
Open Watcom C++

Class Library Reference

Version 2.0

Notice of Copyright

Copyright 2002-2025 the Open Watcom Contributors. Portions Copyright 1984-2002 Sybase, Inc.

and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,

electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

ii

Preface
Open Watcom C++ is an implementation of the C++ programming language. In addition to the C++ draft

standard, the compiler supports numerous extensions for the PC environment.

This manual describes the Open Watcom C++ Class Libraries for DOS, Windows 3.x, Windows NT,

Windows 95, 16-bit OS/2 1.x, 32-bit OS/2, and QNX. It includes a String Class, a Complex Class,

Container Classes, and an I/O Stream hierarchy of classes. The Container classes include a set of intrusive,

value and pointer list classes with their associated iterators.

This book was produced with the Open Watcom GML electronic publishing system, a software tool

developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing

text annotated with tags. These tags label the structural elements of the document, such as chapters,

sections, paragraphs, and lists. The Open Watcom GML software, which runs on a variety of operating

systems, interprets the tags to format the text into a form such as you see here. Writers can produce output

for a variety of printers, including laser printers, using separately specified layout directives for such things

as font selection, column width and height, number of columns, etc. The result is type-set quality copy

containing integrated text and graphics.

July, 1997.

Trademarks Used in this Manual

IBM is a registered trademark and OS/2 is a trademark of International Business Machines Corp.

Microsoft is a registered trademark of Microsoft Corp. Windows, Windows NT and Windows 95 are

trademarks of Microsoft Corp.

QNX is a registered trademark of QNX Software Systems Ltd.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iii

