieerteeee ettt sttt 198
24.6 Why use the _16 API fUNCHONS? ..cc.viiviiieiiiiieeieete ettt ettt sttt sbe et e st e saaesabeesbaeenseeneeas 198
24.77 What about pOINters iN SLIUCTUIES? ...c...ccueruieriirieriieienieetenieetesieetesieestesiteste st estestaesbeestesbeeeesbeeeenaes 199
24.8 WHEN dO T USE MK P 327 oottt et et e et e e e e e s et et e teeeeeeaeeseseesesesessssnnans 199
24.9 What is the difference between AllocAlias16 and MK_FP16?7cccocvviiiiiiiiiiiiiiieeeeceeeeeeee e 199
24.10 Tell Me More About Thunking and ALASESccceceeveririnirierinieneneneereteeeeeree et 199

25 Special Variables for Windows Programmingcc.cocooiiiiiiiiiniiiinieceee e 201

Table of Contents

26 Definitions of WIindOWS TEIMISc.cecuieiiriieiiriieieeiteste sttt ettt ettt et et e et e s et entesaeeeesseesesneeseeneensens 203
27 Special Windows API FUNCLONScocuiiiiiiiiiiiiiiiieieeie ettt sttt ettt et e s 205
Windows NT Programming GUIAEccc.eeeeviiriiniiriiniiienieeteneetesieete sttt ettt et sieeseesaeesaeesaesbeessesbeensesbeens 209
28 Windows NT Programming Overview 211
28.1 Windows NT Programming Note 211
28.2 Windows NT Character-mode Versus GUIccccooiiiiiiiiiiiniiiieeeeee e 211

29 Creating Windows N'T GUI APPIICALIONSc..cocueririeiieiiniieiieieeteeteee ettt s 213
29.1 The Sample GUI APPIICALION ...ovviiriiiiiiiiiiiieiiente ettt ettt ettt st e st et e st e e bt e sbeesbeesaeesars 213
29.2 Building and Running the GUI APPLICAtIONoovuiiriiriiieiiieniienieeniteeie ettt sttt st e sieeeveeneee s 213
29.3 Debugging the GUI APPHCAIONc.cevcueeiiiiiiieiieiiienieeie ettt ette st siee st e tesaeesbaesbeesbeesabeenanesnne 214

30 Creating Windows NT Character-mode APPLICAtIONSc..ccouevieriiriiniriienieieneeieseertestete et 217
30.1 The Sample Character-mode APPLICALIONcccueruirieriiriiirieientiete ettt sttt st sbee e eae 217
30.2 Building and Running the Character-mode Applicationccccceceeeierierienienieneene e 217
30.3 Debugging the Character-mode APPLICALIONceeeiueeieriirieiteeieeieeie ettt 218

31 Windows NT Multi-threaded APPLCAIONScc.oouieiiriieiiinieieiieie ettt st s 221
31.1 Programming CONSIAETALIONSeecueerieeriieriieniienieeittesteeteesteeteesibeesseesaeeebeesasesabeesabesaseessseenseesaeens 221
31.2 Creating THICAAScccuiiiiiiiriieiiieiieeie ettt ettt et sttt sttt et e e st e s bt e sabesabeesbaeenbeesbeesnseeseesabeesanenane 221
31.2.1 Creating @ NeW TRICAAc.eovuiiiiiiiiiiiiieieeie ettt ettt ettt sttt e st e ebeesaaeenbeesane s 222

31.2.2 Terminating the Current Threadc..coccoeiveiiiiiniiinieecetee et 222

31.2.3 Getting the Current Thread Identifiercoccooeivieriiiiiiiiiiniieeeeee e 222

31.3 A Multi-threaded EXAMPIEcooiiiiiiiiiiiaiiieieete ettt sttt 223

32 Windows NT Dynamic Link LADIAriescccoeieiirieieiieieeieeeiieieee ettt st s 225
32.1 Creating Dynamic Link LiDIari€sccccccererieririirininenenisenteteteteeee et sie st s saesennene 225
32.2 Creating a Sample Dynamic Link Libraryc..ccccoioiiniiiiiiiiiiniicccenceeneeeseereeeenene 226
32.3 Using Dynamic Link LADTATI€sc.coviiriiriiiiniiiiieiieeiecite ettt ettt st s 229
32.4 The Dynamic Link Library Data ATEacccceeceeiieriiienieiiierieesit ettt esiee st siee st esbeesaee s 231

33 Creating Windows NT POSIX APPLICALIONS ...c..coveriirieriiriiniiitenieeieneeesieete sttt ettt et see e e enees 233
OS/2 Programming GUIAEc.cceeiiiiiieiiieieet ettt ettt sttt st e st e e et e bt ea e b e este s b e eateebeentesbeentesbeeaesaeensesnean 237
34 Creating 16-bit OS/2 1.X APPIICALIONS ...c.veuveuieiriieieiieitriieieee ettt sttt ettt ettt et sb e sae e ssenneseens 239
34.1 The Sample APPLICALIONccciriiriirieieeieieeteetteteet ettt et e n e s ae e ae e 239
34.2 Building and Running the Sample OS/2 1.X ApPliCAtioncccueeviiiriiiiriiriieiienieeeesee et 240
34.3 Debugging the Sample OS/2 1.X APPIICAION ..cccueivuiiiriiiniiiiiieie ettt sttt ettt st e e eiee e 240

35 Creating 32-bit OS/2 APPLICALIONS ...c..eeveriieiiniiiiiniietieitete ettt ettt ettt ettt sttt ettt et sbe et sbeeaeeae 243
35.1 The Sample APPIICALIONc..covuiriiriiierierieieeteteet ettt ettt ettt s bt et sbe et bt e sbeeseesbeenees 243
35.2 Building and Running the Sample OS/2 APPliCAtiOnccccereeverieniirienieeienieeeeseeee e 244
35.3 Debugging the Sample OS/2 APPLICAIONccuiiuiiitiiieiiieieiieieeteee ettt sttt eae 244

36 OS/2 2.x Multi-threaded APPIICALIONScc.coveieieiririririieene ettt ettt se et se e s eenees 247
36.1 Programming CONSIAETAtIONScc.eecueruieiiriieiiinieie ettt ettt et e saeene et eaesaeenesaeen 247

iX

Table of Contents

36.2 Creating TRICAAS ..c..coveeverterieieieieteiete ettt sttt ettt ettt eae bbbt be et e e e eneene
36.2.1 Creating @ New Threadc.ccocoiiiiiiiiiiiie e e
36.2.2 Terminating the Current Threadcccociiiiiiiiiiieiieeee ettt
36.2.3 Getting the Current Thread IAentifiercocceviiiiiiiiiiiiiiniee e

36.3 A Multi-threaded EXAmPIEccceeeiiiiiiiiiiiiieiiieite sttt ettt ettt et sate e baesabeebeesaveenee s

30.4 Thread LIMILS .o..cooueriiiieriitieteteetet ettt ettt sttt sttt e e e it e s bt et s bt e bt sbte et saeenbeeanenbeennenbeens

37 OS/2 2.x Dynamic Link LIDIArIesccccoceeriiiiriiiieiinieieeteteeese ettt sttt nbe e
37.1 Creating Dynamic Link LiDrariescccccooiiiiiiiiiniiieiieescee ettt
37.2 Creating a Sample Dynamic Link Libraryccccocoooieiiiiiiinienieeeee e
37.3 Using Dynamic Link LIDIari€sccccecererierierierieiiietececnescerestese sttt e eveeresne e
37.4 The Dynamic Link Library Data Areaccccoceiieiiiiiiiiniiinieeeeeseeeeeee e
37.5 Dynamic Link Library Initialization/Terminationccc.ccecceevveernienienieenieenieenieeieeseeeieeseeeieenn

38 Programming for OS/2 Presentation Managerccccoecuierieriiienieeiieeiiesieeniiesieestesteesieesveeseeesseenanesane
38.1 Porting Existing C/C4+ APPICALIONS ..c.eeiiriiiiiiriiiiinieniietenieete ettt sttt sbeeaae e eae
38.1.1 AN EXAMPIE ...ooniiiiiiiiieiee ettt ettt ettt st

38.2 Calling Presentation Manager API FUNCHIONScccouiiiiiiiienieiinieeitee et

39 Developing an OS/2 Physical Device DIIVETccccoiviiriinierieiiieteineeeeieese sttt

Novell NLM Programming GUIAEcoceeeiieiriieiiieiiienieeniteste ettt e steeite st esieesieesbtesatesabeessbessseesaseenseesseens

40 Creating NetWare 386 NLM APPIICAIONS ...cccvieruieriiieriieiiieniieiieenteeieesiteeseesieesseesseesseesssesseesssesssesssnens

Mixed Language ProOZramImingccocooiereiiiiiiienieeteie ettt sttt st be st e b sat et e st e bt et e sbeeneesbeeneesae

41 Inter-Language calls: C and FORTRANoooiiiiiiiiiiieeee ettt sttt sttt s
41.1 Symbol Naming CONVENIONc.ceeruirteruerterierieteteteteeeitee st sttt stestessessessessensesteneeseenesnesseesessesaensen
41.2 Argument Passing CONVENTIONcccocuiriiriiriiiniiienieeeseeteee ettt sae e s ene s e nesaeenesanens
41.3 Memory Model COMPAtiDIIILY ...cc.eeeveiiriiiiiiiiieiiienie ettt ettt et e st e sbeesateeaee e
41.4 LinKing CONSIAETALIONS ...cccvvieiteirtieiiieniieetieniteeteentteeteesttesbeesttesateesstesaseesbeesaseesseessseesseesaseesssesseenses
41.5 Integer Type COmMPAIDIIILY ...cocveeriiiiiiiiieiiiiiteee ettt ettt e s beebeesebeesaaesabeebaesaneenne
41.6 How do I pass integers from C to a FORTRAN function?cccccoceveevenieenicnieenenienenienenieniene
41.7 How do I pass integers from FORTRAN to a C function?ccccecevervinienneniennenienenienienieniene
41.8 How do I pass a string from a C function to FORTRAN? ...cccooiiiiiiiiniiiiniieieeeeesteeeeeiee
41.9 How do I pass a string from FORTRAN to a C function?ccccccevvevievienienininieneninenenesreneeneennen
41.10 How do I access a FORTRAN common block from within C?ccceceviiiiniinniniiienceeeeeee
41.11 How do I call a C function that accepts a variable number of arguments?c.ccccecevverenrenennens

COMIMON PrODIEINSovvviiiiiiiiiiiiic ettt eeeta e e e e e e tar e e e e e eearaeeeeeeetareeeesetnreeeeeenssreseeeennreeens

42 Commonly Asked QUESHIONS ANA ANSWETSc.eevvieeruerriieriieerieeeiteesteeteesteeseessresseesseessseessessseesssessseessnes
42.1 Determining my current patch IBVELcocuiriiiiiiiiniiieiieeeteeteeee et
42.2 Converting to Open WatCOmM C/CH ..ccuiiiiiiiiiiiiiiieniieterit ettt ettt e b e saeen

42.2.1 Conversion from UNIX COMPILEIScceeoiiriiriiiriiiiiieieiieeiest ettt
42.2.2 Conversion from IBM-compatible PC cOmPIlersccccceeverieiiinieiinieie e
42.3 What you should know about OPtIMIZAtIONccceceeeriririrentinenentetenreeeeeeeeee et saenees
42.4 The compiler cannot find "Stdio.h"coociiiiiiiiiii e

247
248
248
248
249
250

251
251
252
254
255
255

257
257
257
258

261

265

267

269

271
271
272
272
273
273
273
274
275
276
277
278

279

281
281
282
284
285
286

Table of Contents

42.5 Resolving an "Undefined Reference” liNKer eITOrcccoevierieiienieieininieieencneeeeeseeseeveeeeene 288
42.6 Why my variables are NOt SEt t0 ZEIOcccuieueeruieieriieiieriiete ettt et e et eeee e e saeesaesaees 289
42.7 What does "size of DGROUP exceeds 64K" mean for 16-bit applications?c.cccecceevvvrvieeneennne. 290
42.8 What does "NULL assignment detected" mean in 16-bit applications?ccccceeveevierieeenierveeennen. 291
42.9 What "Stack Overflow!" MEanSsccccoceiviiiiiiiiiiiiiiiiiiicicir s 292
42.10 Why redefinition errors are issued from WLINKcccccoccoiiiiininiininiinieeecsceeeeeee e 293
42.11 How more than 20 files at a time can be openedccocceverieririinenierenieeeeeeeseeee e 294
42.12 How source files can be seen in the debuggerccocoviiiiriiiiniiienineeeeeetee e 295
42.13 The difference between the "d1" and "d2" compiler OPtONSccceeeereriiereenieneerie e 297

X1

List of Figures

Figure 1. Basic MEMOTY LAYOULcc.ccueiiriiiiiriiitinieresteeetentetet ettt ettt st sa et ettt ettt ettt ebe b sae e 45
Figure 2. Physical Memory/Linear Address SPACEcc.coceoiriiiriiiiiniiiieniieieeceee ettt 46
Figure 3. ACCESS RIGNES/TYPE ..ooueeeiiiiiiiieee ettt ettt e b e st e bt e sa bt e bt e sat e e bt e sabesabeesaaeeseenas 65
Figure 4. Extended AcCess RIGNES/TYPE .ocveeriiiriiiiiiiiieie ettt ettt ettt sttt s e st e st e bt e sbeesasesateas 66
Figure 5. WIINBEO STIUCLUIEeovcvieriieiiieiienieeiteste et e s te et esiteestee sttt ebeesseessbeesasesateesstessseenseesnseenseesaseenseesnseensaessennne 141
Figure 6. 32-bit APPIICAtION STIUCIUIEocuerutiitirieiiitentietenteet sttt ettt st et ett et sete bt eete bt estesbeestesbeenaesbeenaesmeenaeeneen 141

Xii

1 Open Watcom C/C++ Application Development

This document contains guides to application development for several environments including 16-bit DOS,
32-bit extended DOS, Windows 3.x, 32-bit extended Windows 3.x, Windows NT/2000/XP, Win9x, OS/2,
and Novell NLMs. It also describes mixed language (C, FORTRAN) application development. It
concludes with a chapter on some general questions and the answers to them.

This document covers the following topics:
* DOS Programming Guide

Creating 16-bit DOS Applications

Creating 32-bit Phar Lap 386|DOS-Extender Applications
Creating 32-bit DOS/4GW Applications

32-bit Extended DOS Application Development

e The DOS/4GW DOS Extender

The Tenberry Software DOS/4GW DOS Extender
Linear Executables

Configuring DOS/4GW

VMM

Interrupt 21H Functions

Interrupt 31H DPMI Functions

Utilities

Error Messages

DOS/4GW Commonly Asked Questions

* Windows 3.x Programming Guide

Creating 16-bit Windows 3.x Applications

Porting Non-GUI Applications to 16-bit Windows 3.x
Creating 32-bit Windows 3.x Applications

Porting Non-GUI Applications to 32-bit Windows 3.x
The Open Watcom 32-bit Windows Extender
Windows 3.x 32-bit Programming Overview
Windows 32-Bit Dynamic Link Libraries

Interfacing Visual Basic and Open Watcom C/C++ DLLs
WIN386 Library Functions and Macros

32-bit Extended Windows Application Development
Special Variables for Windows Programming
Definitions of Windows Terms

Special Windows API Functions

* Windows NT Programming Guide

Open Watcom C/C++ Application Development

Chapter 1

Windows NT Programming Overview

Creating Windows NT GUI Applications

Porting Non-GUI Applications to Windows NT GUI
Windows NT Multi-threaded Applications

Windows NT Dynamic Link Libraries

* OS/2 Programming Guide

Creating 16-bit 0S/2 1.x Applications
Creating 32-bit 0S/2 Applications

0S/2 Multi-threaded Applications

0S/2 Dynamic Link Libraries

Programming for OS/2 Presentation Manager
* Novell NLM Programming Guide

Creating NetWare 386 NLM Applications
» Mixed Language Programming
Inter-Language calls: C and FORTRAN

e Common Problems

Commonly Asked Questions and Answers

2 Open Watcom C/C++ Application Development

DOS Programming Guide

DOS Programming Guide

2 Creating 16-bit DOS Applications

This chapter describes how to compile and link 16-bit DOS applications simply and quickly.

We will illustrate the steps to creating 16-bit DOS applications by taking a small sample application and
showing you how to compile, link, run and debug it.

2.1 The Sample Application

To demonstrate the creation of 16-bit DOS applications using command-line oriented tools, we introduce a
simple sample program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>
void main ()
{

printf("Hello world\n");
}

The C++ version of this program follows:
#include <iostream.h>
void main ()

{

cout << "Hello world" << endl;

}
The goal of this program is to display the message "Hello world" on the screen. The C version uses the C

library print £ routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

2.2 Building and Running the Sample DOS Application

To compile and link our example program which is stored in the file hello. c, enter the following
command:

C>wcl —-1=dos hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS Application 5

DOS Programming Guide

C>wcl —-1=dos hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
wce hello.c
Open Watcom C16 Optimizing Compiler
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 17

Open Watcom Linker

Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.

Source code is available under the Sybase Open Watcom Public License.

See https://github.com/open-watcom/open-watcom-v2 for details.

loading object files

searching libraries

creating a DOS executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

C>hello
Hello world

If you examine the current directory, you will find that two files have been created. These are

hello.obj (the result of compiling hello.c)and hello.exe (the result of linking hello.obj
with the appropriate Open Watcom C/C++ libraries). Itis hello.exe thatis run by DOS when you enter
the "hello" command.

2.3 Debugging the Sample DOS Application

6

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL command, this is fairly straightforward. WCL recognizes the Open Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Open Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl —-1l=dos —-d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Sample DOS Application

Creating 16-bit DOS Applications

C>wcl -1l=dos -d2 hello.c
Open Watcom C/C++16 Compile and Link Utility
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
wcc hello.c -d2
Open Watcom C16 Optimizing Compiler
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 23

Open Watcom Linker

Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.

Source code is available under the Sybase Open Watcom Public License.

See https://github.com/open-watcom/open-watcom-v2 for details.

loading object files

searching libraries

creating a DOS executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom C/C++ compiler. WCL will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

C>wd hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample DOS Application 7

DOS Programming Guide

8 Debugging the Sample DOS Application

3 Creating 32-bit Phar Lap 386/DOS-Extender
Applications

This chapter describes how to compile and link 32-bit Phar Lap 386|DOS-Extender applications simply and
quickly.

We will illustrate the steps to creating 32-bit Phar Lap 386|DOS-Extender applications by taking a small
sample application and showing you how to compile, link, run and debug it.

3.1 The Sample Application

To demonstrate the creation of 32-bit Phar Lap 386|DOS-Extender applications using command-line
oriented tools, we introduce a simple sample program. For our example, we are going to use the famous
"hello" program.

#include <stdio.h>
void main ()
{

printf("Hello world\n");
}

The C++ version of this program follows:
#include <iostream.h>
void main ()

{

cout << "Hello world" << endl;

}
The goal of this program is to display the message "Hello world" on the screen. The C version uses the C

library print f routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

3.2 Building and Running the Sample 386/DOS-Extender
Application

To compile and link our example program which is stored in the file hello. c, enter the following
command:

C>wcl386 —-l=pharlap hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample 386|DOS-Extender Application 9

DOS Programming Guide

C>wcl386 —-l=pharlap hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
wce386 hello.c
Open Watcom C32 Optimizing Compiler
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

Open Watcom Linker

Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.

Source code is available under the Sybase Open Watcom Public License.

See https://github.com/open-watcom/open-watcom-v2 for details.

loading object files

searching libraries

creating a Phar Lap simple executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

C>run386 hello
Hello world

If you examine the current directory, you will find that two files have been created. These are

hello.obj (the result of compiling hello.c)and hello.exp (the result of linking hello.obj
with the appropriate Open Watcom C/C++ libraries). Itis hello.exp thatis run by DOS when you enter
the "run386 hello" command.

3.3 Debugging the Sample 386|DOS-Extender Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Open Watcom
C/C++ compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl386 —-l=pharlap -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

10 Debugging the Sample 386|DOS-Extender Application

Creating 32-bit Phar Lap 386/DOS-Extender Applications

C>wcl386 —-l=pharlap -d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
wcec386 hello.c -d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

Open Watcom Linker

Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.

Source code is available under the Sybase Open Watcom Public License.

See https://github.com/open-watcom/open-watcom-v2 for details.

loading object files

searching libraries

creating a Phar Lap simple executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

C>wd /trap=pls hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample 386|DOS-Extender Application 11

DOS Programming Guide

12 Debugging the Sample 386/DOS-Extender Application

4 Creating 32-bit DOS/4GW Applications

This chapter describes how to compile and link 32-bit DOS/4GW applications simply and quickly.

We will illustrate the steps to creating 32-bit DOS/4GW applications by taking a small sample application
and showing you how to compile, link, run and debug it.

4.1 The Sample Application

To demonstrate the creation of 32-bit DOS/4GW applications using command-line oriented tools, we
introduce a simple sample program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>
void main ()
{

printf("Hello world\n");
}

The C++ version of this program follows:
#include <iostream.h>
void main ()

{

cout << "Hello world" << endl;

}

The goal of this program is to display the message "Hello world" on the screen. The C version uses the C
library print £ routine to accomplish this task. The C++ version uses the "iostream" library to accomplish
this task. We will take you through the steps necessary to produce this result.

4.2 Building and Running the Sample DOS/4GW Application

To compile and link our example program which is stored in the file hello. c, enter the following
command:

C>wcl386 —-1=dos4g hello.c

The typical messages that appear on the screen are shown in the following illustration.

Building and Running the Sample DOS/AGW Application 13

DOS Programming Guide

C>wcl386 —-l=dos4g hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
wce386 hello.c
Open Watcom C32 Optimizing Compiler
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

Open Watcom Linker

Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.

Source code is available under the Sybase Open Watcom Public License.

See https://github.com/open-watcom/open-watcom-v2 for details.

loading object files

searching libraries

creating a DOS/4G executable

Provided that no errors were encountered during the compile or link phases, the "hello" program may now
be run.

C>hello
Hello world

If you examine the current directory, you will find that two files have been created. These are

hello.obj (the result of compiling hello.c)and hello.exe (the result of linking hello.obj
with the appropriate Open Watcom C/C++ libraries). Itis hello.exe thatis run by DOS when you enter
the "hello" command.

4.3 Debugging the Sample DOS/4GW Application

Let us assume that you wish to debug your application in order to locate an error in programming. In the
previous section, the "hello" program was compiled with default compile and link options. When
debugging an application, it is useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language level. To do this, we must
direct both the compiler and linker to include additional debugging information in the object and executable
files. Using the WCL386 command, this is fairly straightforward. WCL386 recognizes the Open Watcom
C/C++ compiler "debug" options and will create the appropriate debug directives for the Open Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the following command
may be issued.