iv

Table of Contents

Open Watcom C++ Class Library Reference ... 1

1 Header Files ... 3

2 Common Types .. 7

3 Predefined Objects ... 9

3.1 cin .. 9

3.2 cout .. 9

3.3 cerr ... 9

3.4 clog .. 10

4 istream Input .. 11

4.1 Formatted Input: Extractors .. 11

4.2 Unformatted Input ... 11

5 ostream Output ... 13

5.1 Formatted Output: Inserters .. 13

5.2 Unformatted Output .. 13

6 Library Functions and Types ... 15

7 Complex Class ... 17

Complex Class Description ... 18

Complex abs() ... 20

Complex acos() .. 21

Complex acosh() .. 22

Complex arg() .. 23

Complex asin() .. 24

Complex asinh() .. 25

Complex atan() .. 26

Complex atanh() .. 27

Complex() .. 28

Complex() .. 29

Complex() .. 30

~Complex() .. 31

Complex conj() .. 32

Complex cos() ... 33

Complex cosh() ... 34

Complex exp() ... 35

imag() .. 36

Complex imag() ... 37

Complex log() .. 38

Complex log10() .. 39

Complex norm() .. 40

Complex operator !=() ... 41

Complex operator *() .. 42

operator *=() .. 43

operator +() .. 44

Complex operator +() .. 45

operator +=() .. 46

operator -() ... 47

v

Table of Contents

Complex operator -() ... 48

operator -=() .. 49

Complex operator /() ... 50

operator /=() ... 51

Complex operator <<() .. 52

operator =() .. 53

Complex operator ==() .. 54

Complex operator >>() .. 55

Complex polar() ... 56

Complex pow() .. 57

real() .. 58

Complex real() ... 59

Complex sin() .. 60

Complex sinh() .. 61

Complex sqrt() ... 62

Complex tan() .. 63

Complex tanh() .. 64

8 Container Exception Classes .. 65

WCExcept Class Description .. 66

WCExcept() ... 67

~WCExcept() ... 68

exceptions() ... 69

wc_state ... 70

WCIterExcept Class Description .. 71

WCIterExcept() ... 72

~WCIterExcept() ... 73

exceptions() ... 74

wciter_state .. 75

9 Container Allocators and Deallocators .. 77

10 Hash Containers ... 81

WCPtrHashDict<Key,Value> Class Description .. 82

WCPtrHashDict() .. 84

WCPtrHashDict() .. 85

WCPtrHashDict() .. 86

~WCPtrHashDict() .. 87

bitHash() .. 88

buckets() .. 89

clear() ... 90

clearAndDestroy() ... 91

contains() ... 92

entries() .. 93

find() .. 94

findKeyAndValue() ... 95

forAll() ... 96

insert() .. 97

isEmpty() ... 98

operator []() ... 99

operator []() ... 100

operator =() .. 101

vi

Table of Contents

operator ==() .. 102

remove() .. 103

resize() ... 104

WCPtrHashTable<Type>, WCPtrHashSet<Type> Class Description ... 105

WCPtrHashSet() .. 107

WCPtrHashSet() .. 108

WCPtrHashSet() .. 109

~WCPtrHashSet() .. 110

WCPtrHashTable() .. 111

WCPtrHashTable() .. 112

WCPtrHashTable() .. 113

~WCPtrHashTable() .. 114

bitHash() .. 115

buckets() .. 116

clear() ... 117

clearAndDestroy() ... 118

contains() ... 119

entries() .. 120

find() .. 121

forAll() ... 122

insert() .. 123

isEmpty() ... 124

occurencesOf() .. 125

operator =() .. 126

operator ==() .. 127

remove() .. 128

removeAll() ... 129

resize() ... 130

WCValHashDict<Key,Value> Class Description ... 131

WCValHashDict() ... 133

WCValHashDict() ... 134

WCValHashDict() ... 135

~WCValHashDict() ... 136

bitHash() .. 137

buckets() .. 138

clear() ... 139

contains() ... 140

entries() .. 141

find() .. 142

findKeyAndValue() ... 143

forAll() ... 144

insert() .. 145

isEmpty() ... 146

operator []() ... 147

operator []() ... 148

operator =() .. 149

operator ==() .. 150

remove() .. 151

resize() ... 152

WCValHashTable<Type>, WCValHashSet<Type> Class Description ... 153

WCValHashSet() ... 155

WCValHashSet() ... 156

vii

Table of Contents

WCValHashSet() ... 157

~WCValHashSet() ... 158

WCValHashTable() ... 159

WCValHashTable() ... 160

WCValHashTable() ... 161

~WCValHashTable() ... 162

bitHash() .. 163

buckets() .. 164

clear() ... 165

contains() ... 166

entries() .. 167

find() .. 168

forAll() ... 169

insert() .. 170

isEmpty() ... 171

occurencesOf() .. 172

operator =() .. 173

operator ==() .. 174

remove() .. 175

removeAll() ... 176

resize() ... 177

11 Hash Iterators ... 179

WCPtrHashDictIter<Key,Value> Class Description .. 180

WCPtrHashDictIter() ... 181

WCPtrHashDictIter() ... 182

~WCPtrHashDictIter() .. 183

container() .. 184

key() ... 185

operator ()() ... 186

operator ++() .. 187

reset() ... 188

reset() ... 189

value() .. 190

WCValHashDictIter<Key,Value> Class Description ... 191

WCValHashDictIter() .. 192

WCValHashDictIter() .. 193

~WCValHashDictIter() ... 194

container() .. 195

key() ... 196

operator ()() ... 197

operator ++() .. 198

reset() ... 199

reset() ... 200

value() .. 201

WCPtrHashSetIter<Type>, WCPtrHashTableIter<Type> Class Description .. 202

WCPtrHashSetIter() .. 203

WCPtrHashSetIter() .. 204

~WCPtrHashSetIter() .. 205

WCPtrHashTableIter() .. 206

WCPtrHashTableIter() .. 207

~WCPtrHashTableIter() .. 208

viii

Table of Contents

container() .. 209

current() ... 210

operator ()() ... 211

operator ++() .. 212

reset() ... 213

reset() ... 214

WCValHashSetIter<Type>, WCValHashTableIter<Type> Class Description .. 215

WCValHashSetIter() ... 216

WCValHashSetIter() ... 217

~WCValHashSetIter() ... 218

WCValHashTableIter() ... 219

WCValHashTableIter() ... 220

~WCValHashTableIter() ... 221

container() .. 222

current() ... 223

operator ()() ... 224

operator ++() .. 225

reset() ... 226

reset() ... 227

12 List Containers ... 229

WCDLink Class Description ... 230

WCDLink() .. 231

~WCDLink() ... 232

WCIsvSList<Type>, WCIsvDList<Type> Class Description .. 233

WCIsvSList() ... 235

WCIsvSList() ... 236

~WCIsvSList() .. 237

WCIsvDList() .. 238

WCIsvDList() .. 239

~WCIsvDList() .. 240

append() ... 241

clear() ... 242

clearAndDestroy() ... 243

contains() ... 244

entries() .. 245

find() .. 246

findLast() ... 247

forAll() ... 248

get() .. 249

index() .. 250

index() .. 251

insert() .. 252

isEmpty() ... 253

operator =() .. 254

operator ==() .. 255

WCPtrSList<Type>, WCPtrDList<Type> Class Description .. 256

WCPtrSList() ... 258

WCPtrSList() ... 259

WCPtrSList() ... 260

~WCPtrSList() ... 261

WCPtrDList() .. 262

ix

Table of Contents

WCPtrDList() .. 263

WCPtrDList() .. 264

~WCPtrDList() .. 265

append() ... 266

clear() ... 267

clearAndDestroy() ... 268

contains() ... 269

entries() .. 270

find() .. 271

findLast() ... 272

forAll() ... 273

get() .. 274

index() .. 275

insert() .. 276

isEmpty() ... 277

operator =() .. 278

operator ==() .. 279

WCSLink Class Description ... 280

WCSLink() .. 281

~WCSLink() .. 282

WCValSList<Type>, WCValDList<Type> Class Description .. 283

WCValSList() .. 285

WCValSList() .. 286

WCValSList() .. 287

~WCValSList() .. 288

WCValDList() ... 289

WCValDList() ... 290

WCValDList() ... 291

~WCValDList() ... 292

append() ... 293

clear() ... 294

clearAndDestroy() ... 295

contains() ... 296

entries() .. 297

find() .. 298

findLast() ... 299

forAll() ... 300

get() .. 301

index() .. 302

insert() .. 303

isEmpty() ... 304

operator =() .. 305

operator ==() .. 306

13 List Iterators ... 307

WCIsvConstSListIter<Type>, WCIsvConstDListIter<Type> Class Description 308

WCIsvConstSListIter() .. 309

WCIsvConstSListIter() .. 310

~WCIsvConstSListIter() .. 311

WCIsvConstDListIter() ... 312

WCIsvConstDListIter() ... 313

~WCIsvConstDListIter() ... 314

x

Table of Contents

container() .. 315

current() ... 316

operator ()() ... 317

operator ++() .. 318

operator +=() .. 319

operator --() ... 320

operator -=() .. 321

reset() ... 322

reset() ... 323

WCIsvSListIter<Type>, WCIsvDListIter<Type> Class Description ... 324

WCIsvSListIter() ... 326

WCIsvSListIter() ... 327

~WCIsvSListIter() ... 328

WCIsvDListIter() .. 329

WCIsvDListIter() .. 330

~WCIsvDListIter() .. 331

append() ... 332

container() .. 333

current() ... 334

insert() .. 335

operator ()() ... 336

operator ++() .. 337

operator +=() .. 338

operator --() ... 339

operator -=() .. 340

reset() ... 341

reset() ... 342