C>wcl386 —-1l=dos4g -d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

14 Debugging the Sample DOS/4GW Application

Creating 32-bit DOS/4GW Applications

C>wcl386 —-l=dos4g -d2 hello.c
Open Watcom C/C++32 Compile and Link Utility
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1988-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
wcc386 hello.c -d2
Open Watcom C32 Optimizing Compiler
Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1984-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public License.
See https://github.com/open-watcom/open-watcom-v2 for details.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

Open Watcom Linker

Copyright (c) 2002-2024 the Open Watcom Contributors. All Rights Reserved.
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.

Source code is available under the Sybase Open Watcom Public License.

See https://github.com/open-watcom/open-watcom-v2 for details.

loading object files

searching libraries

creating a DOS/4G executable

The "d2" option requests the maximum amount of debugging information that can be provided by the Open
Watcom C/C++ compiler. WCL386 will make sure that this debugging information is included in the
executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option results in
fewer code optimizations by default. You can request more optimization by specifying the appropriate
options. However, you do so at the risk of making it more difficult for yourself to determine the
relationship between the object code and the original source language code.

To request the Open Watcom Debugger to assist in debugging the application, the following command may
be issued.

C>wd /trap=rsi hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer you to the book
entitled Open Watcom Debugger User’s Guide.

Debugging the Sample DOS/AGW Application 15

DOS Programming Guide

16 Debugging the Sample DOS/AGW Application

5 32-bit Extended DOS Application Development

5.1 Introduction

The purpose of this chapter is to anticipate common programming questions for 32-bit extended DOS
application development. Note that these programming solutions may be DOS-extender specific and
therefore may not work for other DOS extenders.
The following topics are discussed in this chapter:

* How can I write directly to video memory using a DOS extender?

* How do I get information about free memory in the 32-bit environment?

* How do I access the first megabyte in the extended DOS environment?

* How do I spawn a protected-mode application?

* How can I use the mouse interrupt (0x33) with DOS/4AGW?

* How do I simulate a real-mode interrupt with DOS/4GW?

* How do you install a bi-modal interrupt handler with DOS/4GW?
Please refer to the DOS Protected-Mode Interface (DPMI) Specification for information on DPMI
services. In the past, the DPMI specification could be obtained free of charge by contacting Intel Literature
JP26 at 800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26

3065 Bowers Avenue

P.O. Box 58065

Santa Clara, California

U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmivl.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

Introduction 17

DOS Programming Guide

5.2 How can | write directly to video memory using a DOS

extender?

Many programmers require access to video RAM in order to directly manipulate data on the screen. Under
DOS, it was standard practice to use a far pointer, with the segment part of the far pointer set to the screen
segment. Under DOS extenders, this practice is not so standard. Each DOS extender provides its own

method for accessing video memory.

5.2.1 Writing to Video Memory under Tenberry Software DOS/AGW

18

Under DOS/4GW, the first megabyte of physical memory is mapped as a shared linear address space. This
allows your application to access video RAM using a near pointer set to the screen’s linear address. The

following program demonstrates this method.

/*
SCREEN.C - This example shows how to write directly
to screen memory under the DOS/4GW dos—extender.

Compile & Link: wcl386 -1=dos4g SCREEN
*/
#include <stdio.h>
#include <dos.h>

/*
Under DOS/4GW, the first megabyte of physical memory
(real-mode memory) is mapped as a shared linear address
space. This allows your application to access video RAM

using its linear address. The DOS segment:offset of
B800:0000 corresponds to a linear address of B800O.
*/

#define SCREEN_AREA 0xb800
#define SCREEN_LIN_ADDR ((SCREEN_AREA) << 4)
#define SCREEN_SIZE 80*25
void main ()
{
char *ptr;
int i;

/* Set the pointer to the screen’s linear address */

ptr = (char *)SCREEN_LIN_ADDR;
for(i = 0; 1 < SCREEN_SIZE - 1; i++) {
ptr = '/;

ptr += 2 * sizeof (char);

}

Please refer to the chapter entitled "Linear Executables" on page 43 for more information on how

DOS/4GW maps the first megabyte.

How can I write directly to video memory using a DOS extender?

32-bit Extended DOS Application Development

5.2.2 Writing to Video Memory under the Phar Lap 386|DOS-Extender

The Phar Lap DOS extender provides screen access through the special segment selector Ox1C. This
allows far pointer access to video RAM from a 32-bit program. The following example illustrates this
technique.

/*
SCREENPL.C - This example shows how to write directly
to screen memory under the Phar Lap DOS extender.

Compile & Link: wcl386 —-l=pharlap SCREENPL
*/
#include <stdio.h>
#include <dos.h>

/*
Phar Lap allows access to screen memory through a
special selector. Refer to "Hardware Access" in
Phar Lap’s documentation for details.

*/

#define PL_SCREEN_SELECTOR Oxlc

#define SCREEN_SIZE 80*25

void main ()

{
/* Need a far pointer to use the screen selector */
char far *ptr;
int i;

/* Make a far pointer to screen memory */
ptr = MK_FP(PL_SCREEN_SELECTOR, 0);
for(i = 0; 1 < SCREEN_SIZE - 1; i++) {
*ptr = ' *7;
ptr += 2 * sizeof (char);

}

It is also possible to map screen memory into your near memory using Phar Lap system calls. Please refer
to the chapter entitled "386|DOS-Extender System Calls" in Phar Lap’s 386|DOS-Extender Reference
Manual for details.

5.3 How do | get information about free memory in the 32-bit
environment?

Under a virtual memory system, programmers are often interested in the amount of physical memory they
can allocate. Information about the amount of free memory that is available is always provided under a
DPMI host, however, the manner in which this information is provided may differ under various
environments. Keep in mind that in a multi-tasking environment, the information returned to your task
from the DPMI host can easily become obsolete if other tasks allocate memory independently of your task.

How do I get information about free memory in the 32-bit environment? 19

DOS Programming Guide

5.3.1 Getting Free Memory Information under DOS/AGW

DOS/4GW provides a DPMI interface through interrupt 0x31. This allows you to use DPMI service
0x0500 to get free memory information. The following program illustrates this procedure.

/*
MEMORY.C - This example shows how to get information
about free memory using DPMI call 0500h under DOS/4GW.
Note that only the first field of the structure is
guaranteed to contain a valid wvalue; any field that
is not returned by DOS/4GW is set to -1 (OFFFFFFFFh).

Compile & Link: wcl386 -1l=dos4g memory
*/
#include <i86.h>
#include <dos.h>
#include <stdio.h>

#define DPMI_INT 0x31

struct meminfo {
unsigned LargestBlockAvail;
unsigned MaxUnlockedPage;
unsigned LargestLockablePage;
unsigned LinAddrSpace;
unsigned NumFreePagesAvail;
unsigned NumPhysicalPagesFree;
unsigned TotalPhysicalPages;
unsigned FreeLinAddrSpace;
unsigned SizeOfPageFile;
unsigned Reserved[3];

} MemInfo;

void main ()

{
union REGS regs;
struct SREGS sregs;

regs.x.eax = 0x00000500;

memset (&sregs, 0, sizeof(sregs));
sregs.es = FP_SEG(&MemInfo);
regs.x.edi = FP_OFF (&MemInfo);

20 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

int386x (DPMI_INT, ®s, ®s, &sregs);

printf("Largest available block (in bytes): %lu\n",
MemInfo.LargestBlockAvail);

printf("Maximum unlocked page allocation: %lu\n",
MemInfo.MaxUnlockedPage);

printf("Pages that can be allocated and locked: "
"$1lu\n", MemInfo.LargestLockablePage);

printf ("Total linear address space including "
"allocated pages: %lu\n",
MemInfo.LinAddrSpace);

printf ("Number of free pages available: %lu\n",
MemInfo.NumFreePagesAvail);

printf ("Number of physical pages not in use: %lu\n",
MemInfo.NumPhysicalPagesFree);

printf("Total physical pages managed by host: %lu\n",
MemInfo.TotalPhysicalPages);

printf("Free linear address space (pages): %$lu\n",
MemInfo.FreeLinAddrSpace);

printf("Size of paging/file partition (pages): %$lu\n",
MemInfo.SizeOfPageFile);

Please refer to the chapter entitled "Interrupt 31H DPMI Functions" on page 61 for more information on
DPMI services.

5.3.2 Getting Free Memory Information under the Phar Lap 386/DOS-Extender

Phar Lap provides memory statistics through 386|DOS-Extender System Call 0x2520. The following
example illustrates how to use this system call from a 32-bit program.

/*

*/

MEMPLS40.C - This is an example of how to get the
amount of physical memory present under Phar Lap
386|DOS-Extender v4.0.

Compile & Link: wcl386 —-l=pharlap MEMPLS40

#include <dos.h>
#include <stdio.h>

typedef struct {

unsigned datal[25];

} pharlap_mem_status;

/* Names suggested in Phar Lap documentation */

#define APHYSPG 5
#define SYSPHYSPG 7
#define NFREEPG 21

unsigned long memavail (void)

{

pharlap_mem_ status status;
union REGS regs;
unsigned long amount;

How do I get information about free memory in the 32-bit environment? 21

DOS Programming Guide

regs.h.ah = 0x25;

regs.h.al = 0x20;

regs.h.bl = 0;

regs.x.edx = (unsigned int) é&status;

intdos(®s, ®s);

/* equation is given in description for nfreepg */
amount = status.data[APHYSPG];

amount += status.data[SYSPHYSPG];

amount += status.data[NFREEPG];

return (amount * 4096);

}

void main ()
{
printf("$lu bytes of memory available\n",
memavail ());

}

Please refer to the chapter entitled "386|DOS-Extender System Calls" in Phar Lap’s 386|DOS-Extender
Reference Manual for more information on 386|DOS-Extender System Calls.

5.3.3 Getting Free Memory Information in the 32-bit Environment under
Windows 3.x

Windows 3.x provides a DPMI host that you can access from a 32-bit program. The interface to this host is
a 16-bit interface, hence there are some considerations involved when calling Windows 3.x DPMI services
from 32-bit code. If a pointer to a data buffer is required to be passed in ES:DI, for example, an
AllocAlias16() may be used to get a 16-bit far pointer that can be passed to Windows 3.x through these
registers. Also, an int86() call should be issued rather than an int386() call. The following program
demonstrates the techniques mentioned above.

/*
MEMWIN.C - This example shows how to get information
about free memory with DPMI call 0x0500 using Windows
as a DPMI host. Note that only the first field of the
structure is guaranteed to contain a valid value; any
field that is not returned by the DPMI implementation
is set to -1 (OFFFFFFFFh).

Compile & Link: wcl386 —-1=win386 —-zw memwin
Bind: wbind -n memwin
*/
#include <windows.h>
#include <i86.h>
#include <dos.h>
#include <stdio.h>

22 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

struct memin
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} MemInfo;

fo {
LargestBlockAvail;
MaxUnlockedPage;
LargestLockablePage;
LinAddrSpace;
NumFreePagesAvail;
NumPhysicalPagesFree;
TotalPhysicalPages;
FreelLinAddrSpace;
SizeOfPageFile;
Reserved[3];

#define DPMI_INT 0x31

void main ()

{

union RE
struct S
DWORD mi
regs.w.a
mi_16 =

sregs.es
regs.x.d

int86x (
printf (

printf (
printf (

printf (

printf (
printf (
printf (
printf (
printf (

FreeAlia

Please refer to the DOS Protected-Mode Interface (DPMI) Specification for information on DPMI

GS regs;
REGS sregs;

_16;

x = 0x0500;

AllocAliasl6 (&MemInfo);
= HIWORD(mi_16);

i = LOWORD(mi_16);

DPMI_INT, ®s, ®s, &sregs);

"Largest available block (in bytes): %$lul\n",
MemInfo.LargestBlockAvail);

"Maximum unlocked page allocation: %$lu\n",
MemInfo.MaxUnlockedPage) ;

"Pages that can be allocated and locked: "
"$1lu\n", MemInfo.LargestLockablePage);
"Total linear address space including "
"allocated pages: %lu\n",
MemInfo.LinAddrSpace);

"Number of free pages available: %lu\n",
MemInfo.NumFreePagesAvail);

"Number of physical pages not in use: %lu\n",
MemInfo.NumPhysicalPagesFree);

"Total physical pages managed by host: %lu\n",
MemInfo.TotalPhysicalPages);

"Free linear address space (pages): %$lu\n",
MemInfo.FreeLinAddrSpace);

"Size of paging/file partition (pages): %$lu\n",

MemInfo.SizeOfPageFile);
sl6(mi_16);

services. In the past, the DPMI specification could be obtained free of charge by contacting Intel Literature

JP26 at 800-548-4725 or by writing to the address below. We have been advised that the DPMI

specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue

P.O. Box 58065

Santa Clara, California
U.S.A. 95051-8065

How do I get information about free memory in the 32-bit environment?

23

DOS Programming Guide

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmivl.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

5.4 How do | access the first megabyte in the extended DOS
environment?

Many programmers require access to the first megabyte of memory in order to look at key low memory
addresses. Under DOS, it was standard practice to use a far pointer, with the far pointer set to the
segmented address of the memory area that was being inspected. Under DOS extenders, this practice is not
so standard. Each DOS extender provides its own method for accessing the first megabyte of memory.

5.4.1 Accessing the First Megabyte under Tenberry Software DOS/4GW

Under DOS/4GW, the first megabyte of physical memory - the real memory - is mapped as a shared linear
address space. This allows your application to access the first megabyte of memory using a near pointer set
to the linear address. The following program demonstrates this method. This example is similar to the
screen memory access example.

/*
KEYSTAT.C - This example shows how to get the keyboard
status under DOS/4GW by looking at the ROM BIOS
keyboard status byte in low memory.

Compile & Link: wcl386 -1=dos4g keystat
*/
#include <stdio.h>
#include <dos.h>

/*
Under DOS, the keyboard status byte has a segmented
address of 0x0040:0x0017. This corresponds to a
linear address of 0x417.
*/
#define LOW_AREA 0x417

void main ()

{
/* Only need a near pointer in the flat model */
char *ptr;

/* Set pointer to linear address of the first
status byte */
ptr = (char *)LOW_AREA;

/* Caps lock state is in bit 6 */
if(*ptr & 0x40) {

puts("Caps Lock on");
}

24 How do I access the first megabyte in the extended DOS environment?

32-bit Extended DOS Application Development

}

/* Num lock state is in bit 5 */
if(*ptr & 0x20) {

puts("Num Lock on");
}
/* Scroll lock state is in bit 4 */
if(*ptr & 0x10) {

puts("Scroll Lock on");
}

Please refer to the chapter entitled "Linear Executables" on page 43 for more information on how
DOS/4GW maps the first megabyte.

5.4.2 Accessing the First Megabyte under the Phar Lap 386/DOS-Extender

The Phar Lap DOS extender provides access to real memory through the special segment selector 0x34.
This allows far pointer access to the first megabyte from a 32-bit program. The following example
illustrates this technique.

/~k
KEYSTAPL.C - This example shows how to get the keyboard
status under 386\DOS—Extender by looking at the ROM
BIOS keyboard status byte in low memory.

Compile & Link: wcl386 -l=pharlap keystapl
*/
#include <stdio.h>
#include <dos.h>

/*
Under DOS, the keyboard status byte has a segmented
address of 0x0040:0x0017. This corresponds to a
linear address of 0x417.

*/

void main ()
{

/* We require a far pointer to use selector
for 1st megabyte */

char far *ptr;

/* Set pointer to segmented address of the first
status byte */

ptr = MK_FP(0x34, 0x417);

/* Caps lock state is in bit 6 */

if(*ptr & 0x40) {
puts("Caps Lock on");

}

/* Num lock state is in bit 5 */

if(*ptr & 0x20) {
puts("Num Lock on");

}

/* Scroll lock state is in bit 4 */

if(*ptr & 0x10) {
puts("Scroll Lock on");

}

How do I access the first megabyte in the extended DOS environment?

25

DOS Programming Guide

Please refer to the chapter entitled "Program Environment" in Phar Lap’s 386|DOS-Extender Reference
Manual for more information on segment selectors available to your program.

5.5 How do | spawn a protected-mode application?

Sometimes applications need to spawn other programs as part of their execution. In the extended DOS
environment, spawning tasks is much the same as under DOS, however it should be noted that the only
mode supported is P_WAIT. The P_OVERLAY mode is not supported since the DOS extender cannot be
removed from memory by the application (this is also the reason why the exec() functions are unsupported).
The other modes are for concurrent operating systems only.

Also, unless the application being spawned is bound or stubbed, the DOS extender must be spawned with
the application and its arguments passed in the parameter list.

5.5.1 Spawning Protected-Mode Applications Under Tenberry Software
DOS/4GW

In the case of DOS/4GW, some real-mode memory must be set aside at run time for spawning the DOS
extender, otherwise the spawning application could potentially allocate all of system memory. The real
memory can be reserved from within your program by assigning the global variable __minreal the
number of bytes to be set aside. This variable is referenced in <stdlib.h>. The following two
programs demonstrate how to spawn a DOS/4GW application.

/*
SPWNRD4G.C - The following program demonstrates how to
spawn another DOS/4GW application.

Compile and link: wcl386 —-1=dos4g spwnrdig
*/
#include <process.h>
#include <stdio.h>
#include <stdlib.h>

/* DOS/4GW var for WLINK MINREAL option */
unsigned __near __minreal = 100*1024;

void main ()

{

int app2_exit_code;

puts("Spawning a protected-mode application..."
"using spawnlp() with P_WAIT");
app2_exit_code = spawnlp(P_WAIT, "dos4gw",
"dos4gw", "spwndd4g", NULL);
printf("Application #2 returned with exit code %d\n",
app2_exit_code);

26 How do I spawn a protected-mode application?

32-bit Extended DOS Application Development

/*

*/

SPWNDD4G.C — Will be spawned by the SPWNRD4G program.

Compile & Link: wcl386 -1l=dos4g spwndddg

#include <stdio.h>
#include <stdlib.h>

void main ()

{

puts("\nApplication #2 spawned\n");
/* Send back exit code 59 */
exit (59);

5.5.2 Spawning Protected-Mode Applications Under Phar Lap
386/DOS-Extender

In the case of the Phar Lap 386|DOS-Extender, some real-mode memory must be set aside at link time for
spawning the DOS extender, otherwise the spawning application will be assigned all the system memory at

startup. This is done at link time by specifying the runtime minreal and runtime maxreal options, as

demonstrated by the following programs.

/*

*/

SPWNRPLS.C — The following program demonstrates how to
spawn a Phar Lap application.

Compile & Link:
wcl386 —-l=pharlap —-"runt minr=300K,maxr=400K" spwnrpls

#include <process.h>
#include <stdio.h>

void main ()

{

int app2_exit_code;

puts("Spawning a protect-mode application..."
"using spawnlp () with P_WAIT");
puts ("Spawning application #2...");

app2_exit_code = spawnlp(P_WAIT, "run386",
"run386", "spwndpls", NULL);

printf("Application #2 returned with exit code %d",
app2_exit_code);

How do | spawn a protected-mode application?

27

DOS Programming Guide

/*
SPWNDPLS.C — Will be spawned by the SPWNRPLS program.

Compile & Link: wcl386 —-l=pharlap spwndpls
*/
#include <stdio.h>
#include <stdlib.h>

void main ()

{
puts("\nApplication #2 spawned\n");
/* Exit with error code 59 */
exit (59);

5.6 How Can | Use the Mouse Interrupt (0x33) with DOS/4GW?

Several commonly used interrupts are automatically supported in protected mode with DOS/4GW. The
DOS extender handles the switch from protected mode to real mode and manages any intermediate
real-mode data buffers that are required. To use a supported interrupt, set up the register information as
required for the interrupt and use one of the int386() or int386x() library functions to execute the interrupt.
For calls that are not supported by DOS/4GW, you can use the DPMI function, Simulate a Real-Mode
Interrupt (0x0300). This process is described in the next section.

Since the mouse interrupt (0x33) is quite commonly used, DOS/4GW provides protected-mode support for
the interrupt and any mouse data buffer that is required. The following example demonstrates how a
programmer could use the Microsoft standard mouse interrupt (0x33) from within a DOS/4GW application.

/*
mouse.c — The following program demonstrates how
to use the mouse interrupt (0x33) with DOS/4GW.
Compile and link: wcl386 -1l=dos4g mouse

*/

#include <stdio.h>
#include <dos.h>
#include <i86.h>

/* Data touched at mouse callback time -- they are
in a structure to simplify calculating the size
of the region to lock.

*/

struct callback_data {
int right_button;
int mouse_event;

unsigned short mouse_code;
unsigned short mouse_bx;
unsigned short mouse_cx;
unsigned short mouse_dx;
signed short mouse_si;
signed short mouse_di;

} cbd = { 0 };

28 How Can | Use the Mouse Interrupt (0x33) with DOS/4GW?

32-bit Extended DOS Application Development

/* Set up data buffer for mouse cursor bitmap */
unsigned short cursor[] = {
/* 16 words of screen mask */

int

0x3fff,
Ox1fff,
0x0fff,
0x07ff,
0x03ff,
0x01ff,
0x00ff,
0x007f,
0x01ff,
0x10ff,
0xb0ff,
0xf87f,
0xf87f,
Oxfc3f,
Oxfc3f,
Oxfelf,

/*0011111111111111*/
/*0001111111111111*/
/*0000111111111111*/
/*0000011111111111*/
/*0000001111111111*/
/*0000000111111111*/
/*0000000011111111*/
/*0000000001111111*/
/*0000000111111111*/
/*0001000011111111*/
/*1011000011111111*/
/*1111100001111111*/
/*1111100001111111*/
/*1111110000111111*/
/*1111110000111111*/
/*1111111000011111*/

/* 16 words of cursor mask */

0x0000,
0x4000,
0x6000,
0x7000,
0x7800,
0x7c00,
0x7e00,
0x7£00,
0x7c00,
0x4600,
0x0600,
0x0300,
0x0300,
0x0180,
0x0180,
0x00cO0,

/*0000000000000000*/
/*0100000000000000*/
/*0110000000000000*/
/*0111000000000000*/
/*0111100000000000*/
/*0111110000000000*/
/*0111111000000000*/
/*0111111100000000*/
/*0111110000000000*/
/*0100011000000000*/
/*0000011000000000*/
/*0000001100000000*/
/*0000001100000000*/
/*0000000110000000*/
/*0000000110000000*/
/*0000000011000000*/

lock_region(void *address, unsigned length)

union REG
unsigned

/* Thanks
model,
a line
*/

linear =

/* DPMI L
regs.w.ax
/* Linear
regs.w.bx
regs.w.cx
/* Length
regs.w.si
regs.w.di

S regs;
linear;

to DOS/4GW’s zero-based flat memory
converting a pointer of any type to
ar address is trivial.

(unsigned) address;

ock Linear Region */

= 0x600;

address in BX:CX */

= (unsigned short) (linear >> 16);

= (unsigned short) (linear & OXFFFF);
in SI:DI */

= (unsigned short) (length >> 16);

= (unsigned short) (length & OXFFFF);

int386(0x31, ®s, ®s);

/* Return
return(!

0 if lock failed */
regs.w.cflag);

How Can | Use the Mouse Interrupt (0x33) with DOS/AGW? 29

DOS Programming Guide

#pragma off (check_stack)

void _loadds far click_handler(int max, int mbx,
int mcx, int mdx,
int msi, int mdi)

{

#pragma aux click_handler _ _parm [__eax] [__ebx] [__ecx] \
[__edx] [__esi] [__edi]
cbd.mouse_event = 1;
cbd.mouse_code = (unsigned short)max;

cbd.mouse_bx (unsigned short)mbx;
cbd.mouse_cx (unsigned short)mcx;
cbd.mouse_dx (unsigned short)mdx;
cbd.mouse_si = (signed short)msi;
cbd.mouse_di = (signed short)mdi;
if(cbd.mouse_code & 8)

cbd.right_button = 1;

}

/* Dummy function so we can calculate size of
code to lock (cbc_end - click_handler).

*/

void cbc_end(void)

{

}

#pragma on(check_stack)

void main (void)

{

struct SREGS sregs;

union REGS inregs, outregs;
int installed = 0;
unsigned char orig_mode = 0;
unsigned short far *ptr;

void (far *function_ptr) ();

segread(&sregs);

/* get original video mode */

inregs.w.ax = 0x0£00;
int386(0x10, &inregs, &outregs);
orig_mode = outregs.h.al;

/* goto graphics mode */

inregs.h.ah = 0x00;
inregs.h.al = 0x6;
int386(0x10, &inregs, &outregs);

printf ("Previous Mode = %ul\n", orig_mode);
printf ("Current Mode = $%$u\n", inregs.h.al);

/* check for mouse driver */

inregs.w.ax = 0;

int386(0x33, &inregs, &outregs);

if (installed = (outregs.w.ax == Oxffff))
printf("Mouse installed...\n");

else

printf("Mouse NOT installed...\n");

30 How Can | Use the Mouse Interrupt (0x33) with DOS/AGW?

32-bit Extended DOS Application Development

if(installed) {

/* lock callback code and data (essential under VMM!)
note that click_handler, although it does a far
return and is installed using a full 48-bit pointer,
is really linked into the flat model code segment
—— so we can use a regular (near) pointer in the

lock_region () call.
*/
if ((! lock_region(&cbd, sizeof(cbd))) ||
(! lock_region((void near *)click_handler,
(char *)cbc_end - (char near *)click_handler)))

printf("locks failed\n");
} else {
/* show mouse cursor */

inregs.w.ax = 0x1l;
int386(0x33, &inregs, &outregs);

/* set mouse cursor form */

inregs.w.ax = 0x9;
inregs.w.bx = 0x0;
inregs.w.cx = 0x0;

ptr = Ccursor;
inregs.x.edx = FP_OFF(ptr);
sregs.es = FP_SEG(ptr);

int386x(0x33, &inregs, &outregs, &sregs);

/* install click watcher */

inregs.w.ax = 0xC;

inregs.w.cx = 0x0002 + 0x0008;

function_ptr = (void (far *) (void))click_handler;
inregs.x.edx = FP_OFF(function_ptr);

sregs.es = FP_SEG(function_ptr);

int386x(0x33, &inregs, &outregs, &sregs);

while(!cbd.right_button) {
if (cbd.mouse_event) {
printf("Ev %04hxh BX %$hu CX $hu DX %$hu "
"SI $hd DI %$hd\n",
cbd.mouse_code, cbd.mouse_bx,
cbd.mouse_cx, cbd.mouse_dx,
cbd.mouse_si, cbd.mouse_di);
cbd.mouse_event = 0;

}

/* check installation again (to clear watcher) */

inregs.w.ax = 0;
int386(0x33, &inregs, &outregs);
if (outregs.w.ax == 0Oxffff)
printf("DONE : Mouse still installed...\n");
else

printf("DONE : Mouse NOT installed...\n");

printf ("Press Enter key to return to original mode\n");
getc(stdin);

inregs.h.ah = 0x00;

inregs.h.al = orig_mode;

int386(0x10, &inregs, &outregs);

How Can | Use the Mouse Interrupt (0x33) with DOS/4GW?

31

DOS Programming Guide

5.7 How Do | Simulate a Real-Mode Interrupt with DOS/4GW?

Some interrupts are not supported in protected mode with DOS/4GW but they can still be called using the
DPMI function, Simulate Real-Mode Interrupt (0x0300). Information that needs to be passed down to the
real-mode interrupt is transferred using an information data structure that is allocated in the protected-mode
application. The address to this protected-mode structure is passed into DPMI function 0x0300.
DOS/4GW will then use this information to set up the real-mode registers, switch to real mode and then
execute the interrupt in real mode.

If your protected-mode application needs to pass data down into the real-mode interrupt, an intermediate
real-mode buffer must be used. This buffer can be created using DPMI function 0x0100 to allocate
real-mode memory. You can then transfer data from the protected-mode memory to the real-mode memory
using a far pointer as illustrated in the "SIMULATE.C" example.

The following example illustrates how to allocate some real-mode memory, transfer a string of characters
from protected mode into the real-mode buffer, then set up and call the Interrupt 0x0021 function to create
a directory. The string of characters are used to provide the directory name. This example can be adapted
to handle most real-mode interrupt calls that aren’t supported in protected mode.

/*
SIMULATE.C - Shows how to issue a real-mode interrupt
from protected mode using DPMI call 300h. Any buffers
to be passed to DOS must be allocated in DOS memory
This can be done with DPMI call 100h. This program
will call DOS int 21, function 39h, "Create
Directory".

Compile & Link: wcl386 -1l=dos4g simulate
*/
#include <i86.h>
#include <dos.h>
#include <stdio.h>
#include <string.h>

static struct rminfo {
long EDI;
long ESI;
long EBP;
long reserved_by_system;
long EBX;
long EDXj;
long ECX;
long EAX;
short flags;
short ES,DS,FS,GS,Ip,CS,SP,SS;
} RMI;
void main ()
{
union REGS regs;
struct SREGS sregs;
int interrupt_no=0x31;
short selector;
short segment;
char far *str;

/* DPMI call 100h allocates DOS memory */
memset (&sregs, 0, sizeof (sregs));
regs.w.ax=0x0100;

regs.w.bx=0x0001;

int386x(interrupt_no, ®s, ®s, &sregs);
segment=regs.w.ax;

selector=regs.w.dx;

32 How Do | Simulate a Real-Mode Interrupt with DOS/AGW?

32-bit Extended DOS Application Development

/* Move string to DOS real-mode memory */
str=MK_FP (selector,0);
_fstrepy(str, "myjunk");

/* Set up real-mode call structure */

memset (&RMI, 0, sizeof (RMI));

RMI.EAX=0x00003900; /* call service 39h ah=0x39 */
RMI.DS=segment; /* put DOS seg:off into DS:DX*/
RMI.EDX=0; /* DOS ignores EDX high word */
/* Use DPMI call 300h to issue the DOS interrupt */

regs.w.ax = 0x0300;
regs.h.bl = 0x21;
regs.h.bh = 0;
regs.w.cx = 0;

sregs.es = FP_SEG(&RMI) ;
regs.x.edi = FP_OFF (&RMI) ;
int386x(interrupt_no, ®s, ®s, &sregs);

5.8 How do you install a bi-modal interrupt handler using
DOS/AGW?

Due to the nature of the protected-mode/real-mode interface, it is often difficult to handle high speed
communications with hardware interrupt handlers. For example, if you install your communications
interrupt handler in protected mode, you may find that some data is lost when transmitting data from a
remote machine at the rate of 9600 baud. This occurs because the data arrived at the communication port
while the machine was in the process of transferring the previous interrupt up to protected mode. Data will
also be lost if you install the interrupt handler in real mode since your program, running in protected mode,
will have to switch down into real mode to handle the interrupt. The reason for this is that the data arrived
at the communication port while the DOS extender was switching between real mode and protected mode,
and the machine was not available to process the interrupt.

To avoid the delay caused by switching between real-mode and protected mode to handle hardware
interrupts, install interrupt handlers in both real-mode and protected-mode. During the execution of a
protected-mode program, the system often switches down into real-mode for DOS system calls. If a
communications interrupt occurs while the machine is in real-mode, then the real-mode interrupt handler
will be used. If the interrupt occurs when the machine is executing in protected-mode, then the
protected-mode interrupt handler will be used. This enables the machine to process the hardware interrupts
faster and avoid the loss of data caused by context switching.

Installing the interrupt handlers in both protected-mode and real-mode is called bi-modal interrupt
handling. The following program is an example of how to install both handlers for Interrupt 0x0C (also
known as COM1 or IRQ4). The program writes either a ’P’ to absolute address 0xB8002 or an "R’ to
absolute address 0xB8000. These locations are the first two character positions in screen memory for a
color display. As the program runs, you can determine which interrupt is handling the COM1 port by the
letter that is displayed. A mouse attached to COM1 makes a suitable demo. Type on the keyboard as you
move the mouse around. The ESC key can be used to terminate the program. Transmitted data from a
remote machine at 9600 baud can also be used to test the COM1 handling.

How do you install a bi-modal interrupt handler using DOS/AGW? 33

DOS Programming Guide

/*

BIMODAL.C - The following program demonstrates how
to set up a bi-modal interrupt handler for DOS/4GW

Compile and link: wcl386 -1l=dos4g bimodal bimo.obj

*/

#include <stdio.h>
#include <conio.h>

#include <dos.h>

#define D32RealSeg (P)
#define D32RealOff (P)

DWORD) (P)) >> 4) & OxFFFF)

CCe(
(((DWORD) (P)) & OxF)

typedef unsigned int WORD;
typedef unsigned long DWORD;

extern void coml_init (void);

extern void __interrupt pmhandler (void);
extern void __interrupt __ far rmhandler (void);
void *D32DosMemAlloc (DWORD size)

{

union REGS r;

r.x.eax
r.x.ebx

0x0100; /* DPMI allocate DOS memory */
(size + 15) >> 4; /* Number of paragraphs requested */

int386 (0x31, &r, &r);
if(r.x.cflag) /* Failed */
return ((DWORD) O0);
return (void *) ((r.x.eax & OxFFFF) << 4);
}
void main (void)
{
union REGS r;
struct SREGS sr;
void *lowp;
void far *fh;
WORD orig_pm_sel;
DWORD orig_pm_off;
WORD orig_rm_seg;
WORD orig_rm_off;
int c;

/* Save the starting protected-mode handler address */
0x350C; /* DOS get vector (INT OCh) */
sr.es

r.x.eax
sr.ds =
int386x

(0x21,

orig_pm_sel =
orig_pm_off =

/*

= 0;
&r, &r, &sr);
(WORD) sr.es;

r.x.ebx;

Save the starting real-mode handler address using DPMI

(INT 31h).

*/
r.x.eax
r.h.bl =

0x0200; /* DPMI get real mode vector */

0x0C;

int386 (0x31,
orig_rm_seg =
orig_rm off =

/*

&r, &r);
(WORD) r.x.ecx;
(WORD) r.x.edx;

Allocate 128 bytes of DOS memory for the real-mode
which must of course be less than 128 bytes
long. Then copy the real-mode handler into that

handler,

segment.
*/

if(! (lowp =
("Couldn’t get low memory!\n");

printf
(1)

exit

}

memcpy (lowp,

D32DosMemAlloc (128))) {

(void *) rmhandler, 128);

34 How do you install a bi-modal interrupt handler using DOS/AGW?

32-bit Extended DOS Application Development

/*
Install the new protected-mode vector. Because INT 0Ch
is in the auto-passup range, its normal "passdown"
behavior will change as soon as we install a
protected-mode handler. After this next call, when a
real mode INT OCh is generated, it will be resignalled
in protected mode and handled by pmhandler.

*/
r.x.eax = 0x250C; /* DOS set vector (INT OCh) */
fh = (void far *) pmhandler;
r.x.edx = FP_OFF (fh);

/* DS:EDX == &handler */
sr.ds = FP_SEG (fh);

sr.es = 0;

int386x (0x21, &r, &r, &sr);

/*

Install the new real-mode vector. We do this after
installing the protected-mode vector in order to
override the "passup" behavior. After the next call,
interrupts will be directed to the appropriate handler,
regardless of which mode we are in when they are
generated.

*/

r.x.eax = 0x0201;
r.h.bl = 0x0C;
/* CX:DX == real mode &handler */
r.x.ecx = D32RealSeg(lowp);
r.x.edx = D32RealOff (lowp);
int386 (0x31, &r, &r);

/*

Initialize COML1.

*/
coml_init ();
puts ("Move mouse, transmit data; ESC to quit\n");
while(1) {

if(kbhit ()) |
if(((c = getch ()) & Oxff) == 27)
break;
putch (c);
}
delay(1);
}
/*
Clean up.
*/

r.x.eax = 0x250C; /* DOS set vector (INT OCh) */
r.x.edx = orig_pm off;

sr.ds = orig_pm_sel; /* DS:EDX == g&handler */
sr.es = 0;

int386x (0x21, &r, &r, &sr);

r.x.eax = 0x0201; /* DPMI set real mode vector */
r.h.bl = 0x0C;

/* CX:DX == real mode &handler */

r.x.ecx = (DWORD) orig_rm_seg;

r.x.edx = (DWORD) orig_rm_ off;

int386 (0x31, &r, &r);

You will also need to create the following assembler code module. The first part provides the interrupt
handling routine for the real-mode interrupt handler. The second provides the protected-mode version of

the interrupt handler.

How do you install a bi-modal interrupt handler using DOS/4AGW? 35

DOS Programming Guide

* *

;** bimo.asm:

;** Assembler code for real-mode and protected-mode
;** INT 0xC interrupt handlers to support the INT 0xC
;** interrupt in both modes

. kK

4

.386

;**

;** The real-mode interrupt handler is in a 16-bit code
;** segment so that the assembler will generate the right
;** code. We will copy this code down to a 16-bit segment

;** in low memory rather than executing it in place.
* *

_TEXT16 SEGMENT BYTE PUBLIC USEl6 ’'CODE’
ASSUME cs:_TEXT16

PUBLIC rmhandler_

rmhandler_:
push es
push bx
mov bx, 0B800h
mov es,bx ; ES = 0xB80O0
sub bx, bx ; BX =0
mov WORD PTR es: [bx],0720h ; Clear 2 char cells
mov WORD PTR es: [bx+2],0720h
mov BYTE PTR es: [bx],’R’ ; Write R to memory
pop bx
pop es
push ax
push dx
mov dx, 03FAh
in al,dx ; Read ports so
mov dx, 03F8h ; interrupts can
in al,dx ; continue to be
mov dx, 020h ; generated
mov al,dl
out dx,al ; Send EOI
pop dx
pop ax
iret
_TEXT16 ENDS
,-**

;** The protected-mode interrupt handler is in a 32-bit code
;** segment. Even so, we have to be sure to force an IRETD
;** at the end of the handler, because MASM doesn’t generate
;** one. This handler will be called on a 32-bit stack by
;** DOS/4GW.

* *

;** _DATA is the flat model data segment, which we load into

;** ES so we can write to absolute address 0xB800O0. (In the
;** flat model, DS is based at 0.)
. kK

_DATA SEGMENT BYTE PUBLIC USE32 ’'DATA’
_DATA ENDS

36 How do you install a bi-modal interrupt handler using DOS/AGW?

32-bit Extended DOS Application Development

DGROUP GROUP _DATA

_TEXT SEGMENT BYTE PUBLIC USE32 ’'CODE’

ASSUME

PUBLIC

coml_init_:

mov
mov
int
mov
lea
in
lea
in
or
out
lea
in
mov
in
in
and
out
lea
mov
out
ret
PUBLIC

pmhandler_:

push
push
mov
mov
mov
mov
mov
pop
pop
push
push
mov
in
mov
in
mov
mov
out
pop
pop
iretd

_TEXT ENDS

END

cs:_TEXT

coml_init_

ax, 0F3h ; 9600,n,8,1

dx, 0 ; coml

14h ; Initialize COM1
bx, 03F8h ; COM1 port space
dx, [bx+5] ; line status reg
al,dx

dx, [bx+4] ; modem control reg
al,dx

al, 8 ; enable OUT2 int
dx,al

dx, [bx+2] ; int id register
al,dx

dx, bx ; data receive reg
al,dx

al,21h ; interrupt mask reg
al, OEFh ; force IRQ4 unmask
21lh,al

dx, [bx+1] ; int enable reg
al,1

dx,al ; enable received int
pmhandler_

es

bx

bx, DGROUP

es, bx

ebx, 0B8000Oh ; ES:EBX=flat:0B8000h

DWORD PTR es:[ebx],07200720h ; Clear cells
BYTE PTR es: [ebx+2],’P’ ; Write P to memory
bx

es

ax

dx

dx, 03FAh

al,dx ; Read ports so

dx, 03F8h ; interrupts can
al,dx ; continue to be
dx, 020h ; generated

al,dl

dx,al ; Send EOI

dx

ax

How do you install a bi-modal interrupt handler using DOS/4GW? 37

DOS Programming Guide

38 How do you install a bi-modal interrupt handler using DOS/AGW?

The DOS/4GW DOS Extender

The DOS/4GW DOS Extender

40

6 The Tenberry Software DOS/4GW DOS Extender

The chapters in this section describe the 32-bit Tenberry Software DOS/4GW DOS Extender which is
provided with the Open Watcom C/C++ package. DOS/4GW is a subset of Tenberry Software’s DOS/4G
product. DOS/4GW is customized for use with the Open Watcom C/C++ package. Key differences are:

* DOS/AGW will only execute programs built with a Open Watcom 32-bit compiler such as Open
Watcom C/C++ and linked with its run-time libraries.

* The DOS/4GW virtual memory manager (VMM), included in the package, is restricted to 32MB of
memory.

* DOS/4GW does not provide extra functionality such as TSR capability and VMM performance
tuning enhancements.

If your application has requirements beyond those provided by DOS/4GW, you may wish to acquire
DOS/4GW Professional or DOS/4G from:

Tenberry Software, Inc.
PO Box 20050

Fountain Hills, Arizona
U.S.A 85269-0050

WIWW : http://www.tenberry.com/dos4dg/
Email: info@tenberry.com

Phone: 1.480.767.8868

Fax: 1.480.767.8709

Programs developed to use the restricted version of DOS/4GW which is included in the Open Watcom
C/C++ package can be distributed on a royalty-free basis, subject to the licensing terms of the product.

The Tenberry Software DOS/4GW DOS Extender 41

The DOS/4GW DOS Extender

42 The Tenberry Software DOS/4GW DOS Extender

/ Linear Executables

To build a linear executable, compile and link it as described in the chapter entitled "Creating 32-bit
DOS/4GW Executables". The resulting file will not run independently: you can run it under the Open
Watcom Debugger, Tenberry Software Instant-D debugger, or with the standalone "DOS4GW .EXE".

7.1 The Linear Executable Format

DOS/4GW works with files that use the Linear Executable (LE) file format. The format represents a
protected-mode program in the context of a 32-bit 386 runtime environment with linear to physical address
translation hardware enabled. It uses a flat address space.

This file format is similar to the Segmented Executable (NE) format used in OS/2 1.x and MS Windows.

Both support Dynamic Linking, Resources, and are geared toward protected-mode programs. Both formats
use tables of "counted ASCII" names, and they use similar relocation formats.

Both formats begin with a DOS style stub program that sophisticated loaders skip. This stub program
executes when the DOS/4GW loader is not present, displaying the message, This program cannot run in

DOS mode.

When the Open Watcom Linker is used to link a DOS/4GW application, it automatically replaces the
default stub program with one that calls DOS4GW.

7.1.1 The Stub Program

The stub at the beginning of a linear executable is a real-mode program that you can modify as you like.
For example, you can:

* make the stub program do a checksum on the "DOS4GW.EXE" file to make sure it’s the correct
version.

* copy protect your program.
* specify a search path for the "DOS4GW .EXE" file.
* add command line arguments.
The SRC directory contains source code for a sample stub program. "WSTUB.C" is a simple example, a

good base to start from when you construct your own stub. Please note that you will require a 16-bit C
compiler to compile a new stub program. Following is the code in "WSTUB.C":

The Linear Executable Format 43

The DOS/4GW DOS Extender

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <errno.h>
#include <string.h>

/* Add environment strings to be searched here */
char *paths_to_check[] = {

"DOS4GPATH",

"PATH"};

char *dos4g_path()
{
static char fullpath[80];

int i;
for(i = 0;
i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {
_searchenv("dos4gw.exe", paths_to_check[i], fullpath);
if(fullpath[O]) return(&fullpath);
}
for(i = 0;
i < sizeof(paths_to_check) / sizeof(paths_to_check[0]);
i++) {
_searchenv("dos4g.exe", paths_to_check[i], fullpath);
if (fullpath[O]) return(&fullpath);

}
return("dos4dgw.exe");

}

main(int argc, char *argv[])
{

char *av([4];

auto char cmdline[128];

av[0] = dosd4g_path(); /* Locate the D0OS/4G loader */
av[l] = argv[0]; /* name of executable to run */
av[2] = getcmd(cmdline); /* command line */
av[3] = NULL; /* end of list */
#ifdef QUIET
putenv ("DOS4G=QUIET"); /* disables DOS/4G Copyright banner */
#endif
execvp(av[0], av);
puts("Stub exec failed:");
puts (av[0]);
puts(strerror(errno));
exit(1); /* indicate error */

7.2 Memory Use

This section explains how a DOS/4GW application uses the memory on a 386-based PC/AT. The basic
memory layout of an AT machine consists of 640KB of DOS memory, 384KB of upper memory, and an
undetermined amount of extended memory. DOS memory and upper memory together compose real
memory, the memory that can be addressed when the processor is running in real mode.

44 Memory Use

Linear Executables

Extended
Memory
IMB —»
ROMs and
Upper Hardware
Memory —
640 KB —»
DOS DOS and
Memory Real-Mode
Software
1 KB —» Interrupt
Vectors

Figure 1. Basic Memory Layout

Under DOS/4GW, the first megabyte of physical memory — the real memory — is mapped as a shared
linear address space. This allows your application to use absolute addresses in real memory, to access
video RAM or BIOS ROM, for example. Because the real memory is available to all processes, you are not
guaranteed to be able to allocate a particular area in real memory: another process may have allocated it
already.

Most code and data is placed in a paged linear address space starting at 4MB. The linear address space
starts at 4MB, the first address in the second page table, to avoid conflicts with VCPI system software.

This split mapping — an executable that is linked to start at 4MB in the linear address space, with the first
MB in the address space mapped to the first MB of physical memory — is called a split flat model.

The illustration below shows the layout of physical memory on the left, and the layout of the linear address
space on the right.

Memory Use 45

The DOS/4GW DOS Extender

Process code
A 4 MB —» and data
Mapped
as 1-4 MB unmapped
needed VCPI code for VCPI
compatibility
4KB pages
1 MB 4’ A A
DOS and
640 KB —» Real-Mode
Software
Mapped Mapped into
to all process as
processes needed
4KB—»
1KB—» v v

Figure 2. Physical Memory/Linear Address Space

The 1KB label in the diagram indicates the top of the real-mode interrupt vectors. 4KB marks the end of
the first page.

46 Memory Use

8 Configuring DOS/4GW

This chapter explains various options that can be specified with the DOS4G environment variable
including how to suppress the banner that is displayed by DOS/4GW at startup. It also explains how to use
the DOS16M environment variable to select the switch mode setting, if necessary, and to specify the range
of extended memory in which DOS/4AGW will operate. DOS/4GW is based on Tenberry Software’s
DOS/16M 16-bit Protected-Mode support; hence the DOS16M environment variable name remains
unchanged.

8.1 The DOS4G Environment Variable

A number of options can be selected by setting the DOS4G environment variable. The syntax for setting
options is:

set DOS4G=optionl,optionz2, ...
Do not insert a space between DOS4G and the equal sign. A space to the right of the equal sign is optional.
Options:
QUIET Use this option to suppress the DOS/4GW banner.

The banner that is displayed by DOS/4GW at startup can be suppressed by issuing the
following command:

set DOS4G=quiet
Note: Use of the quiet switch is only permitted pursuant to the terms and conditions of the
WATCOM Software License Agreement and the additional redistribution rights described
in the Getting Started manual. Under these terms, suppression of the copyright by using
the quiet switch is not permitted for applications which you distribute to others.

VERBOSE Use this option to maximize the information available for postmortem debugging.

Before running your application, issue the following command:

set DOS4G=verbose
Reproduce the crash and record the output.
NULLP Use this option to trap references to the first sixteen bytes of physical memory.

Before running your application, issue the following command:

set DOS4G=nullp

To select a combination of options, list them with commas as separators.

The DOS4G Environment Variable 47

The DOS/4GW DOS Extender

Example:
set DOS4G=nullp, verbose

8.2 Changing the Switch Mode Setting

In almost all cases, DOS/4GW programs can detect the type of machine that is running and automatically
choose an appropriate real- to protected-mode switch technique. For the few cases in which this default
setting does not work we provide the DOS16M DOS environment variable, which overrides the default
setting.

Change the switch mode settings by issuing the following command:

set DOSl1l6M=value

Do not insert a space between DOS16M and the equal sign. A space to the right of the equal sign is
optional.

The table below lists the machines and the settings you would use with them. Many settings have
mnemonics, listed in the column "Alternate Name", that you can use instead of the number. Settings that
you must set with the DOS16M variable have the notation req’d in the first column. Settings you may use
are marked option, and settings that will automatically be set are marked auto.

Alternate
Status | Machine Setting Name Comment
auto 386/486 w/ DPMI |0 None Set automatically if DPMI is active
req’d | NEC 98-series 1 9801 Must be set for NEC 98-series
auto PS/2 2 None Set automatically for PS/2
auto 386/486 3 386, 80386 | Set automatically for 386 or 486
auto 386 INBOARD | None 386 with Intel Inboard
req’d | Fujitsu FMR-70 5 None Must be set for Fujitsu FMR-70
auto 386/486 w/ VCPI |11 None Set automatically if VCPI detected
req’d | Hitachi B32 14 None Must be set for Hitachi B32
req’d | OKIif800 15 None Must be set for OKI if800
option |IBM PS/55 16 None May be needed for some PS/55s

The following procedure shows you how to test the switch mode setting.

1. If you have one of the machines listed below, set the DOS16M environment variable to the
value shown for that machine and specify a range of extended memory. For example, if your
machine is a NEC 98-series, set DOS16M=1 @2M-4M. See the section entitled "Fine Control
of Memory Usage" on page 49 in this chapter for more information about setting the memory
range.

48 Changing the Switch Mode Setting

Configuring DOS/4GW

Machine Setting
NEC 98-series 1
Fujitsu FMR-60,-70 5
Hitachi B32 14
OKI if800 15

Before running DOS/4GW applications, check the switch mode setting by following this
procedure:

2. Run PMINFO and note the switch setting reported on the last line of the display. (PMINFO,
which reports on the protected-mode resources available to your programs, is described in more
detail in the chapter entitled "Utilities" on page 87)

If PMINFO runs, the setting is usable on your machine.

3. If you changed the switch setting, add the new setting to your AUTOEXEC.BAT file.

Note: PMINFO will run successfully on 286 machines. If your DOS/4GW application does not run, and
PMINFO does, check the CPU type reported on the first line of the display.

You are authorized (and encouraged) to distribute PMINFO to your customers. You may also include a
copy of this section in your documentation.

8.3 Fine Control of Memory Usage

In addition to setting the switch mode as described above, the DOS16M environment variable enables you
to specify which portion of extended memory DOS/4AGW will use. The variable also allows you to instruct
DOS/4GW to search for extra memory and use it if it is present.

8.3.1 Specifying a Range of Extended Memory

Normally, you don’t need to specify a range of memory with the DOS16M variable. You must use the
variable, however, in the following cases:

* You are running on a Fujitsu FMR-series, NEC 98-series, OKI if800-series or Hitachi B-series
machine.

* You have older programs that use extended memory but don’t follow one of the standard disciplines.
* You want to shell out of DOS/4GW to use another program that requires extended memory.
If none of these conditions applies to you, you can skip this section.

The general syntax is:

set DOS16M= [switch_mode] [@start_address [- end_address]] [:size]

In the syntax shown above, start_address, end_address and size represent numbers, expressed
in decimal or in hexadecimal (hex requires a 0x prefix). The number may end with a K to indicate an

Fine Control of Memory Usage 49

The DOS/4GW DOS Extender

address or size in kilobytes, or an M to indicate megabytes. If no suffix is given, the address or size is
assumed to be in kilobytes. If both a size and a range are specified, the more restrictive interpretation is
used.

The most flexible strategy is to specify only a size. However, if you are running with other software that
does not follow a convention for indicating its use of extended memory, and these other programs start
before DOS/4GW, you will need to calculate the range of memory used by the other programs and specify a
range for DOS/4GW programs to use.

DOS/4GW ignores specifications (or parts of specifications) that conflict with other information about
extended memory use. Below are some examples of memory usage control:

set DOS16M= 1 @2m-4m Mode 1, for NEC 98-series machines, and use extended memory
between 2.0 and 4.0MB.
set DOS16M= :IM Use the last full megabyte of extended memory, or as much as

available limited to 1IMB.

set DOS16M= @2m Use any extended memory available above 2MB.

set DOS16M= @ 0 - 5m Use any available extended memory from 0.0 (really 1.0) to
5.0MB.

set DOS16M= :0 Use no extended memory.

As a default condition DOS/4GW applications take all extended memory that is not otherwise in use.
Multiple DOS/4GW programs that execute simultaneously will share the reserved range of extended
memory. Any non-DOS/4GW programs started while DOS/4GW programs are executing will find that
extended memory above the start of the DOS/4GW range is unavailable, so they may not be able to run.
This is very safe. There will be a conflict only if the other program does not check the BIOS configuration
call (Interrupt 15H function 88H, get extended memory size).

To create a private pool of extended memory for your DOS/4GW application, use the PRIVATXM
program, described in the chapter entitled "Utilities" on page 87.

The default memory allocation strategy is to use extended memory if available, and overflow into DOS
(low) memory.

In a VCPI or DPMI environment, the start_address and end_address arguments are not
meaningful. DOS/4GW memory under these protocols is not allocated according to specific addresses
because VCPI and DPMI automatically prevent address conflicts between extended memory programs.
You can specify a size for memory managed by VCPI or DPMI, but DOS/4GW will not necessarily
allocate this memory from the highest available extended memory address, as it does for memory managed
under other protocols.

8.3.2 Using Extra Memory

Some machines contain extra non-extended, non-conventional memory just below 16MB. When
DOS/4GW runs on a Compaq 386, it automatically uses this memory because the memory is allocated
according to a certain protocol, which DOS/4GW follows. Other machines have no protocol for allocating
this memory. To use the extra memory that may exist on these machines, set DOS16M with the + option.

set DOS16M=+

50 Fine Control of Memory Usage

Configuring DOS/4GW

Setting the + option causes DOS/4GW to search for memory in the range from FA0000 to FFFFFF and
determine whether the memory is usable. DOS/4GW does this by writing into the extra memory and
reading what it has written. In some cases, this memory is mapped for DOS or BIOS usage, or for other
system uses. If DOS/4AGW finds extra memory that is mapped this way, and is not marked read-only, it will
write into that memory. This will cause a crash, but won’t have any other effect on your system.

8.4 Setting Runtime Options

The DOS16M environment variable sets certain runtime options for all DOS/4GW programs running on the
same system.

To set the environment variable, the syntax is:

set DOS16M=[switch_mode_setting] “options.

Note: Some command line editing TSRs, such as CED, use the caret (*) as a delimiter. If you want to set
DOS16M using the syntax above while one of these TSRs is resident, modify the TSR to use a different
delimiter.

These are the options:

0x01 check A20 line -- This option forces DOS/4GW to wait until the A20 line is enabled before
switching to protected mode. When DOS/4GW switches to real mode, this option suspends
your program’s execution until the A20 line is disabled, unless an XMS manager (such as
HIMEM.SYS) is active. If an XMS manager is running, your program’s execution is
suspended until the A20 line is restored to the state it had when the CPU was last in real
mode. Specify this option if you have a machine that runs DOS/4GW but is not truly
AT-compatible. For more information on the A20 line, see the section entitled
"Controlling Address Line 20" on page 52.

0x02 prevent initialization of VCPI -- By default, DOS/4GW searches for a VCPI server and, if
one is present, forces it on. This option is useful if your application does not use EMS
explicitly, is not a resident program, and may be used with 386-based EMS simulator
software.

0x04 directly pass down keyboard status calls -- When this option is set, status requests are
passed down immediately and unconditionally. When disabled, pass-downs are limited so
the 8042 auxiliary processor does not become overloaded by keyboard polling loops.

0x10 restore only changed interrupts -- Normally, when a DOS/4GW program terminates, all
interrupts are restored to the values they had at the time of program startup. When you use
this option, only the interrupts changed by the DOS/4GW program are restored.

0x20 set new memory to 00 -- When DOS/4GW allocates a new segment or increases the size of a
segment, the memory is zeroed. This can help you find bugs having to do with
uninitialized memory. You can also use it to provide a consistent working environment
regardless of what programs were run earlier. This option only affects segment allocations
or expansions that are made through the DOS/4GW kernel (with DOS function 48H or
4AH). This option does not affect memory allocated with a compiler’s malloc function.

0x40 set new memory to FF -- When DOS/4GW allocates a new segment or increases the size of
a segment, the memory is set to OXFF bytes. This is helpful in making reproducible cases

Setting Runtime Options 51

The DOS/4GW DOS Extender

of bugs caused by using uninitialized memory. This option only affects segment
allocations or expansions that are made through the DOS/4GW kernel (with DOS function
48H or 4AH). This option does not affect memory allocated with a compiler’s malloc
function.

0x80 new selector rotation -- When DOS/4GW allocates a new selector, it usually looks for the
first available (unused) selector in numerical order starting with the highest selector used
when the program was loaded. When this option is set, the new selector search begins after
the last selector that was allocated. This causes new selectors to rotate through the range.
Use this option to find references to stale selectors, i.e., segments that have been cancelled
or freed.

8.5 Controlling Address Line 20

This section explains how DOS/4GW uses address line 20 (A20) and describes the related DOS16M
environment variable settings. It is unlikely that you will need to use these settings.

Because the 8086 and 8088 chips have 20-bit address spaces, their highest addressable memory location is
one byte below IMB. If you specify an address at IMB or over, which would require a twenty-first bit to
set, the address wraps back to zero. Some parts of DOS depend on this wrap, so on the 286 and 386, the
twenty-first address bit is disabled. To address extended memory, DOS/4GW enables the twenty-first
address bit (the A20 line). The A20 line must be enabled for the CPU to run in protected mode, but it may
be either enabled or disabled in real mode.

By default, when DOS/4GW returns to real mode, it disables the A20 line. Some software depends on the
line being enabled. DOS/4GW recognizes the most common software in this class, the XMS managers
(such as HIMEM.SYS), and enables the A20 line when it returns to real mode if an XMS manager is
present. For other software that requires the A20 line to be enabled, use the A20 option. The A20 option
makes DOS/4GW restore the A20 line to the setting it had when DOS/4GW switched to protected mode.
Set the environment variable as follows:

set DOS16M=A20
To specify more than one option on the command line, separate the options with spaces.

The DOS16M variable also lets you to specify the length of the delay between a DOS/4GW instruction to
change the status of the A20 line and the next DOS/4GW operation. By default, this delay is 1 loop
instruction when DOS/4GW is running on a 386 machine. In some cases, you may need to specify a longer
delay for a machine that will raun DOS/4GW but is not truly AT-compatible. To change the delay, set
DOS16M to the desired number of loop instructions, preceded by a comma:

set DOS16M=, loops

52 Controlling Address Line 20

9 vim

The Virtual Memory Manager (VMM) uses a swap file on disk to augment RAM. With VMM you can use
more memory than your machine actually has. When RAM is not sufficient, part of your program is
swapped out to the disk file until it is needed again. The combination of the swap file and available RAM
is the virtual memory.

Your program can use VMM if you set the DOS environment variable, DOS4GVM, as follows. To set the
DOS4G VM environment variable, use the format shown below.

set DOS4GVM= [option[#value]] [option[#value]]
A "#" is used with options that take values since the DOS command shell will not accept "=".

If you set DOS4G VM equal to 1, the default parameters are used for all options.

Example:
C>set DOS4GVM=1

9.1 VMM Default Parameters

VMM parameters control the options listed below.

MINMEM The minimum amount of RAM managed by VMM. The default is 512KB.
MAXMEM The maximum amount of RAM managed by VMM. The default is 4MB.
SWAPMIN The minimum or initial size of the swap file. If this option is not used, the size of the

swap file is based on VIRTUALSIZE (see below).

SWAPINC The size by which the swap file grows.

SWAPNAME The swap file name. The default name is "DOS4GVM.SWP". By default the file is in
the root directory of the current drive. Specify the complete path name if you want to

keep the swap file somewhere else.

DELETESWAP Whether the swap file is deleted when your program exits. By default the file is not
deleted. Program startup is quicker if the file is not deleted.

VIRTUALSIZE The size of the virtual memory space. The default is 16MB.

VMM Default Parameters 53

The DOS/4GW DOS Extender

9.2 Changing the Defaults

You can change the defaults in two ways.

1. Specify different parameter values as arguments to the DOS4GVM environment variable, as
shown in the example below.

set DOS4GVM=deleteswap maxmem#8192

2. Create a configuration file with the filetype extension ".VMC", and use that as an argument to
the DOS4G VM environment variable, as shown below.

set DOS4GVM=@NEW4G.VMC

9.2.1 The .VMC File

A ".VMC" file contains VMM parameters and settings as shown in the example below. Comments are
permitted. Comments on lines by themselves are preceded by an exclamation point (!). Comments that
follow option settings are preceded by white space. Do not insert blank lines: processing stops at the first
blank line.

!Sample .VMC file
!This file shows the default parameter values.

minmem = 512 At least 512K bytes of RAM is required.
maxmem = 4096 Uses no more than 4MB of RAM

virtualsize = 16384 Swap file plus allocated memory is 16MB
!To delete the swap file automatically when the program exits, add
!deleteswap

!To store the swap file in a directory called SWAPFILE, add
!swapname = c:\swapfile\dos4gvm.swp

54 Changing the Defaults

10 Interrupt 21H Functions

When you call an Interrupt 21H function under DOS/4GW, the 32-bit registers in which you pass values are
translated into the appropriate 16-bit registers, since DOS works only with 16 bits. However, you can use
32-bit values in your DOS calls. You can allocate blocks of memory larger than 64KB or use an address
with a 32-bit offset, and DOS/4GW will translate the call appropriately, to use 16-bit registers. When the
Interrupt 21H function returns, the value is widened - placed in a 32-bit register, with the high order bits
zeroed.

DOS/4GW uses the following rules to manage registers:

* When you pass a parameter to an Interrupt 21H function that expects a 16-bit quantity in a general
register (for example, AX), pass a 32-bit quantity in the corresponding extended register (for
example, EAX). When a DOS function returns a 16-bit quantity in a general register, expect to
receive it (with high-order zero bits) in the corresponding extended register.

* When an Interrupt 21H function expects to receive a 16:16 pointer in a segment:general register pair
(for example, ES:BX), supply a 16:32 pointer using the same segment register and the corresponding
extended general register (ES:EBX). DOS/4GW will copy data and translate pointers so that DOS
ultimately receives a 16:16 real-mode pointer in the correct registers.

* When DOS returns a 16:16 real-mode pointer, DOS/4GW translates the segment value into an
appropriate protected-mode selector and generates a 32-bit offset that results in a 16:32 pointer to the
same location in the linear address space.

* Many DOS functions return an error code in AX if the function fails. DOS/4GW checks the status of
the carry flag, and if it is set, indicating an error, zero-extends the code for EAX. It does not change
any other registers.

» If the value is passed or returned in an 8-bit register (AL or AH, for example), DOS/4GW puts the
value in the appropriate location and leaves the upper half of the 32-bit register untouched.

The table below lists all the Interrupt 21h functions. For each, it shows the registers that are widened or
narrowed. Footnotes provide additional information about some of the interrupts that require special
handling. Following the table is a section that provides a detailed explanation of interrupt handling under
DOS/AGW.

Interrupt 21H Functions 55

The DOS/4GW DOS Extender

Function Purpose Managed Registers
00OH Terminate Process None
01H Character Input with Echo None
02H Character Output None
03H Auxiliary Input None
04H Auxiliary Output None
05H Print Character None
06H Direct Console I/O None
07H Unfiltered Character Input Without Echo None
08H Character Input Without Echo None
09H Display String EDX
0AH Buffered Keyboard Input EDX
0BH Check Keyboard Status None
0CH Flush Buffer, Read Keyboard EDX
ODH Disk Reset None
OEH Select Disk None
OFH Open File with FCB EDX
10H Close File with FCB EDX
11H Find First File EDX
12H Find Next File EDX
13H Delete File EDX
14H Sequential Read EDX
15H Sequential Write EDX
16H Create File with FCB EDX
17H Rename File EDX
19H Get Current Disk None
1AH Set DTA Address EDX
1BH Get Default Drive Data Returns in EBX, ECX, and EDX
1CH Get Drive Data Returns in EBX, ECX, and EDX
21H Random Read EDX
22H Random Write EDX
23H Get File Size EDX
24H Set Relative Record EDX
25H Set Interrupt Vector EDX
26H Create New Program Segment Prefix None
27H Random Block Read EDX, returns in ECX
28H Random Block Write EDX, returns in ECX
29H Parse Filename ESI, EDI, returns in EAX, ESI and EDI (1.)
2AH Get Date Returns in ECX
2BH Set Date None
2CH Get Time None
2DH Set Time None
2EH Set/Reset Verify Flag None
2FH Get DTA Address Returns in EBX
30H Get MS-DOS Version Number Returns in ECX
31H Terminate and Stay Resident None
33H Get/Set Control-C Check Flag None
34H Return Address of InDOS Flag Returns in EBX
35H Get Interrupt Vector Returns in EBX
36H Get Disk Free Space Returns in EAX, EBX, ECX, and EDX

56 Interrupt 21H Functions

Interrupt 21H Functions

38H
39H
3AH
3BH
3CH
3DH
3EH
3FH

40H
41H
42H
43H
44H

45H
46H
47H
48H
4%H
4AH
4BH
4CH
4DH
4EH
4FH

52H
54H
56H
57TH
58H
5S9H
5SAH
5BH
5CH
5SEH

00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
O0DH
OEH
OFH

00H
02H

Get/Set Current Country
Create Directory

Remove Directory
Change Current Directory
Create File with Handle
Open File with Handle
Close File

Read File or Device

Write File or Device

Delete File

Move File Pointer

Get/Set File Attribute

IOCTL

Get Device Information
SetDevice Information

Read Control Data from CDD
Write Control Data to CDD
Read Control Data from BDD
Write Control Data to BDD
Check Input Status

Check Output Status

Check if Block Device is Removeable
Check if Block Device is Remote
Check if Handle is Remote
Change Sharing Retry Count
Generic I/0 Control for Character Devices
Generic I/0 Control for Block Devices
Get Logical Drive Map

Set Logical Drive Map

Duplicate File Handle

Force Duplicate File Handle

Get Current Directory

Allocate Memory Block

Free Memory Block

Resize Memory Block

Load and Execute Program (EXEC)
Terminate Process with Return Code
Get Return Code of Child Process
Find First File

Find Next File

Get List of Lists

Get Verify Flag

Rename File

Get/Set Date/Time of File
Get/Set Allocation Strategy

Get Extended Error Information
Create Temporary File

Create New File

Lock/Unlock File Region
Network Machine Name/Printer Setup
Get Machine Name

Set Printer Setup String

EDX, returns in EBX
EDX
EDX
EDX
EDX, returns in EAX
EDX, returns in EAX
None

EBX, ECX, EDX, returns in EAX (2.)

EBX, ECX, EDX, returns in EAX (2.)

EDX

Returns in EDX, EAX
EDX, returns in ECX
(3)

Returns in EDX
None

EDX, returns in EAX
EDX, returns in EAX
EDX, returns in EAX
EDX, returns in EAX
None

None

Returns in EAX
Returns in EDX
Returns in EDX
None

EDX

EDX

None

None

Returns in EAX
None

ESI

Returns in EAX
None

None

EBX, EDX (4.)

None

None

EDX

None

(not supported)

None

EDX, EDI

Returns in ECX, and EDX
Returns in EAX

Returns in EAX

EDX, returns in EAX and EDX
EDX, returns in EAX

None

EDX
ESI

Interrupt 21H Functions

57

The DOS/4GW DOS Extender

03H Get Printer Setup String EDI, returns in ECX
SFH Get/Make Assign List Entry

02H Get Redirection List Entry ESI, EDI, returns in ECX

03H Redirect Device ESI, EDI

04H Cancel Device Redirection ESI
62H Get Program Segment Prefix Address Returns in EBX
63H Get Lead Byte Table (version 2.25 only) Returns in ESI
65H Get Extended Country Information EDI
66H Get or Set Code Page None
67H Set Handle Count None

This list of functions is excerpted from The MS-DOS Encyclopedia , Copyright (c) 1988 by Microsoft
Press. All Rights Reserved.

1. For Function 29H, DS:ESI and ES:EDI contain pointer values that are not changed by the call.

2. You can read and write quantities larger than 64KB with Functions 3FH and 40H. DOS/4GW
breaks your request into chunks smaller than 64KB, and calls the DOS function once for each
chunk.

3. You can’t transfer more than 64KB using Function 44h, subfunctions 02H, 03H, 04H, or 05H.
DOS/4GW does not break larger requests into DOS-sized chunks, as it does for Functions 3FH
and 40H.

4. When you call Function 4B under DOS/4GW, you pass it a data structure that contains 16:32 bit
pointers. DOS/4GW translates these into 16:16 bit pointers in the structure it passes to DOS.

10.1 Functions 25H and 35H: Interrupt Handling in Protected

Mode

By default, interrupts that occur in protected mode are passed down: the entry in the IDT points to code in
DOS/4GW that switches the CPU to real mode and resignals the interrupt. If you install an interrupt
handler using Interrupt 21H, Function 25H, that handler will get control of any interrupts that occur while
the processor is in protected mode. If the interrupt for which you installed the handler is in the autopassup
range, your handler will also get control of interrupts signalled in real mode.

The autopassup range runs from 08H to 2EH inclusive, but excluding 21H. If the interrupt is in the
autopassup range, the real-mode vector will be modified when you install the protected-mode handler to
point to code in the DOS/4GW kernel. This code switches the processor to protected mode and resignals
the interrupt-where your protected-mode handler will get control.

10.1.1 32-Bit Gates

The DOS/4GW kernel always assigns a 32-bit gate for the interrupt handlers it installs. It does not
distinguish between 16-bit and 32-bit handlers for consistency with DPMI.

This 32-bit gate points into the DOS/4GW kernel. When DOS/4GW handles the interrupt, it switches to its
own 16-bit stack, and from there it calls the interrupt handler (yours or the default). This translation is

58 Functions 25H and 35H: Interrupt Handling in Protected Mode

Interrupt 21H Functions

transparent to the handler, with one exception: since the current stack is not the one on which the interrupt
occurred, the handler cannot look up the stack for the address at which the interrupt occurred.

10.1.2 Chaining 16-bit and 32-bit Handlers

If your program hooks an interrupt, write a normal service routine that either handles the interrupt and
IRETS or chains to the previous handler. As part of handling the interrupt, your handler can PUSHF/CALL
to the previous handler. The handler must IRET (or IRETD) or chain.

For each protected-mode interrupt, DOS/4GW maintains separate chains of 16-bit and 32-bit handlers. If
your 16-bit handler chains, the previous handler is a 16-bit program. If your 32-bit handler chains, the
previous handler is a 32-bit program.

If a 16-bit program hooks a given interrupt before any 32-bit programs hook it, the 16-bit chain is executed
first. If all the 16-bit handlers unhook later and a new 16-bit program hooks the interrupt while 32-bit
handlers are still outstanding, the 32-bit handlers will be executed first.

If the first program to hook an interrupt is 32-bit, the 32-bit chain is executed first.

10.1.3 Getting the Address of the Interrupt Handler

When you signal Interrupt 21H, Function 35, it always returns a non-null address even if no other program
of your bitness (i.e., 16-bit or 32-bit) has hooked the interrupt. The address points to a dummy handler that
looks to you as though it does an IRET to end the chain. This means that you can’t find an unused interrupt
by looking for a NULL pointer. Since this technique is most frequently used by programs that are looking
for an unclaimed real-mode interrupt on which to install a TSR, it shouldn’t cause you problems.

Functions 25H and 35H: Interrupt Handling in Protected Mode 59

The DOS/4GW DOS Extender

60 Functions 25H and 35H: Interrupt Handling in Protected Mode

11 Interrupt 31H DPMI Functions

When a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced mode, an OS/2

virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QEMM/QDPMI (with EXTCHKOFF),

the DPMI host provides the DPMI services, not DOS/4GW. The DPMI host also provides virtual memory,
if any. Performance (speed and memory use) under different DPMI hosts varies greatly due to the quality

of the DPMI implementation.

DPMI services are accessed using Interrupt 31H.

The following describes the services provided by DOS/4GW and DOS/4GW Professional in the absence of
a DPMI host. DOS/4GW supports many of the common DPMI system services. Not all of the services
described below are supported by other DPMI hosts.

Some of the information in this chapter was obtained from the the DOS Protected-Mode Interface (DPMI)

specification. It is no longer in print; however the DPMI 1.0 specification can be obtained from the Intel
ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software_specs/dpmivl.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

11.1 Using Interrupt 31H Function Calls

Interrupt 31H DPMI function calls can be used only by protected-mode programs.
The general ground rules for Interrupt 31H calls are as follows:

* All Interrupt 31H calls modify the AX register. Unsupported or unsuccessful calls return an error
code in AX. Other registers are saved unless they contain specified return values.

* All Interrupt 31H calls modify flags: Unsupported or unsuccessful calls return with the carry flag
set. Successful calls clear the carry flag. Only memory management and interrupt flag management
calls modify the interrupt flag.

* Memory management calls can enable interrupts.

 All calls are reentrant.

The flag and register information for each call is listed in the following descriptions of supported Interrupt
31H function calls.

Using Interrupt 31H Function Calls 61

The DOS/4GW DOS Extender

11.2 Int31H Function Calls

The Interrupt 31H subfunction calls supported by DOS/4GW are listed below by category:
* Local Descriptor Table (LDT) management services
* DOS memory management services
* Interrupt services
* Translation services
* DPMI version
* Memory management services
* Page locking services
* Demand paging performance tuning services
* Physical address mapping
* Virtual interrupt state functions
* Vendor specific extensions
* Coprocessor status

Only the most commonly used Interrupt 31H function calls are supported in this version.

11.2.1 Local Descriptor Table (LDT) Management Services

Function 0000H This function allocates a specified number of descriptors from the LDT and returns the
base selector. Pass the following information:

AX = 0000H
CX = number of descriptors to be allocated

If the call succeeds, the carry flag is clear and the base selector is returned in AX. If the
call fails, the carry flag is set.

An allocated descriptor is set to the present data type, with a base and limit of zero. The
privilege level of an allocated descriptor is set to match the code segment privilege level of
the application. To find out the privilege level of a descriptor, use the lar instruction.
Allocated descriptors must be filled in by the application. If more than one descriptor is
allocated, the returned selector is the first of a contiguous array. Use Function 0003H to

get the increment for the next selector in the array.

Function 0001H This function frees the descriptor specified. Pass the following information:

62 Int31H Function Calls

Interrupt 31H DPMI Functions

AX =0001H
BX = the selector to free

Use the selector returned with function 0000h when the descriptor was allocated. To free
an array of descriptors, call this function for each descriptor. Use Function 0003H to find
out the increment for each descriptor in the array.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

You can use this function to free the descriptors allocated for the program’s initial CS, DS,
and SS segments, but you should not free other segments that were not allocated with
Function 0000H or Function 000DH.

Function 0002H This function converts a real-mode segment to a descriptor that a protected-mode
program can address. Pass the following information:

AX =0002H
BX = real-mode segment address

If the call succeeds, it clears the carry flag and returns the selector mapped to the real-mode
segment in AX. If the call fails, the carry flag is set.

If you call this function more than once with the same real-mode segment address, you get
the same selector value each time. The descriptor limit is set to 64KB.

The purpose of this function is to give protected-mode programs easy access to commonly
used real-mode segments. However, because you cannot modify or free descriptors created
by this function, it should be used infrequently. Do not use this function to get descriptors
for private data areas.

To examine real-mode addresses using the same selector, first allocate a descriptor, and
then use Function 0007H to change the linear base address.

Function 0003H This function returns the increment value for the next selector. Use this function to get
the value you add to the base address of an allocated array of descriptors to get the next
selector address. Pass the following information:

AX =0003H

This call always succeeds. The increment value is returned in AX. This value is always a
power of two, but no other assumptions can be made.

Function 0006H This function gets the linear base address of a selector. Pass the following information:

AX = 0006H
BX = selector

If the call succeeds, the carry flag is clear and CX:DX contains the 32-bit linear base
address of the segment. If the call fails, it sets the carry flag.

If the selector you specify in BX is invalid, the call fails.

Function 0007H This function changes the base address of a specified selector. Only descriptors allocated
through Function 0000H should be modified. Pass the following information:

Int31H Function Calls 63

The DOS/4GW DOS Extender

64

AX =0007H
BX = selector
CX:DX = the new 32-bit linear base address for the segment

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

If the selector you specify in BX is invalid, the call fails.

Function 0008H This function sets the upper limit of a specified segment. Use this function to modify

descriptors allocated with Function 0000H only. Pass the following information:
AX = 0008H

BX = selector

CX:DX = 32-bit segment limit

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

The call fails if the specified selector is invalid, or if the specified limit cannot be set.

Segment limits greater than 1MB must be page-aligned. This means that limits greater than
1MB must have the low 12 bits set.

To get the limit of a segment, use the 32-bit form of 1s1 for segment limits greater than
64KB.

Function 0009H This function sets the descriptor access rights. Use this function to modify descriptors

allocated with Function 0000H only. To examine the access rights of a descriptor, use the
lar instruction. Pass the following information:

AX = 0009H

BX = selector

CL = Access rights/type byte

CH = 386 extended access rights/type byte

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set. If the
selector you specify in BX is invalid, the call fails. The call also fails if the access
rights/type byte does not match the format and meet the requirements shown in the figures
below.

Int31H Function Calls

Interrupt 31H DPMI Functions

The access rights/type byte passed in CL has the format shown in the figure below.

0 => Absent, 1=> Present

Figure 3. Access Rights/Type

P DPL 1 C/D E/C W/R A
7 6 5 4 3 1 0
0 => Not accessed
1 => Accessed
Data: 0 => Read, 1=> R/W
v Code: Must be 1 (readable)
Data: 0=> Exp-up, 1=> Exp-dn
v Code: Must be 0 (non-conform)
0 => Data, 1=> Code
v
Must be 1
v
Must equal caller’s CPL
v

Int31H Function Calls

65

The DOS/4GW DOS Extender

The extended access rights/type byte passed in CH has the following format.

G B/D 0 Avl Reserved
7 6 5 4 3 2 1 0
Ignored
v
Canbe Oor 1
v
Must be 0
v
0 => Default 16-bit., 1=> Default 32-bit
v

0 => Byte Granular, 1=> Page Granular

Figure 4. Extended Access Rights/Type

Function 000AH This function creates an alias to a code segment. This function creates a data descriptor
that has the same base and limit as the specified code segment descriptor. Pass the
following information:

AX =000AH
BX = code segment selector

If the call succeeds, the carry flag is clear and the new data selector is returned in AX. If
the call fails, the carry flag is set. The call fails if the selector passed in BX is not a valid
code segment.

To deallocate an alias to a code segment, use Function 0001H.
After the alias is created, it does not change if the code segment descriptor changes. For

example, if the base or limit of the code segment change later, the alias descriptor stays the
same.

Function 000BH This function copies the descriptor table entry for a specified descriptor. The copy is
written into an 8-byte buffer. Pass the following information:

AX =000BH

BX = selector
ES:EDI = a pointer to the 8-byte buffer for the descriptor copy

66 Int31H Function Calls

Interrupt 31H DPMI Functions

If the call succeeds, the carry flag is clear and ES:EDI contains a pointer to the buffer that
contains a copy of the descriptor. If the call fails, the carry flag is set. The call fails if the
selector passed in BX is invalid or unallocated.

Function 000CH This function copies an 8-byte buffer into the LDT for a specified descriptor. The
descriptor must first have been allocated with Function 0000H. Pass the following
information:

AX =000CH
BX = selector
ES:EDI = a pointer to the 8-byte buffer containing the descriptor

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. The call fails if
the descriptor passed in BX is invalid.

The type byte, byte 5, has the same format and requirements as the access rights/type byte
passed to Function 0009H in CL. The format is shown in the first figure presented with the
description of Function 0009H.

The extended type byte, byte 6, has the same format and requirements as the extended
access rights/type byte passed to Function 0009H in CH, except that the limit field can have
any value, and the low order bits marked reserved are used to set the upper 4 bits of the
descriptor limit. The format is shown in the second figure presented with the description of
Function 0009H.

Function 000DH This function allocates a specific LDT descriptor. Pass the following information:

AX = 000DH
BX = selector

If the call succeeds, the carry flag is clear and the specified descriptor is allocated. If the
call fails, the carry flag is set.

The call fails if the specified selector is already in use, or if it is not a valid LDT descriptor.
The first 10h (16 decimal) descriptors are reserved for this function, and should not be used
by the host. Some of these descriptors may be in use, however, if another client application

is already loaded.

To free the descriptor, use Function 0001H.

11.2.2 DOS Memory Management Services

Function 0100H This function allocates memory from the DOS free memory pool. This function returns
both the real-mode segment and one or more descriptors that can be used by
protected-mode applications. Pass the following information:

AX =0100H
BX = the number of paragraphs (16-byte blocks) requested

If the call succeeds, the carry flag is clear. AX contains the initial real-mode segment of
the allocated block and DX contains the base selector for the allocated block.

Int31H Function Calls 67

The DOS/4GW DOS Extender

68

If the call fails, the carry flag is set. AX contains the DOS error code. If memory is
damaged, code O7H is returned. If there is not enough memory to satisfy the request, code
08H is returned. BX contains the number of paragraphs in the largest available block of
DOS memory.

If you request a block larger than 64KB, contiguous descriptors are allocated. Use
Function 0003H to find the value of the increment to the next descriptor. The limit of the
first descriptor is set to the entire block. Subsequent descriptors have a limit of 64KB,
except for the final descriptor, which has a limit of blocksize MOD 64KB.

You cannot modify or deallocate descriptors allocated with this function. Function 101H
deallocates the descriptors automatically.

Function 0101H This function frees a DOS memory block allocated with function 0100H. Pass the

following information:

AX =0101H
DX = selector of the block to be freed

If the call succeeds, the carry flag is clear.
If the call fails, the carry flag is set and the DOS error code is returned in AX. If the
incorrect segment was specified, code 09H is returned. If memory control blocks are

damaged, code 07H is returned.

All descriptors allocated for the specified memory block are deallocated automatically and
cannot be accessed correctly after the block is freed.

Function 0102H This function resizes a DOS memory block allocated with function 0100H. Pass the

following information:

AX =0102H
BX = the number of paragraphs (16-byte blocks) in the resized block
DX = selector of block to resize

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set, the maximum number of paragraphs available is
returned in BX, and the DOS error code is returned in AX. If memory code blocks are
damaged, code 07H is returned. If there isn’t enough memory to increase the size as
requested, code O8H is returned. If the incorrect segment is specified, code 0 is returned.

Because of the difficulty of finding additional contiguous memory or descriptors, this
function is not often used to increase the size of a memory block. Increasing the size of a
memory block might well fail because other DOS allocations have used contiguous space.
If the next descriptor in the LDT is not free, allocation also fails when the size of a block
grows over the 64KB boundary.

If you shrink the size of a memory block, you may also free some descriptors allocated to
the block. The initial selector remains unchanged, however; only the limits of subsequent
selectors will change.

Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.3 Interrupt Services

Function 0200H This function gets the value of the current task’s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX = 0200H
BL = interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear, and the segment : offset of the
real-mode interrupt handler is returned in CX:DX.

Because the address returned in CX is a segment, and not a selector, you cannot put it into a
protected-mode segment register. If you do, a general protection fault may occur.

Function 0201H This function sets the value of the current task’s real-mode interrupt vector for the
specified interrupt. Pass the following information:

AX =0201H
BL = interrupt number
CX:DX = segment:offset of the real-mode interrupt handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX:DX should be a real-mode segment :offset, such as
function 0200H returns. For this reason, the interrupt handler must reside in DOS
addressable memory. You can use Function 0100H to allocate DOS memory. This version
does not support the real-mode callback address function.

If you are hooking a hardware interrupt, you have to lock all segments involved. These
segments include the segment in which the interrupt handler runs, and any segment it may
touch at interrupt time.

Function 0202H This function gets the processor exception handler vector. This function returns the
CS:EIP of the current protected-mode exception handler for the specified exception
number. Pass the following information:

AX =0202H
BL = exception/fault number (00h - 1Fh)

If the call succeeds, the carry flag is clear and the selector:offset of the
protected-mode exception handler is returned in CX:EDX. If it fails, the carry flag is set.

The value returned in CX is a valid protected-mode selector, not a real-mode segment.
Function 0203H This function sets the processor exception handler vector. This function allows
protected-mode applications to intercept processor exceptions that are not handled by the

DPMI environment. Programs may wish to handle exceptions such as "not present segment
faults" which would otherwise generate a fatal error. Pass the following information:

Int31H Function Calls 69

The DOS/4GW DOS Extender

AX = 0203H
BL = exception/fault number (00h - 1Fh)
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear. If it fails, the carry flag is set.

The address passed in CX must be a valid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset
in the EDX register. If the handler chains to the next handler, it must use a 32-bit interrupt
stack frame to do so.

The handler should return using a far return instruction. The original SS:ESP, CS:EIP and
flags on the stack, including the interrupt flag, will be restored.

All fault stack frames have an error code. However the error code is only valid for
exceptions 08h, 0Ah, OBh, OCh, ODh, and OEh.

The handler must preserve and restore all registers.

The exception handler will be called on a locked stack with interrupts disabled. The
original SS, ESP, CS, and EIP will be pushed on the exception handler stack frame.

The handler must either return from the call by executing a far return or jump to the next
handler in the chain (which will execute a far return or chain to the next handler).

The procedure can modify any of the values on the stack pertaining to the exception before
returning. This can be used, for example, to jump to a procedure by modifying the CS:EIP
on the stack. Note that the procedure must not modify the far return address on the stack —
it must return to the original caller. The caller will then restore the flags, CS:EIP and
SS:ESP from the stack frame.

If the DPMI client does not handle an exception, or jumps to the default exception handler,
the host will reflect the exception as an interrupt for exceptions 0, 1, 2, 3,4, 5 and 7.
Exceptions 6 and 8 - 1Fh will be treated as fatal errors and the client will be terminated.

Exception handlers will only be called for exceptions that occur in protected mode.

Function 0204H This function gets the CS:EIP selector:offset of the current protected-mode
interrupt handler for a specified interrupt number. Pass the following information:

AX = 0204H
BL = interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are supported by the
host. When the call returns, the carry flag is clear and CX:EDX contains the
protected-mode selector:offset of the exception handler.

A 32-bit offset is returned in the EDX register.

Function 0205H This function sets the address of the specified protected-mode interrupt vector. Pass the
following information:

70 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0205H
BL = interrupt number
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
The address passed in CX must be a valid protected-mode selector, such as Function 204H
returns, and not a real-mode segment. A 32-bit implementation must supply a 32-bit offset

in the EDX register. If the handler chains to the next handler, it must use a 32-bit interrupt
stack frame to do so.

11.2.4 Translation Services

These services are provided so that protected-mode programs can call real-mode software that DPMI does
not support directly. The protected-mode program must set up a data structure with the appropriate register
values. This "real-mode call structure" is shown below.

Int31H Function Calls 71

The DOS/4GW DOS Extender

72

Offset Register
00H EDI
04H ESI
08H EBP
0CH Reserved by system
10H EBX
14H EDX
18H ECX
1CH EAX
20H Flags
22H ES

24H DS

26H FS

28H GS

2AH IP

2CH CS

2EH Sp

30H SS

After the call or interrupt is complete, all real-mode registers and flags except SS, SP, CS, and IP will be
copied back to the real-mode call structure so that the caller can examine the real-mode return values.

The values in the segment registers should be real-mode segments, not protected-mode selectors.

The translation services will provide a real-mode stack if the SS:SP fields are zero. However, the stack
provided is relatively small. If the real-mode procedure/interrupt routine uses more than 30 words of stack
space then you should provide your own real-mode stack.

Function 0300H This function simulates a real-mode interrupt. This function simulates an interrupt in real

mode. It will invoke the CS:IP specified by the real-mode interrupt vector and the handler
must return by executing an iret. Pass the following information:

Int31H Function Calls

Interrupt 31H DPMI Functions

AX =0300H

BL = interrupt number

BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags are
reserved and must be 0.

CX = number of words to copy from protected-mode stack to real-mode stack

ES:EDI = the selector:offset of real-mode call structure

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of the modified real-mode call structure.

The CS:IP in the real-mode call structure is ignored by this service. The appropriate
interrupt handler will be called based on the value passed in BL.

The flags specified in the real-mode call structure will be pushed on the real-mode stack
iret frame. The interrupt handler will be called with the interrupt and trace flags clear.

It is up to the caller to remove any parameters that were pushed on the protected-mode
stack.

The flag to reset the interrupt controller and the A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI implementations that
return to real mode to set the interrupt controller and A20 address line hardware to its
normal real-mode state.

Function 0301H (DOS/4GW Professional only) This function calls a real-mode procedure with a FAR
return frame. The called procedure must execute a FAR return when it completes. Pass the
following information:

AX =0301H

BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags reserved
and must be 0.

CX = Number of words to copy from protected-mode to real-mode stack

ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of modified real-mode call structure.

If the call fails, the carry flag is set.
Notes:

1. The CS:IP in the real-mode call structure specifies the address of the real-mode
procedure to call.

2. The real-mode procedure must execute a FAR return when it has completed.
3. If the SS:SP fields are zero then a real-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before

the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the values that
were returned by the real-mode procedure.

Int31H Function Calls 73

The DOS/4GW DOS Extender

5. Itis up to the caller to remove any parameters that were pushed on the
protected-mode stack.

6. The flag to reset the interrupt controller and A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0302H (DOS/4GW Professional only) This function calls a real-mode procedure with an iret
frame. The called procedure must execute an iret when it completes. Pass the following
information:

AX =0302H

BH = flags Bit O = 1 resets the interrupt controller and A20 line. Other flags reserved
and must be 0.

CX = Number of words to copy from protected-mode to real-mode stack

ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of modified real-mode call structure.

If the call fails, the carry flag is set.
Notes:

1. The CS:IP in the real-mode call structure specifies the address of the real-mode
procedure to call.

2. The real-mode procedure must execute an iret when it has completed.

3. If the SS:SP fields are zero then a real-mode stack will be provided by the DPMI
host. Otherwise, the real-mode SS:SP will be set to the specified values before
the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the values that
were returned by the real-mode procedure.

5. The flags specified in the real-mode call structure will be pushed the real-mode
stack iret frame. The procedure will be called with the interrupt and trace
flags clear.

6. Itis up to the caller to remove any parameters that were pushed on the
protected-mode stack.

7. The flag to reset the interrupt controller and A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0303H (DOS/4AGW Professional only) This function allocates a real-mode callback address. This

service is used to obtain a unique real-mode SEG:OFFSET that will transfer control from
real mode to a protected-mode procedure.

74 Int31H Function Calls

Interrupt 31H DPMI Functions

At times it is necessary to hook a real-mode interrupt or device callback in a
protected-mode driver. For example, many mouse drivers call an address whenever the
mouse is moved. Software running in protected mode can use a real-mode callback to
intercept the mouse driver calls. Pass the following information:

AX =0303H
DS:ESI = selector:offset of procedure to call
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and CX:DX contains the segment :offset of
real-mode callback address.

If the call fails, the carry flag is set.
Callback Procedure Parameters

Interrupts disabled

DS:ESI = selector:offset of real-mode SS:SP
ES:EDI = selector:offset of real-mode call structure
SS:ESP = Locked protected-mode API stack

All other registers undefined

Return from Callback Procedure

Execute an IRET to return
ES:EDI = selector:offset of real-mode call structure
to restore (see note)

Notes:

1. Since the real-mode call structure is static, you must be careful when writing
code that may be reentered. The simplest method of avoiding reentrancy is to
leave interrupts disabled throughout the entire call. However, if the amount of
code executed by the callback is large then you will need to copy the real-mode
call structure into another buffer. You can then return with ES:EDI pointing to
the buffer you copied the data to — it does not have to point to the original real
mode call structure.

2. The called procedure is responsible for modifying the real-mode CS:IP before
returning. If the real-mode CS:IP is left unchanged then the real-mode callback
will be executed immediately and your procedure will be called again. Normally
you will want to pop a return address off of the real-mode stack and place it in
the real-mode CS:IP. The example code in the next section demonstrates
chaining to another interrupt handler and simulating a real-mode iret.

3. To return values to the real-mode caller, you must modify the real-mode call
structure.

4. Remember that all segment values in the real-mode call structure will contain
real-mode segments, not selectors. If you need to examine data pointed to by a
real-mode seg:offset pointer, you should not use the segment to selector service
to create a new selector. Instead, allocate a descriptor during initialization and
change the descriptor’s base to 16 times the real-mode segment’s value. This is

Int31H Function Calls 75

The DOS/4GW DOS Extender

important since selectors allocated though the segment to selector service can
never be freed.

5. DPMI hosts should provide a minimum of 16 callback addresses per task.

The following code is a sample of a real-mode interrupt hook. It hooks the DOS Int 21h
and returns an error for the delete file function (AH=41h). Other calls are passed through
to DOS. This example is somewhat silly but it demonstrates the techniques used to hook a
real mode interrupt. Note that since DOS calls are reflected from protected mode to real
mode, the following code will intercept all DOS calls from both real mode and protected
mode.

76 Int31H Function Calls

Interrupt 31H DPMI Functions

’
’
’
’

’

ER R Rk ik kI kg kg ko kg 2k ki k3 3k 2k ki

This procedure gets the current Int 21h real-mode
Seg:0ffset, allocates a real-mode callback address,
and sets the real-mode Int 21h vector to the call-

back address.
PR R R R R R R R R R R EE]

Initialization_Code:

’
’

’

’

’

’

Create a code segment alias to save data in

mov ax, 000Ah
mov bx, cs
int 31lh

jc ERROR
mov ds, ax

ASSUMES DS, _TEXT

Get current Int 21h real-mode SEG:OFFSET

mov ax, 0200h

mov bl, 21h

int 31lh

jc ERROR

mov [Orig_Real_Seg], cx
mov [Orig_Real_ Offset], dx

Allocate a real-mode callback

mov ax, 0303h

push ds

mov bx, cs

mov ds, bx

mov si, OFFSET My_1Int_21_Hook

pop es

mov di, OFFSET My_Real_Mode_Call_Struc
int 31h

jc ERROR

Hook real-mode int 21h with the callback address

mov ax, 0201h
mov bl, 21h
int 31lh

jc ERROR

ek kkkhkkhkhkhkkhkhhkk

’

This is the actual Int 21h hook code. It will return
an "access denied" error for all calls made in real
mode to delete a file. Other calls will be passed
through to DOS.

ENTRY :
DS:SI -> Real-mode SS:SP
ES:DI -> Real-mode call structure
Interrupts disabled

EXIT:
ES:DI —-> Real-mode call structure

,-**

My_Int_21_Hook:

cmp es: [di.RealMode_AH], 41h
jne Chain_To_DOS
This is a delete file call (AH=41lh). Simulate an

iret on the real-mode stack, set the real-mode
carry flag, and set the real-mode AX to 5 to indicate
an access denied error.

Int31H Function Calls

77

The DOS/4GW DOS Extender

cld

lodsw ; Get real-mode ret IP
mov es: [di.RealMode_IP], ax

lodsw ; Get real-mode ret CS
mov es: [di.RealMode_CS], ax

lodsw ; Get real-mode flags
or ax, 1 ; Set carry flag

mov es:[di.RealMode_Flags], ax

add es: [di.RealMode_SP], 6

mov es: [di.RealMode_AX], 5

jmp My_Hook_Exit

; Chain to original Int 21h vector by replacing the
; real-mode CS:IP with the original Seg:0ffset.
4
Chain_To_DOS:
mov ax, cs:[Orig_Real_Seq]
mov es: [di.RealMode_CS], ax
mov ax, cs:[Orig_Real_Offset]
mov es: [di.RealMode_1IP], ax

My_Hook_Exit:
iret

Function 0304H (DOS/4GW Professional only) This function frees a real-mode callback address that was

allocated through the allocate real-mode callback address service. Pass the following
information:

AX = 0304H
CX:DX = Real-mode callback address to free

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. Real-mode callbacks are a limited resource. Your code should free any break
point that it is no longer using.

11.2.5 DPMI Version

78

Function 0400H This function returns the version of DPMI services supported. Note that this is not

necessarily the version of any operating system that supports DPMI. It should be used by
programs to determine what calls are legal in the current environment. Pass the following
information:

AX = 0400H
The information returned is:

AH = Major version

AL = Minor version

BX =Flags Bit0 =1 if running under an 80386 DPMI implementation. Bit1 =1 if
processor is returned to real mode for reflected interrupts (as opposed to
Virtual 8086 mode). Bit 2 = 1 if virtual memory is supported. Bit 3 is
reserved and undefined. All other bits are zero and reserved for later use.

CL = Processor type

Int31H Function Calls

Interrupt 31H DPMI Functions

02 = 80286
03 = 80386
04 = 80486
05 = Pentium

DH = Current value of virtual master PIC base interrupt
DL = Current value of virtual slave PIC base interrupt
Carry flag clear (call cannot fail)

11.2.6 Memory Management Services

Function 0500H This function gets information about free memory. Pass the following information:

AX = 0500H

ES:EDI = the selector:offset of a 30H byte buffer.

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI contains the selector:offset
of a buffer with the structure shown in the figure below.

Offset

Description

00H

Largest available block, in bytes

04H

Maximum unlocked page allocation

08H

Largest block of memory (in pages) that could
be allocated and then locked

0CH

Total linear address space size, in pages, including
already allocated pages

10H

Total number of free pages and pages currently
unlocked and available for paging out

14H

Number of physical pages not in use

18H

Total number of physical pages managed by host

1CH

Free linear address space, in pages

20H

Size of paging/file partition, in pages

24H -
2FH

Reserved

Only the first field of the structure is guaranteed to contain a valid value. Any field that is
not returned by DOS/4GW is set to -1 (OFFFFFFFFH).

Int31H Function Calls

79

The DOS/4GW DOS Extender

Function 0501H This function allocates and commits linear memory. Pass the following information:

AX =0501H
BX:CX = size of memory to allocate, in bytes.

If the call succeeds, the carry flag is clear, BX:CX contains the linear address of the
allocated memory, and SI:DI contains the memory block handle used to free or resize the
block. If the call fails, the carry flag is set.

No selectors are allocated for the memory block. The caller must allocate and initialize
selectors needed to access the memory.

If VMM is present, the memory is allocated as unlocked, page granular blocks. Because of
the page granularity, memory should be allocated in multiples of 4KB.

Function 0502H This function frees a block of memory allocated through function 0501H. Pass the
following information:

AX = 0502H
SI:DI = handle returned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. You must also
free any selectors allocated to point to the freed memory block.

Function 0503H This function resizes a block of memory allocated through the 0501H function. If you
resize a block of linear memory, it may have a new linear address and a new handle. Pass
the following information:

AX =0503H
BX:CX = new size of memory block, in bytes
SI:DI = handle returned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear, BX:CX contains the new linear address of the
memory block, and SI:DI contains the new handle of the memory block. If the call fails,

the carry flag is set.

If either the linear address or the handle has changed, update the selectors that point to the
memory block. Use the new handle instead of the old one.

You cannot resize a memory block to zero bytes.

11.2.7 Page Locking Services

80

These services are only useful under DPMI implementations that support virtual memory. Although
memory ranges are specified in bytes, the actual unit of memory that will be locked will be one or more
pages. Page locks are maintained as a count. When the count is decremented to zero, the page is unlocked
and can be swapped to disk. This means that if a region of memory is locked three times then it must be
unlocked three times before the pages will be unlocked.

Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0600H This function locks a specified linear address range. Pass the following information:

AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI = size of region to lock (in bytes)

If the call fails, the carry flag is set and none of the memory will be locked.

If the call succeeds, the carry flag is clear. If the specified region overlaps part of a page at
the beginning or end of a region, the page(s) will be locked.

Function 0601H This function unlocks a specified linear address range that was previously locked using
the "lock linear region" function (0600h). Pass the following information:

AX =0601H
BX:CX = starting linear address of memory to unlock
SI:DI = size of region to unlock (in bytes)

If the call fails, the carry flag is set and none of the memory will be unlocked. An error
will be returned if the memory was not previously locked or if the specified region is
invalid.

If the call succeeds, the carry flag is clear. If the specified region overlaps part of a page at
the beginning or end of a region, the page(s) will be unlocked. Even if the call succeeds,

the memory will remain locked if the lock count is not decremented to zero.

Function 0604H This function gets the page size for Virtual Memory (VM) only. This function returns the
size of a single memory page in bytes. Pass the following information:

AX = 0604H
If the call succeeds, the carry flag is clear and BX:CX = Page size in bytes.

If the call fails, the carry flag is set.

11.2.8 Demand Paging Performance Tuning Services

Some applications will discard memory objects or will not access objects for long periods of time. These
services can be used to improve the performance of demand paging.

Although these functions are only relevant for DPMI implementations that support virtual memory, other
implementations will ignore these functions (it will always return carry clear). Therefore your code can
always call these functions regardless of the environment it is running under.

Since both of these functions are simply advisory functions, the operating system may choose to ignore
them. In any case, your code should function properly even if the functions fail.

Function 0702H (DOS/4GW Professional only) This function marks a page as a demand paging candidate.
This function is used to inform the operating system that a range of pages should be placed
at the head of the page out candidate list. This will force these pages to be swapped to disk
ahead of other pages even if the memory has been accessed recently. However, all memory
contents will be preserved.

Int31H Function Calls 81

The DOS/4GW DOS Extender

This is useful, for example, if a program knows that a given piece of data will not be
accessed for a long period of time. That data is ideal for swapping to disk since the
physical memory it now occupies can be used for other purposes. Pass the following
information:

AX =0702H

BX:CX = Starting linear address of pages to mark

SI:DI = Number of bytes to mark as paging candidates

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:
1. This function does not force the pages to be swapped to disk immediately.
2. Partial pages will not be discarded.

Function 0703H (DOS/4GW Professional only) This function discards page contents. This function
discards the entire contents of a given linear memory range. It is used after a memory

object that occupied a given piece of memory has been discarded.

The contents of the region will be undefined the next time the memory is accessed. All
values previously stored in this memory will be lost. Pass the following information:

AX =0703H

BX:CX = Starting linear address of pages to discard

SI:DI = Number of bytes to discard

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. Partial pages will not be discarded.

11.2.9 Physical Address Mapping

Memory mapped devices such as network adapters and displays sometimes have memory mapped at
physical addresses that lie outside of the normal 1Mb of memory that is addressable in real mode. Under
many implementations of DPMI, all addresses are linear addresses since they use the paging mechanism of
the 80386. This service can be used by device drivers to convert a physical address into a linear address.
The linear address can then be used to access the device memory.

Function 0800H This function is used for Physical Address Mapping.
Some implementations of DPMI may not support this call because it could be used to
circumvent system protection. This call should only be used by programs that absolutely

require direct access to a memory mapped device.

Pass the following information:

82 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0800H
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

If the call succeeds, the carry flag is clear and BX:CX = Linear Address that can be used to
access the physical memory.

If the call fails, the carry flag is set.
Notes:

1. Under DPMI implementations that do not use the 80386 paging mechanism, the
call will always succeed and the address returned will be equal to the physical
address parameter passed into this function.

2. Itis up to the caller to build an appropriate selector to access the memory.

3. Do not use this service to access memory that is mapped in the first megabyte of
address space (the real-mode addressable region).

Function 0801H This function is used to free Physical Address Mapping. Pass the following information:

AX =0801H
BX:CX = Linear address returned by Function 0800H.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.
Notes:

1. The client should call this function when it is finished using a device previously
mapped to linear addresses with the Physical Address Mapping function
(Function 0800H).

11.2.10 Virtual Interrupt State Functions

Under many implementations of DPMI, the interrupt flag in protected mode will always be set (interrupts
enabled). This is because the program is running under a protected operating system that cannot allow
programs to disable physical hardware interrupts. However, the operating system will maintain a "virtual"
interrupt state for protected-mode programs. When the program executes a CLI instruction, the program’s
virtual interrupt state will be disabled, and the program will not receive any hardware interrupts until it
executes an STI to reenable interrupts (or calls service 0901h).

When a protected-mode program executes a PUSHF instruction, the real processor flags will be pushed
onto the stack. Thus, examining the flags pushed on the stack is not sufficient to determine the state of the
program’s virtual interrupt flag. These services enable programs to get and modify the state of their virtual
interrupt flag.

The following sample code enters an interrupt critical section and then restores the virtual interrupt state to
it’s previous state.

Int31H Function Calls 83

The DOS/4GW DOS Extender

; Disable interrupts and get previous interrupt state

mov ax, 0900h
int 31lh

; At this point AX = 0900h or 0901h

; Restore previous state (assumes AX unchanged)
int 31h
Function 0900H This function gets and disables Virtual Interrupt State. This function will disable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Pass the
following information:

AX =0900H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are disabled.

AL = 0 if virtual interrupts were previously disabled.
AL = 1 if virtual interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0901H This function gets and enables the Virtual Interrupt State. This function will enable the
virtual interrupt flag and return the previous state of the virtual interrupt flag. Pass the
following information:

AX =0901H

After the call, the carry flag is clear (this function always succeeds) and virtual interrupts
are enabled.

AL = 0 if virtual interrupts were previously disabled.
AL = 1 if virtual interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the previous
state, simply execute an Int 31h.

Function 0902H This function gets the Virtual Interrupt State. This function will return the current state of
the virtual interrupt flag. Pass the following information:

84 Int31H Function Calls

Interrupt 31H DPMI Functions

AX =0902H
After the call, the carry flag is clear (this function always succeeds).

AL = 0 if virtual interrupts are disabled.
AL =1 if virtual interrupts are enabled.

11.2.11 Vendor Specific Extensions

Some DOS extenders provide extensions to the standard set of DPMI calls. This call is used to obtain an
address which must be called to use the extensions. The caller points DS:ESI to a null terminated string
that specifies the vendor name or some other unique identifier to obtain the specific extension entry point.

Function 0AOOH This function gets Tenberry Software’s API Entry Point. Pass the following information:

AX =0A00H
DS:ESI = Pointer to null terminated string ""RATIONAL DOS/4G"

If the call succeeds, the carry flag is clear and ES:EDI = Extended API entry point. DS,
FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.

If the call fails, the carry flag is set.
Notes:
1. Execute a far call to call the API entry point.
2. All extended API parameters are specified by the vendor.

3. The string comparison used to return the API entry point is case sensitive.

11.2.12 Coprocessor Status

Function OEOOH This function gets the coprocessor status. Pass the following information:
AX = 0E0OH
If the call succeeds, the carry flag is clear and AX contains the coprocessor status.
Bit Significance

0 MPv (MP bit in the virtual MSW/CRO).
0 = Numeric coprocessor is disabled for this client.
1 = Numeric coprocessor is disabled for this client.
1 EMyv (EM bit in the virtual MSW/CRO).
0 = Client is not emulating coprocessor instructions.
1 = Client is emulating coprocessor instructions.
2 MPr (MP bit from the actual MSW/CRO).
0 = Numeric coprocessor is not present.
1 = Numeric coprocessor is present.

Int31H Function Calls 85

The DOS/4GW DOS Extender

86

8-15

EMr (EM bit from the actual MSW/CRO).

0 = Host is not emulating coprocessor instructions.
1 = Host is emulating coprocessor instructions.
Coprocessor type.

0OH = no coprocessor.

02H = 80287

03H = 80387

04H = 80486 with numeric coprocessor
05H = Pentium

Not applicable.

If the call fails, the carry flag is set.

Notes:

If the real EM (EMr) bit is set, the host is supplying or is capable of supplying
floating-point emulation.

If the MPv bit is not set, the host may not need to save the coprocessor state for
this virtual machine to improve system performance.

The MPr bit setting should be consistent with the setting of the coprocessor type
information. Ignore MPr bit information if it is in conflict with the coprocessor
type information.

If the virtual EM (EMv) bit is set, the host delivers all coprocessor exceptions to
the client, and the client is performing its own floating-point emulation (wether
or not a coprocessor is present or the host also has a floating-point emulator). In
other words, if the EMv bit is set, the host sets the EM bit in the real CRO while
the virtual machine is active, and reflects coprocessor not present faults (int 7) to
the virtual machine.

A client can determine the CPU type with int 31H Function 0400H, but a client
should not draw any conclusions about the presence or absence of a coprocessor
based on the CPU type alone.

Function OEO1H This function sets coprocessor emulation. Pass the following information:

AX =0E01H
BX = coprocessor bits

Bit Significance

0 New value of MPv bit for client’s virtual CRO.
0 = Disable numeric coprocessor for this client.
1 = Enable numeric coprocessor for this client.

1 New value of EMv bit for client’s virtual CRO.
0 = client will not supply coprocessor emulation.
1 = client will supply coprocessor emulation.

2-15 Not applicable.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Int31H Function Calls

12 utilities

This chapter describes the Tenberry Software DOS/4GW utility programs provided with the Open Watcom
C/C++ package. Each program is described using the following format:

Purpose: This is a brief statement of what the utility program does. More specific information is provided
under "Notes".

Syntax: This shows the syntax of the program. The fixed portion of each command is in a
typewriter font, while variable parts of the command are in ifalics. Optional parts are

enclosed in [brackets].

Notes: These are explanatory remarks noting major features and possible pitfalls. We explain anything
special that you might need to know about the program.

See Also: This is a cross-reference to any information that is related to the program.

Example: You’ll find one or more sample uses of the utility program with an explanation of what the
program is doing.

Some of the utilities are DOS/4GW-based, protected-mode programs. To determine which programs run in

protected mode and which in real, run the program. If you see the DOS/4GW banner, the program runs in
protected mode.

Utilities 87

The DOS/4GW DOS Extender

12.1 DOS4GW

Purpose: Loads and executes linear executables.
Syntax: linear_executable
Notes: The stub program at the beginning of the linear executable invokes this program, which loads the

linear executable and starts up the DOS extender. The stub program must be able to find
DOS4GW: make sure it is in the path.

88 DOS4GW

Utilities

12.2 PMINFO

Purpose: Measures the performance of protected/real-mode switching and extended memory.
Syntax: PMINFO.EXE
Notes: We encourage you to distribute this program to your users.

The time-based measurements made by PMINFO may vary slightly from run to run.

Example: The following example shows the output of the PMINFO program on a 386 AT-compatible
machine.

C>pminfo
Protected Mode and Extended Memory Performance Measurement —-- 5.00
Copyright (c) Tenberry Software, Inc. 1987 - 1993

DOS memory Extended memory CPU performance equivalent to 67.0 MHz 80486

736 8012 K bytes configured (according to BIOS).

640 15360 K bytes physically present (SETUP).

651 7887 K bytes available for DOS/16M programs.
22.0 (3.0) 18.9 (4.0) MB/sec word transfer rate (wait states).
42.9 (3.0) 37.0 (4.0) MB/sec 32-bit transfer rate (wait states).

Overall cpu and memory performance (non-floating point) for typical
DOS programs is 10.36 & 1.04 times an 8MHz IBM PC/AT.

Protected/Real switch rate = 36156/sec (27 usec/switch, 15 up + 11 down),
DOS/16M switch mode 11 (VCPI).

The top information line shows that the CPU performance is equivalent to a 67.0 MHz 80486.
Below are the configuration and timings for both the DOS memory and extended memory. If the
computer is not equipped with extended memory, or none is available for DOS/4GW, the
extended memory measurements may be omitted ("--").

The line "according to BIOS" shows the information provided by the BIOS (interrupts 12h and
15h function 88h). The line "SETUP", if displayed, is the configuration obtained directly from
the CMOS RAM as set by the computer’s setup program. It is displayed only if the numbers are
different from those in the BIOS line. They will be different for computers where the BIOS has
reserved memory for itself or if another program has allocated some memory and is intercepting
the BIOS configuration requests to report less memory available than is physically configured.
The "DOS/16M memory range", if displayed, shows the low and high addresses available to
DOS/4GW in extended memory.

Below the configuration information is information on the memory speed (transfer rate).
PMINFO tries to determine the memory architecture. Some architectures will perform well
under some circumstances and poorly under others; PMINFO will show both the best and worst
cases. The architectures detected are cache, interleaved, page-mode (or static column), and
direct. Measurements are made using 32-bit accesses and reported as the number of megabytes
per second that can be transferred. The number of wait states is reported in parentheses. The
wait states can be a fractional number, like 0.5, if there is a wait state on writes but not on reads.
Memory bandwidth (i.e., how fast the CPU can access memory) accounts for 60% to 70% of the
performance for typical programs (that are not heavily dependent on floating-point math).

PMINFO 89

The DOS/4GW DOS Extender

90 PMINFO

A performance metric developed by Tenberry Software is displayed, showing the expected
throughput for the computer relative to a standard SMHz IBM PC/AT (disk accesses and floating
point are excluded). Finally, the speed with which the computer can switch between real and
protected mode is displayed, both as the maximum number of round-trip switches that can occur
per second, and the time for a single round-trip switch, broken out into the real-to-protected (up)
and protected-to-real (down) components.

Utilities

12.3 PRIVATXM

Purpose: Creates a private pool of memory for DOS/4GW programs.
Syntax: PRIVATXM [-r]
Notes: This program may be distributed to your users.

Without PRIVATXM, a DOS/4GW program that starts up while another DOS/4GW program is
active uses the pool of memory built by the first program. The new program cannot change the
parameters of this memory pool, so setting DOS16M to increase the size of the pool has no
effect. To specify that the two programs use different pools of memory, use PRIVATXM.

PRIVATXM marks the active DOS/4GW programs as private, preventing subsequent DOS/4AGW
programs from using the same memory pool. The first DOS/4GW program to start after
PRIVATXM sets up a new pool of memory for itself and any subsequent DOS/4GW programs.
To release the memory used by the private programs, use the PRIVATXM -r option.

PRIVATXM is a TSR that requires less than 500 bytes of memory. It is not supported under
DPMI.

Example: The following example creates a 512KB memory pool that is shared by two DOS/4GW TSRs.
Subsequent DOS/4GW programs use a different memory pool.

C>set DOS16M=:512 Specifies the size of the memory pool.

C>TSRI Sets up the memory pool at startup.

C>TSR2 This TSR shares the pool built by TSRI.

C>PRIVATXM Makes subsequent DOS/4GW programs use a new memory pool.

C>set DOS16M= Specifies an unlimited size for the new pool.

C>PROGRAM3 This program uses the new memory pool.

C>PRIVATXM -R Releases the 512KB memory pool used by the TSRs. (If the TSRs
shut down, their memory is not released unless PRIVATXM is
released.)

PRIVATXM 91

The DOS/4GW DOS Extender

12.4 RMINFO

Purpose: Supplies configuration information and the basis for real/protected-mode switching in your

Syntax:

Notes:

Example:

92 RMINFO

machine.

RMINFO.EXE

This program may be distributed to your users.

RMINFO starts up DOS/4GW, but stops your machine just short of switching from real mode to
protected mode and displays configuration information about your computer. The information
shown by RMINFO can help determine why DOS/4GW applications won’t run on a particular
machine. Run RMINFO if PMINFO does not run to completion.

The following example shows the output of the RMINFO program on an 386 AT-compatible

machine.

C>rminfo

Copyright (C)
Machine and Environment:

Processor:

Machine type:

A20 now:

A20 switch rigor:

DPMI host found
Switching Functions:

To PM switch:

To RM switch:

Nominal switch mode:

Switch control flags:
Memory Interfaces:

DPMI may provide:

Contiguous DOS memory:

DOS/16M Real Mode Information Program 5.00
Tenberry Software,

Inc. 1987 - 1993

1386, coprocessor present
10 (AT-compatible)
enabled

disabled

DPMI

DPMI

0

0000

16384K returnable
463K

The information provided by RMINFO includes:

Machine and Environment:
Processor:

Machine type:

processortype,coprocessorpresenﬂnotpresent

Utilities

A20 now: Current state of Address line 20.

(NEC 9801)
(PS/2-compatible)
(AT-compatible)
(FMR)

(AT&T 6300+)
(AT-compatible)
(C&T 230 chipset)
(AT-compatible)
(AT-compatible)
(Acer)

(Zenith)

(Hitachi)
(Okidata)

(PS/55)

A20 switch rigor: Whether DOS4GW rigorously controls enabling and disabling of Address line

20 when switching modes.

PS feature flag

XMS host found Whether your system has any software using extended memory under the XMS
discipline.

VCPI host found Whether your system has any software using extended memory under the
VCPI discipline.

page table 0 at: x000h

DPMI host found

DOS/16M resident with private/public memory

Switching Functions:

A20 switching:

To PM switch: reset catch:
pre-PM prep:
post-PM-switch:

To RM switch:

pre-RM prep:
reset method:
post-reset:

reset uncatch:

Nominal switch mode: x

Switch control flags: xxxxh

RMINFO 93

The DOS/4GW DOS Extender

94 RMINFO

Memory Interfaces:

(VCPI remapping in effect)

DPMI may provide: xxxxxK returnable
VCPI may provide: xxxxxK returnable
Top-down

Otherl6M

Forced

Contiguous DOS memory:

13 Error Messages

The following lists DOS/4G error messages, with descriptions of the circumstances in which the error is
most likely to occur, and suggestions for remedying the problem. Some error messages pertaining to
features — like DLLs — that are not supported in DOS/4GW will not arise with that product. In the
following descriptions, references to DOS/4G, DOS4G, or DOS4G.EXE may be replaced by DOS/4AGW,
DOS4GW, or DOS4GW .EXE should the error message arise when using DOS/4GW.

13.1 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded in DOS/4G. Kernel error
messages may occur because of severe resource shortages, corruption of DOS4GW.EXE, corruption of
memory, operating system incompatibilities, or internal errors in DOS/4AGW. All of these messages are
quite rare.
0. involuntary switch to real mode
The computer was in protected mode but switched to real mode without going through DOS/16M. This
error most often occurs because of an unrecoverable stack segment exception (stack overflow), but can
also occur if the Global Descriptor Table or Interrupt Descriptor Table is corrupted. Increase the stack
size, recompile your program with stack overflow checking, or look into ways that the descriptor tables
may have been overwritten.
1. not enough extended memory

2. not a DOS/16M executable <filename>

DOS4G.EXE, or a bound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy the file.

3. no DOS memory for transparent segment
4. cannot make transparent segment
5. too many transparent segments
6. not enough memory to load program
There is not enough memory to load DOS/4G. Make more memory available and try again.
7. no relocation segment
8. cannot open file <filename>

The DOS/16M loader cannot load DOS/4G, probably because DOS has run out of file units. Set a
larger FILES= entry in CONFIG.SYS, reboot, and try again.

Kernel Error Messages 95

The DOS/4GW DOS Extender

9. cannot allocate tstack

There is not enough memory to load DOS/4G. Make more memory available and try again.
10. cannot allocate memory for GDT

There is not enough memory to load DOS/4G. Make more memory available and try again.
11. no passup stack selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
12. no control program selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
13. cannot allocate transfer buffer

There is not enough memory to load DOS/4G. Make more memory available and try again.
14. premature EOF

DOS4G.EXE, or a bound DOS/4G application, has probably been corrupted in some way. Rebuild or
recopy the file.

15. protected mode available only with 386 or 486
DOS/4G requires an 80386 (or later) CPU. It cannot run on an 80286 or earlier CPU.

16. cannot run under OS/2

17. system software does not follow VCPI or DPMI specifications
Some memory resident program has put your 386 or 486 CPU into Virtual 8086 mode. This is done to
provide special memory services to DOS programs, such as EMS simulation (EMS interface without
EMS hardware) or high memory. In this mode, it is not possible to switch into protected mode unless
the resident software follows a standard that DOS/16M supports (DPMI, VCPI, and XMS are the most
common). Contact the vendor of your memory management software.

18. you must specify an extended memory range (SET DOS16M=)
On some Japanese machines that are not IBM AT-compatible, and have no protocol for managing
extended memory, you must set the DOS16M environment variable to specify the range of available
extended memory.

19. computer must be AT- or PS/2- compatible

20. unsupported DOS16M switchmode choice

21. requires DOS 3.0 or later

22. cannot free memory

This error probably indicates that memory was corrupted during execution of your program.

96 Kernel Error Messages

Error Messages

23. no memory for VCPI page table

There is not enough memory to load DOS/4G. Make more memory available and try again.
24. VCPI page table address incorrect

This is an internal error.
25. cannot initialize VCPI

This error indicates an incompatibility with other software. DOS/16M has detected that VCPI is
present, but VCPI returns an error when DOS/16M tries to initialize the interface.

26. 8042 timeout

27. extended memory is configured but it cannot be allocated

28. memory error, avail loop
This error probably indicates that memory was corrupted during execution of your program. Using an
invalid or stale alias selector may cause this error. Incorrect manipulation of segment descriptors may
also cause it.

29. memory error, out of range

This error probably indicates that memory was corrupted during execution of your program. Writing
through an invalid or stale alias selector may cause this error.

30. program must be built -AUTO for DPMI

31. protected mode already in use in this DPMI virtual machine

32. DPMI host error (possibly insufficient memory)

33. DPMI host error (need 64K XMS)

34. DPMI host error (cannot lock stack)
Any of these errors (32, 33, 34) probably indicate insufficient memory under DPMI. Under Windows,
you might try making more physical memory available by eliminating or reducing any RAM drives or
disk caches. You might also try editing DEFAULT.PIF so that at least 64KB of XMS memory is
available to non-Windows programs. Under OS/2, you want to increase the DPMI_MEMORY _LIMIT
in the DOS box settings.

35. General Protection Fault

This message probably indicates an internal error in DOS/4G. Faults generated by your program should
cause error 2001 instead.

36. The DOS16M.386 virtual device driver was never loaded

37. Unable to reserve selectors for DOS16M.386 Windows driver

Kernel Error Messages 97

The DOS/4GW DOS Extender

38. Cannot use extended memory: HIMEM.SYS not version 2

This error indicates an incompatibility with an old version of HIMEM.SYS.
39. An obsolete version of DOS16M.386 was loaded
40. not enough available extended memory (XMIN)

This message probably indicates an incompatibility with your memory manager or its configuration.
Try configuring the memory manager to provide more extended memory, or change memory managers.

13.2 DOS/4G Errors

1000 "can’t hook interrupts'’

A DPMI host has prevented DOS/4G from loading. Please contact Tenberry Technical Support.
1001 "error in interrupt chain''

DOS/4G internal error. Please contact Tenberry Technical Support.
1003 "can’t lock extender kernel in memory''

DOS/4G couldn’t lock the kernel in physical memory, probably because of a memory shortage.
1004 "'syntax is DOS4G <executable.xxx>"'

You must specify a program name.
1005 "'not enough memory for dispatcher data''

There is not enough memory for DOS/4G to manage user-installed interrupt handlers properly. Free
some memory for the DOS/4G application.

1007 "can’t find file <program> to load'"
DOS/4G could not open the specified program. Probably the file didn’t exist. It is possible that
DOS ran out of file handles, or that a network or similar utility has prohibited read access to the
program. Make sure that the file name was spelled correctly.

1008 "can’t load executable format for file <filename> [<error code>]"

DOS/4G did not recognize the specified file as a valid executable file. DOS/4G can load linear
executables (LE and LX) and EXPs (BW). The error code is for Tenberry Software’s use.

1009 "program <filename> is not bound'

This message does not occur in DOS/4G, only DOS/4GW Professional; the latter requires that the
DOS extender be bound to the program file. The error signals an attempt to load

1010 ""can’t initialize loader <loader> [<error code>]"

98 DOS/4G Errors

Error Messages

DOS/4G could not initialize the named loader, probably because of a resource shortage. Try making
more memory available. If that doesn’t work, please contact Tenberry Technical Support. The error
code is for Tenberry Software’ use.

1011 "VMM initialization error [<error code>]"
DOS/4G could not initialize the Virtual Memory Manager, probably because of a resource shortage.
Try making more memory available. If that doesn’t work, please contact Tenberry Technical
Support. The error code is for Tenberry Software’ use.

1012 "'<filename> is not a WATCOM program''

This message does not occur in DOS/4G, only DOS/4GW and DOS/4GW Professional. Those
extenders only support WATCOM 32-bit compilers.

1013 "int 31h initialization error"

DOS/4G was unable to initialize the code that handles Interrupt 31h, probably because of an internal
error. Please call Tenberry Technical Support.

1100 "assertion \"'<statement>\"' failed (<file>:<line>)"

DOS/4G internal error. Please contact Tenberry Technical Support.
1200 "invalid EXP executable format'

DOS/4G tried to load an EXP, but couldn’t. The executable file is probably corrupted.
1201 "program must be built -AUTO for DPMI"'

Under DPMI, DOS/4G can only load EXPs that have been linked with the GLU -AUTO or -DPMI
switch.

1202 "can’t allocate memory for GDT"

There is not enough memory available for DOS/4G to build a Global Descriptor Table. Make more
memory available.

1203 "premature EOF'"'
DOS/4G tried to load an EXP but couldn’t. The file is probably corrupted.
1204 ""not enough memory to load program'’

There is not enough memory available for DOS/4G to load your program. Make more memory
available.

1301 "'invalid linear executable format''

DOS/4G cannot recognize the program file as a LINEXE format. Make sure that you specified the
correct file name.

1304 "'file 1/0O seek error'"

DOS/4G Errors 99

The DOS/4GW DOS Extender

DOS/4G was unable to seek to a file location that should exist. This usually indicates truncated
program files or problems with the storage device from which your program loads. Run CHKDSK
or a similar utility to begin determining possible causes.

1305 "'file 1/0O read error"
DOS/4G was unable to read a file location that should contain program data. This usually indicates
truncated program files or problems with the storage device from which your program loads. Run
CHKDSK or a similar utility to begin determining possible causes.

1307 "'not enough memory"

As it attempted to load your program, DOS/4G ran out of memory. Make more memory available,
or enable VMM.

1308 "can’t load requested program''

1309 "can’t load requested program'’

1311 "can’t load requested program'’

1312 "can’t load requested program''
DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1313 "'can’t resolve external references'
DOS/4G was unable to resolve all references to DLLs for the requested program, or the program
contained unsupported fixup types. Use EXEHDR or a similar LINEXE dump utility to see what
references your program makes and what special fixup records might be present.

1314 ""not enough lockable memory'"
As it attempted to load your program, DOS/4G encountered a refusal to lock a virtual memory
region. Some memory must be locked in order to handle demand-load page faults. Make more
physical memory available.

1315 "can’t load requested program'’

1316 ""can’t load requested program'’
DOS/4G cannot load your program for some reason. Contact Tenberry Technical Support.

1317 "'program has no stack"

DOS/4G reports this error when you try to run a program with no stack. Rebuild your program,
building in a stack.

2000 'deinitializing twice'"
DOS/4G internal error. Please contact Tenberry Technical Support.

2001 "exception <exception_number> (<exception_description>) at <selector:offset>"

100 DOS/4G Errors

Error Messages

Your program has generated an exception. For information about interpreting this message, see the
file COMMON.DOC.

2002 ""transfer stack overflow at <selector:offset>"

Your program has overflowed the DOS/4G transfer stack. For information about interpreting this
message, see the file COMMON.DOC.

2300 " can’t find <DLL>.<ordinal> - referenced from <module>"'

DOS/4G could not find the ordinal listed in the specified DLL, or it could not find the DLL at all.
Correct or remove the reference, and make sure that DOS/4G can find the DLL.

DOS/4G looks for DLLs in the following directories:

* The directory specified by the Libpath32 configuration option (which defaults to the directory
of the main application file).

* The directory or directories specified by the LIBPATH32 environment variable.
* Directories specified in the PATH.
2301 "can’t find <DLL>.<name> - referenced from <module>"

DOS/4G could not find the entry point named in the specified module. Correct or remove the
reference, and make sure that DOS/4G can find the DLL.

2302 "DLL modules not supported'’

This DOS/4GW Professional error message arises when an application references or tries to
explicitly load a DLL. DOS/4GW Professional does not support DLLs.

2303 "internal LINEXE object limit reached"
DOS/4G currently handles a maximum of 128 LINEXE objects, including all .DLL and .EXE files.
Most .EXE or .DLL files use only three or four objects. If possible, reduce the number of objects, or
contact Tenberry Technical Support.

2500 "can’t connect to extender kernel'
DOS/4G internal error. Please contact Tenberry Technical Support.

2503 ""not enough disk space for swapping - <count> byes required'’

VMM was unable to create a swap file of the required size. Increase the amount of disk space
available.

2504 ""can’t create swap file \<filename>\""""
VMM was unable to create the swap file. This could be because the swap file is specified for a

nonexistent drive or on a drive that is read-only. Set the SWAPNAME parameter to change the
location of the swap file.

DOS/4G Errors 101

The DOS/4GW DOS Extender

2505 ""not enough memory for <table>''

VMM was unable to get sufficient extended memory for internal tables. Make more memory
available. If <table> is page buffer, make more DOS memory available.

2506 ''not enough physical memory (minmem)"'

There is less physical memory available than the amount specified by the MINMEM parameter.
Make more memory available.

2511 "swap out error [<error code>]"
Unknown disk error. The error code is for Tenberry Software’ use.

2512 "'swap in error [<error code>]"
Unknown disk error. The error code is for Tenberry Software’ use.

2514 ""can’t open trace file"
VMM could not open the VMM.TRC file in the current directory for writing. If the directory
already has a VMM.TRC file, delete it. If not, there may not be enough memory on the drive for the
trace file, or DOS may not have any more file handles.

2520 "can’t hook int 31h"
DOS/4G internal error. Please contact Tenberry Technical Support.

2523 ""page fault on non-present mapped page'’

Your program references memory that has been mapped to a nonexistent physical device, using
DPMI function 508h. Make sure the device is present, or remove the reference.

2524 "page fault on uncommitted page''
Your program references memory reserved with a call to DPMI function

504h, but never committed (using a DPMI 507h or 508h call). Commit the memory before you reference
it.

3301 "unhandled EMPTYFWD, GATE16, or unknown relocation"
3302 "unhandled ALIAS16 reference to unaliased object'’
3304 ""unhandled or unknown relocation"'
If your program was built for another platform that supports the LINEXE format, it may contain a

construct that DOS/4G does not currently support, such as a call gate. This message may also occur
if your program has a problem mixing 16- and 32-bit code. A linker error is another likely cause.

102 DOS/4G Errors

14 DOS/4GW Commonly Asked Questions

The following information has been provided by Tenberry Software, Inc. for their DOS/4GW and
DOS/4GW Professional product. The content of this chapter has been edited by Open Watcom. In most
cases, the information is applicable to both products.
This chapter covers the following topics:

* Access to technical support

* Differences within the DOS/4G product line

* Addressing

* Interrupt and exception handling

* Memory management

* DOS, BIOS, and mouse services

* Virtual memory

* Debugging

* Compatibility

14.1 Access to Technical Support

1a. How to reach technical support.

Here are the various ways you may contact Tenberry Software for technical support.

WWW : http://www.tenberry.com/dos4dg/
Email: 4gwhelp@tenberry.com
Phone: 1.480.767.8868
Fax: 1.480.767.8709
Mail: Tenberry Software, Inc.
PO Box 20050
Fountain Hills, Arizona
U.S.A 85269-0050
PLEASE GIVE YOUR SERIAL NUMBER WHEN YOU CONTACT TENBERRY.

Access to Technical Support 103

The DOS/4GW DOS Extender

1b. When to contact Open Watcom, when to contact Tenberry.

Since DOS/4GW Professional is intended to be completely compatible with DOS/4GW, you may wish
to ascertain whether your program works properly under DOS/4AGW before contacting Tenberry
Software for technical support. (This is likely to be the second question we ask you, after your serial
number.)

If your program fails under both DOS/4GW and DOS/4GW Professional, and you suspect your own
code or a problem compiling or linking, you may wish to contact Open Watcom first. Tenberry
Software support personnel are not able to help you with most programming questions, or questions
about using the Open Watcom tools.

If your program only fails with DOS/4GW Professional, you have probably found a bug in DOS/4GW
Professional, so please contact us right away.

Ic. Telephone support.
Tenberry Software’s hours for telephone support are 9am-6pm EST. Please note that telephone support
is free for the first 30 days only. A one-year contract for continuing telephone support on DOS/4AGW

Professional is US$500 per developer, including an update subscription for one year, to customers in the
United States and Canada; for overseas customers, the price is $600. Site licenses may be negotiated.

There is no time limit on free support by fax, mail, or electronic means.

1d. References.
The DOS/4GW documentation from Open Watcom is the primary reference for DOS/4GW Professional
as well. Another useful reference is the DPMI specification. In the past, the DPMI specification could
be obtained free of charge by contacting Intel Literature. We have been advised that the DPMI

specification is no longer available in printed form.

However, the DPMI 1.0 specification can be obtained at:

http://www.delorie.com/djgpp/doc/dpmi/

Online HTML as well as a downloadable archive are provided.

14.2 Differences Within the DOS/4G Product Line

104

2a. DOS/4GW Professional versus DOS/4GW
DOS/4GW Professional was designed to be a higher-performance version of DOS/4GW suitable for
commercial applications. Here is a summary of the advantages of DOS/4GW Professional with respect
to DOS/4AGW:
* Extender binds to the application program file
* Extender startup time has been reduced

* Support for Open Watcom floating-point emulator has been optimized

* Virtual memory manager performance has been greatly improved

Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

2b.

* Under VMM, programs are demand loaded

* Virtual address space is 4 GB instead of 32 MB

* Extender memory requirements have been reduced by more than 50K

* Extender disk space requirements have been reduced by 40K

* Can omit virtual memory manager to save 50K more disk space

* Support for INT 31h functions 301h-304h and 702h-703h
DOS/4GW Professional is intended to be fully compatible with programs written for DOS/4GW 1.9 and
up. The only functional difference is that the extender is bound to your program instead of residing in a
separate file. Not only does this help reduce startup time, but it eliminates version-control problems
when someone has both DOS/4GW and DOS/4GW Professional applications present on one machine.
DOS/4GW Professional versus DOS/4G.
DOS/4GW Professional is not intended to provide any other new DOS extender functionality. Tenberry
Software’s top-of-the-line 32-bit extender, DOS/4G, is not sold on a retail basis but is of special interest
to developers who require more flexibility (such as OEMs). DOS/4G offers these additional features
beyond DOS/4GW and DOS/4GW Professional:

* Complete documentation

* DLL support

* TSR support

* Support for INT 31h functions 301h-306h, 504h-50Ah, 702h-703h

* A Clanguage API that offers more control over interrupt handling and program loading, as well
as making it easier to use the extender

* An optional (more protected) nonzero-based flat memory model
* Remappable error messages

* More configuration options

* The D32 debugger, GLU linker, and other tools

* Support for other compilers besides Open Watcom

* A higher level of technical support

* Custom work is available (e.g., support for additional executable formats, operating system API
emulations, mixed 16-bit and 32-bit code)

Please contact Tenberry Software if you have questions about other products (present or future) in the
DOS/4G line.

Differences Within the DOS/4G Product Line 105

The DOS/4GW DOS Extender

2¢c. DPMI functions supported by DOS/4GW.

Note that when a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced
mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or QDPMI (with
EXTCHKOFF), the DPMI host provides the DPMI services, not DOS/4GW. The DPMI host also
provides virtual memory, if any. Performance (speed and memory use) under different DPMI hosts
varies greatly due to the quality of the DPMI implementation.

These are the services provided by DOS/4GW and DOS/4GW Professional in the absence of a DPMI

host.

0000 Allocate LDT Descriptors

0001 Free LDT Descriptor

0002 Map Real-Mode Segment to Descriptor

0003 Get Selector Increment Value

0006 Get Segment Base Address

0007 Set Segment Base Address

0008 Set Segment Limit

0009 Set Descriptor Access Rights

000A Create Alias Descriptor

000B Get Descriptor

0ooc Set Descriptor

000D Allocate Specific LDT Descriptor

0100 Allocate DOS Memory Block

0101 Free DOS Memory Block

0102 Resize DOS Memory Block

0200 Get Real-Mode Interrupt Vector

0201 Set Real-Mode Interrupt Vector

0202 Get Processor Exception Handler

0203 Set Processor Exception Handler

0204 Get Protected-Mode Interrupt Vector

0205 Set Protected-Mode Interrupt Vector

0300 Simulate Real-Mode Interrupt

0301 Call Real-Mode Procedure with Far Return Frame (DOS/4GW Professional only)
0302 Call Real-Mode Procedure with IRET Frame (DOS/4GW Professional only)
0303 Allocate Real-Mode Callback Address (DOS/4GW Professional only)
0304 Free Real-Mode Callback Address (DOS/4GW Professional only)
0400 Get DPMI Version

0500 Get Free Memory Information

0501 Allocate Memory Block

0502 Free Memory Block

0503 Resize Memory Block

0600 Lock Linear Region

0601 Unlock Linear Region

0604 Get Page Size (VM only)

0702 Mark Page as Demand Paging Candidate (DOS/4GW Professional only)

106 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

0703 Discard Page Contents (DOS/4GW Professional only)
0800 Physical Address Mapping

0801 Free Physical Address Mapping

0900 Get and Disable Virtual Interrupt State

0901 Get and Enable Virtual Interrupt State

0902 Get Virtual Interrupt State

0A00 Get Tenberry Software API Entry Point

0E00 Get Coprocessor Status

0E01 Set Coprocessor Emulation

14.3 Addressing

3a.

3b.

3c.

3d.

Converting between pointers and linear addresses.

Because DOS/4GW uses a zero-based flat memory model, converting between pointers and linear
addresses is trivial. A pointer value is always relative to the current segment (the value in CS for a code
pointer, or in DS or SS for a data pointer). The segment bases for the default DS, SS, and CS are all
zero. Hence a near pointer is exactly the same thing as a linear address: a null pointer points to linear
address 0, and a pointer with value 0x10000 points to linear address 0x10000.

Converting between code and data pointers.

Because DS and CS have the same base address, they are natural aliases for each other. To create a data
alias for a code pointer, merely create a data pointer and set it equal to the code pointer. It’s not
necessary for you to create your own alias descriptor. Similarly, to create a code alias for a data pointer,
merely create a code pointer and set it equal to the data pointer.

Converting between pointers and low memory addresses.

Linear addresses under 1 MB map directly to physical memory. Hence the real-mode interrupt vector
table is at address 0, the BIOS data segment is at address 0x400, the monochrome video memory is at
address 0xB0000, and the color video memory is at address 0xB8000. To read and write any of these,
you can just use a pointer set to the proper address. You don’t need to create a far pointer, using some
magic segment value.

Converting between linear and physical addresses.

Linear addresses at or above 1 MB do not map directly to physical memory, so you can not in general
read or write extended memory directly, nor can you tell how a particular block of extended memory
has been used.

DOS/4GW supports the DPMI call INT 31h/800h, which maps physical addresses to linear addresses.
In other words, if you have a peripheral device in your machine that has memory at a physical address
of 256 MB, you can issue this call to create a linear address that points to that physical memory. The
linear address is the same thing as a near pointer to the memory and can be manipulated as such.

There is no way in a DPMI environment to determine the physical address corresponding to a given
linear address. This is part of the design of DPMI. You must design your application accordingly.

Addressing 107

The DOS/4GW DOS Extender

3e. Null pointer checking.

DOS/4GW will trap references to the first sixteen bytes of physical memory if you set the environment
variable DOS4G=NULLP. This is currently the only null-pointer check facility provided by
DOS/4AGW.

As of release 1.95, DOS/4GW traps both reads and writes. Prior to this, it only trapped writes.

You may experience problems if you set DOS4G=NULLP and use some versions of the Open Watcom
Debugger with a 1.95 or later extender. These problems have been corrected in later versions of the
Open Watcom Debugger.

14.4 Interrupt and Exception Handling

4a. Handling asynchronous interrupts.

Under DOS/4GW, there is a convenient way to handle asynchronous interrupts and an efficient way to
handle them.

Because your CPU may be in either protected mode (when 32-bit code is executing) or real mode (a
DOS or BIOS call) when a hardware interrupt comes in, you have to be prepared to handle interrupts in
either mode. Otherwise, you may miss interrupts.

You can handle both real-mode and protected-mode interrupts with a single handler, if 1) the interrupt
is in the auto-passup range, 8 to 2Eh; and 2) you install a handler with INT 21h/25h or _dos_setvect();
3) you do not install a handler for the same interrupt using any other mechanism. DOS/4GW will route
both protected-mode interrupts and real-mode interrupts to your protected-mode handler. This is the
convenient way.

The efficient way is to install separate real-mode and protected-mode handlers for your interrupt, so
your CPU won’t need to do unnecessary mode switches. Writing a real-mode handler is tricky; all you
can reasonably expect to do is save data in a buffer and IRET. Your protected-mode code can
periodically check the buffer and process any queued data. (Remember, protected-mode code can
access data and execute code in low memory, but real-mode code can’t access data or execute code in
extended memory.)

For performance, it doesn’t matter how you install the real-mode handler, but we recommend the DPMI
function INT 31h/201h for portability.

It does matter how you install the protected-mode handler. You can’t install it directly into the IDT,
because a DPMI provider must distinguish between interrupts and exceptions and maintain separate
handler chains. Installing with INT 31h/205h is the recommended way to install your protected-mode
handler for both performance and portability.

If you install a protected-mode handler with INT 21h/25h, both interrupts and exceptions will be
funneled to your handler, to mimic DOS. Since DPMI exception handlers and interrupt handlers are
called with different stack frames, DOS/4GW executes a layer of code to cover these differences up; the
same layer is used to support the DOS/4G API (not part of DOS/4GW). This layer is the reason that
hooking with INT 21h/25h is less efficient than hooking with INT 31h/205h.

108 Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

4b. Handling asynchronous interrupts in the second IRQ range.

Because the second IRQ range (normally INTs 70h-77h) is outside the DOS/4GW auto-passup range
(8-2Eh, excluding 21h) you may not handle these interrupts with a single handler, as described above
(the "convenient" method). You must install separate real-mode and protected-mode handlers (the
"efficient" method).

DOS/4G does allow you to specify additional passup interrupts, however.

4c. Asynchronous interrupt handlers and DPMI.

The DPMI specification requires that all code and data referenced by a hardware interrupt handler
MUST be locked at interrupt time. A DPMI virtual memory manager can use the DOS file system to
swap pages of memory to and from the disk; because DOS is not reentrant, a DPMI host is not required
to be able to handle page faults during asynchronous interrupts. Use INT 31h/600h (Lock Linear
Region) to lock an address range in memory.

If you fail to lock all of your code and data, your program may run under DOS/4GW, but fail under the
DOS/4GW Virtual Memory Manager or under another DPMI host such as Windows or OS/2.

You should also lock the code and data of a mouse callback function.

4d. Open Watcom signal() function and Ctrl-Break.

de.

In earlier versions of the Open Watcom C/C++ library, there was a bug that caused signal(SIGBREAK)
not to work. Calling signal(SIGBREAK) did not actually install an interrupt handler for Ctrl-Break
(INT 1Bh), so Ctrl-Break would terminate the application rather than invoking the signal handler.

With these earlier versions of the library, you could work around this problem by hooking INT 1Bh
directly. With release 10.0, this problem has been fixed.

More tips on writing hardware interrupt handlers.
* It’s more like handling interrupts in real mode than not.

The same problems arise when writing hardware interrupt handlers for protected mode as arise for real
mode. We assume you know how to write real-mode handlers; if our suggestions don’t seem clear,
you might want to brush up on real-mode interrupt programming.

* Minimize the amount of time spent in your interrupt handlers.

When your interrupt handlers are called, interrupts are disabled. This means that no other system tasks
can be performed until you enable interrupts (an STI instruction) or until your handler returns. In
general, it’s a good idea to handle interrupts as quickly as possible.

* Minimize the amount of time spent in the DOS extender by installing separate real-mode and
protected-mode handlers.

If you use a passup interrupt handler, so that interrupts received in real mode are resignalled in
protected mode by the extender, your application has to switch from real mode to protected mode to
real mode once per interrupt. Mode switching is a time-consuming process, and interrupts are disabled
during a mode switch. Therefore, if you’re concerned about performance, you should install separate
handlers for real-mode and protected-mode interrupts, eliminating the mode switch.

Interrupt and Exception Handling 109

The DOS/4GW DOS Extender

* If you can’t just set a flag and return, enable interrupts (STI).

Handlers that do more than just set a flag or store data in a buffer should re-enable interrupts as soon as
it’s safe to do so. In other words, save your registers on the stack, establish your addressing
conventions, switch stacks if you’re going to — and then enable interrupts (STI), to give priority to
other hardware interrupts.

* If you enable interrupts (STI), you should disable interrupts (CLI).

Because some DPMI hosts virtualize the interrupt flag, if you do an STI in your handler, you should be
sure to do a CLI before you return. (CLI, then switch back to the original stack if you switched away,
then restore registers, then IRET.) If you don’t do this, the IRET will not necessarily restore the
previous interrupt flag state, and your program may crash. This is a difference from real-mode
programming, and it tends to show up as a problem when you try running your program in a Windows
or OS/2 DOS box for the first time (but not before).

* Add a reentrancy check.

If your handler doesn’t complete its work by the time the next interrupt is signalled, then interrupts can
quickly nest to the point of overflowing the transfer stack. This is a design flaw in your program, not
in the DOS extender; a real-mode DOS program can have exactly the same behavior. If you can
conceive of a situation where your interrupt handler can be called again before the first instance
returns, you need to code in a reentrancy check of some sort (before you switch stacks and enable
interrupts (STI), obviously).

Remember that interrupts can take different amounts of time to execute on different machines; the CPU
manufacturer, CPU speed, speed of memory accesses, and CMOS settings (e.g. "system BIOS
shadowing") can all affect performance in subtle ways. We recommend you program defensively and
always check for unexpected reentry, to avoid transfer stack overflows.

* Switch to your own stack.
Interrupt handlers are called on a stack that typically has only a small amount of stack available (512
bytes or less). If you need to use more stack than this, you have to switch to your own stack on entry

into the handler, and switch back before returning.

If you want to use C run-time library functions, which are compiled for flat memory model (SS == DS,
and the base of CS == the base of DS), you need to switch back to a stack in the flat data segment first.

Note that switching stacks by itself won’t prevent transfer stack overflows of the kind described above.

14.5 Memory Management

5a. Using the realloc() function.
In versions of Open Watcom C/C++ prior to 9.5b, there was a bug in the library implementation of

realloc() under DOS/4GW and DOS/4GW Professional. This bug was corrected by Open Watcom in
the 9.5b release.

110 Memory Management

DOS/4GW Commonly Asked Questions

5b.

Using all of physical memory.

DOS/4GW Professional is currently limited to 64 MB of physical memory. We do not expect to be able
to fix this problem for at least six months. If you need more than 64 MB of memory, you must use
virtual memory.

14.6 DOS, BIOS, and Mouse Services

6a.

6b.

6c¢.

6d.

Speeding up file 1/0.

The best way to speed up DOS file I/O in DOS/4GW is to write large blocks (up to 65535 bytes, or the
largest number that will fit in a 16-bit int) at a time from a buffer in low memory. In this case,
DOS/4GW has to copy the least amount of data and make the fewest number of DOS calls in order to
process the I/O request.

Low memory is allocated through INT 31h/0100h, Allocate DOS Memory Block. You can convert the
real-mode segment address returned by INT 31h/0100h to a pointer (suitable for passing to setvbuf()) by
shifting it left four bits.

Spawning.

It is possible to spawn one DOS/4GW application from another. However, two copies of the DOS
extender will be loaded into memory. DOS/4G supports loading of multiple programs atop a single
extender, as well as DLLs.

Mouse callbacks.

DOS/4GW Professional now supports the INT 31h interface for managing real-mode callbacks.
However, you don’t need to bother with them for their single most important application: mouse
callback functions. Just register your protected-mode mouse callback function as you would in real
mode, by issuing INT 33h/0Ch with the event mask in CX and the function address in ES:EDX, and
your function will work as expected.

Because a mouse callback function is called asynchronously, the same locking requirement exists for a
mouse callback function as for a hardware interrupt handler. See (4c) above.

VESA support.
While DOS/4GW automatically handles most INT 10h functions so that you can you can issue them

from protected mode, it does not translate the INT 10h VESA extensions. The workaround is to use
INT 31h/300h (Simulate Real-Mode Interrupt).

14.7 Virtual Memory

7a.

Testing for the presence of VMM.

INT 31h/400h returns a value (BX, bit 2) that tells if virtual memory is available. Under a DPMI host
such as Windows 3.1, this will be the host’s virtual memory manager, not DOS/4GW’s.

Virtual Memory 111

The DOS/4GW DOS Extender

You can test for the presence of a DOS/4G-family DOS extender with INT 31h/0AQOh, with a pointer
to the null-terminated string "RATIONAL DOS/4G" in DS:ESI. If the function returns with carry clear,
a DOS/4G-family extender is running.

7b. Reserving memory for a spawned application.

If you spawn one DOS/4GW application from another, you should set the DELETESWAP
configuration option (i.e., SET DOS4GVM=deleteswap) so that the two applications don’t try to use the
same swap file. You should also set the MAXMEM option low enough so that the parent application
doesn’t take all available physical memory; memory that’s been reserved by the parent application is
not available to the child application.

7c. Instability under VMM.

A program that hooks hardware interrupts, and works fine without VMM but crashes sporadically with
it, probably needs to lock the code and data for its hardware interrupt handlers down in memory.
DOS/4GW does not support page faults during hardware interrupts, because DOS services may not be
available at that time. See (4¢) and (6¢) above.

Memory can be locked down with INT 31h/600h (Lock Linear Region).
7d. Running out of memory with a huge virtual address space.

Because DOS/4GW has to create page tables to describe your virtual address space, we recommend that
you set your VIRTUALSIZE parameter just large enough to accommodate your program. If you set
your VIRTUALSIZE to 4 GB, the physical memory occupied by the page tables will be 4 MB, and that
memory will not be available to DOS/4GW.

7e. Reducing the size of the swap file.

DOS/4GW will normally create a swap file equal to your VIRTUALSIZE setting, for efficiency.
However, if you set the SWAPMIN parameter to a size (in KB), DOS/4GW will start with a swap file
of that size, and will grow the swap file when it has to. The SWAPINC value (default 64 KB) controls
the incremental size by which the swap file will grow.

7f. Deleting the swap file.

The DELETESWAP option has two effects: telling DOS/4GW to delete the swap file when it exits, and
causing DOS/4GW to provide a unique swap file name if an explicit SWAPNAME setting was not
given.

DELETESWAP is required if one DOS/4GW application is to spawn another; see (7b) above.
7g. Improving demand-load performance of large static arrays.

DOS/4GW demand-loading feature normally cuts the load time of a large program drastically.
However, if your program has large amounts of global, zero-initialized data (storage class BSS), the
Open Watcom startup code will explicitly zero it (version 9.5a or earlier). Because the zeroing
operation touches every page of the data, the benefits of demand-loading are lost.

Demand loading can be made fast again by taking advantage of the fact that DOS/4GW automatically
zeroes pages of BSS data as they are loaded. You can make this change yourself by inserting a few
lines into the startup routine, assembling it (MASM 6.0 will work), and listing the modified object
module first when you link your program.

112 Virtual Memory

DOS/4GW Commonly Asked Questions

Here are the changes for \watcom\src\startup\386\cstart3r.asm (startup module from
the C/C++ 9.5 compiler, library using register calling conventions). You can modify the workaround
easily for other Open Watcom compilers:

; cstart3r.asm, circa line 332
end of _BSS segment (start of STACK)

r
mov ecx,offset DGROUP:_end
; start of _BSS segment
mov edi, offset DGROUP:_edata
; ; RSI OPTIMIZATION
mov eax, edi ; minimize _BSS initialization loop
or eax, OFFFh ; compute address of first page after
inc eax ; start of _BSS
cmp eax, ecx ; if _BSS extends onto that page,
jae allzero ; then we can rely on the loader
mov ecx, eax ; zeroing the remaining pages
allzero: ;
; ; END RSI OPTIMIZATION
sub ecx,edi ; calc # of bytes in _BSS segment
mov dl,cl ; save bottom 2 bits of count in edx
shr ecx, 2 ; calc # of dwords
sub eax,eax ; zero the _BSS segment
rep stosd -
mov cl,dl ; get bottom 2 bits of count
and cl,3 ;
rep stosb ;

Note that the 9

.5b and later versions of the Open Watcom C library already contain this enhancement.

7h. How should I configure VM for best performance?

Here are some

recommendations for setting up the DOS/4GW virtual memory manager.

VIRTUALSIZE Set to no more than twice the total amount of memory (virtual and otherwise) your

MINMEM

MAXMEM

SWAPMIN

SWAPINC

program requires. If your program has 16 MB of code and data, set to 32 MB. (There
is only a small penalty for setting this value larger than you will need, but your program
won’t run if you set it too low.) See (7d) above.

Set to the minimum hardware requirement for running your application. (If you require
a 2 MB machine, set to 2048).

Set to the maximum amount of memory you want your application to use. If you don’t
spawn any other applications, set this large (e.g., 32000) to make sure you can use all

available physical memory. If you do spawn, see (7b) above.

Don’t use this if you want the best possible VM performance. The trade-off is that
DOS/4GW will create a swap file as big as your VIRTUALSIZE.

Don’t use this if you want the best possible VM performance.

DELETESWAP DOS/AGW’s VM will start up slightly slower if it has to create the swap file afresh

each time. However, unless your swap file is very large, DELETESWAP is a
reasonable choice; it may be required if you spawn another DOS/4GW program at the
same time. See (7b) above.

Virtual Memory 113

The DOS/4GW DOS Extender

14.8 Debugging

8a. Attempting to debug a bound application.

8b.

You can’t debug a bound application. The 4GWBIND utility (included with DOS/4GW Professional)
will allow you to take apart a bound application so that you can debug it:

4GWBIND -U <boundapp.exe> <yourapp.exe>
Debugging with an old version of the Open Watcom debugger.

DOS/4GW supports versions 8.5 and up of the Open Watcom C, C++ and FORTRAN compilers.
However, in order to debug your unbound application with a Open Watcom debugger, you must have
version 9.5a or later of the debugger.

If you have an older version of the debugger, we strongly recommend that you contact Open Watcom to
upgrade your compiler and tools. The only way to debug a DOS/4GW Professional application with an
old version of the debugger is to rename 4GWPRO.EXE to DOS4GW.EXE and make sure that it’s
either in the current directory or the first DOS4GW.EXE on the DOS PATH.

Tenberry will not provide technical support for this configuration; it’s up to you to keep track of which
DOS extender is which.

8c. Meaning of ''unexpected interrupt'’ message/error 2001.

In version 1.95 of DOS/4AGW, we revised the "unexpected interrupt" message to make it easier to
understand.

For example, the message:

Unexpected interrupt OE (code 0) at 168:10421034

is now printed:

error (2001): exception OEh (page fault) at 168:10421034
followed by a register dump, as before.

This message indicates that the processor detected some form of programming error and signaled an
exception, which DOS/4GW trapped and reported. Exceptions which can be trapped include:

00h divide by zero

O0lh debug exception OR null pointer used
03h breakpoint

04h overflow

05h bounds

06h invalid opcode

07h device not available

08h double fault

0%h overrun

0Ah invalid TSS

0Bh segment not present

0Ch stack fault

0Dh general protection fault
OEh page fault

114 Debugging

DOS/4GW Commonly Asked Questions

When you receive this message, this is the recommended course of action:
1. Record all of the information from the register dump.
2. Determine the circumstances under which your program fails.

3. Consult your debugger manual, or an Intel 386, 486 or Pentium Programmer’s Reference
Manual, to determine the circumstances under which the processor will generate the reported
exception.

4. Get the program to fail under your debugger, which should stop the program as soon as the
exception occurs.

5. Determine from the exception context why the processor generated an exception in this
particular instance.

8d. Meaning of "'transfer stack overflow'' message/error 2002.

In version 1.95 of DOS/4AGW, we added more information to the "transfer stack overflow" message.
The message (which is now followed by a register dump) is printed:

error (2002): transfer stack overflow
on interrupt <number> at <address>

This message means DOS/4GW detected an overflow on its interrupt handling stack. It usually
indicates either a recursive fault, or a hardware interrupt handler that can’t keep up with the rate at
which interrupts are occurring. The best way to understand the problem is to use the VERBOSE option
in DOS/4GW to dump the interrupt history on the transfer stack; see (8e) below.

8e. Making the most of a DOS/4GW register dump.

If you can’t understand your problem by running it under a debugger, the DOS/4GW register dump is
your best debugging tool. To maximize the information available for postmortem debugging, set the
environment variable DOS4G to VERBOSE, then reproduce the crash and record the output.

Here’s a typical register dump with VERBOSE turned on, with annotations.
1 DOS/4GW error (2001): exception OEh (page fault)

at 170:0042C1B2
2 TSF32: prev_tsf32 67D8

3 SS 178 DS 178 ES 178 FS 0 GS 20
EAX 1F000000 EBX 0 ECX 43201C EDX E
ESI E EDI 0 EBP 431410 ESP 4313FC
CS:IP 170:0042C1B2 ID OE COD 0 FLG 10246

4 Cs= 170, USE32, page granular, limit FFFFFFFF, base 0, acc CF9B
SSs= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
DS= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
ES= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
FS= 0, USEl6, byte granular, limit 0, base 15, acc 0
GS= 20, USEl6, byte granular, limit FFFF, base 6AAQ, acc 93

5 CRO: PG:1 ET:1 TS:0 EM:0 MP:0 PE:1 CR2: 1F000000 CR3: 9067

6 Crash address (unrelocated) = 1:000001B2

7 Opcode stream: 8A 18 31 D2 88 DA EB OE 50 68 39 00 43 00 E8 1D
Stack:

8 0178:004313FC O00OE 0000 0000 0000 C2D5 0042 CO057 0042 0170 0000 0000 0000
0178:00431414 0450 0043 0452 0043 0000 0000 1430 0043 CBEF 0042 011C 0000
0178:0043142C C568 0042 0000 0000 0000 0000 0000 0000 F248 0042 F5F8 0042
0178:00431444 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178:0043145C 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178:00431474 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

9 Last 4 ints: 21 @ 170:42CF48/21 @ 170:42CF48/21 @ 170:42CF48/E @ 170:42C1B2/

Debugging 115

The DOS/4GW DOS Extender

The error message includes a synopsis of the problem. In this case, the processor signaled a
page fault exception while executing at address 170:0042C1B2.

The prev_tsf32 field is not usually of int