WCPtrConstSListIter<Type>, WCPtrConstDListIter<Type> Class Description 343

WCPtrConstSListIter() .. 344

WCPtrConstSListIter() .. 345

~WCPtrConstSListIter() .. 346

WCPtrConstDListIter() ... 347

WCPtrConstDListIter() ... 348

~WCPtrConstDListIter() ... 349

container() .. 350

current() ... 351

operator ()() ... 352

operator ++() .. 353

operator +=() .. 354

operator --() ... 355

operator -=() .. 356

reset() ... 357

reset() ... 358

WCPtrSListIter<Type>, WCPtrDListIter<Type> Class Description ... 359

WCPtrSListIter() ... 361

WCPtrSListIter() ... 362

~WCPtrSListIter() ... 363

WCPtrDListIter() ... 364

WCPtrDListIter() ... 365

~WCPtrDListIter() .. 366

append() ... 367

container() .. 368

xi

Table of Contents

current() ... 369

insert() .. 370

operator ()() ... 371

operator ++() .. 372

operator +=() .. 373

operator --() ... 374

operator -=() .. 375

reset() ... 376

reset() ... 377

WCValConstSListIter<Type>, WCValConstDListIter<Type> Class Description 378

WCValConstSListIter() ... 379

WCValConstSListIter() ... 380

~WCValConstSListIter() ... 381

WCValConstDListIter() .. 382

WCValConstDListIter() .. 383

~WCValConstDListIter() .. 384

container() .. 385

current() ... 386

operator ()() ... 387

operator ++() .. 388

operator +=() .. 389

operator --() ... 390

operator -=() .. 391

reset() ... 392

reset() ... 393

WCValSListIter<Type>, WCValDListIter<Type> Class Description ... 394

WCValSListIter() .. 396

WCValSListIter() .. 397

~WCValSListIter() .. 398

WCValDListIter() .. 399

WCValDListIter() .. 400

~WCValDListIter() ... 401

append() ... 402

container() .. 403

current() ... 404

insert() .. 405

operator ()() ... 406

operator ++() .. 407

operator +=() .. 408

operator --() ... 409

operator -=() .. 410

reset() ... 411

reset() ... 412

14 Queue Container .. 413

WCQueue<Type,FType> Class Description ... 414

WCQueue() .. 415

WCQueue() .. 416

~WCQueue() ... 417

clear() ... 418

entries() .. 419

first() .. 420

xii

Table of Contents

get() .. 421

insert() .. 422

isEmpty() ... 423

last() ... 424

15 Skip List Containers ... 425

WCPtrSkipListDict<Key,Value> Class Description .. 426

WCPtrSkipListDict() ... 428

WCPtrSkipListDict() ... 429

WCPtrSkipListDict() ... 430

~WCPtrSkipListDict() ... 431

clear() ... 432

clearAndDestroy() ... 433

contains() ... 434

entries() .. 435

find() .. 436

findKeyAndValue() ... 437

forAll() ... 438

insert() .. 439

isEmpty() ... 440

operator []() ... 441

operator []() ... 442

operator =() .. 443

operator ==() .. 444

remove() .. 445

WCPtrSkipList<Type>, WCPtrSkipListSet<Type> Class Description .. 446

WCPtrSkipListSet() ... 448

WCPtrSkipListSet() ... 449

WCPtrSkipListSet() ... 450

~WCPtrSkipListSet() .. 451

WCPtrSkipList() .. 452

WCPtrSkipList() .. 453

WCPtrSkipList() .. 454

~WCPtrSkipList() .. 455

clear() ... 456

clearAndDestroy() ... 457

contains() ... 458

entries() .. 459

find() .. 460

forAll() ... 461

insert() .. 462

isEmpty() ... 463

occurrencesOf() ... 464

operator =() .. 465

operator ==() .. 466

remove() .. 467

removeAll() ... 468

WCValSkipListDict<Key,Value> Class Description ... 469

WCValSkipListDict() .. 471

WCValSkipListDict() .. 472

WCValSkipListDict() .. 473

~WCValSkipListDict() .. 474

xiii

Table of Contents

clear() ... 475

contains() ... 476

entries() .. 477

find() .. 478

findKeyAndValue() ... 479

forAll() ... 480

insert() .. 481

isEmpty() ... 482

operator []() ... 483

operator []() ... 484

operator =() .. 485

operator ==() .. 486

remove() .. 487

WCValSkipList<Type>, WCValSkipListSet<Type> Class Description ... 488

WCValSkipListSet() .. 490

WCValSkipListSet() .. 491

WCValSkipListSet() .. 492

~WCValSkipListSet() ... 493

WCValSkipList() ... 494

WCValSkipList() ... 495

WCValSkipList() ... 496

~WCValSkipList() .. 497

clear() ... 498

contains() ... 499

entries() .. 500

find() .. 501

forAll() ... 502

insert() .. 503

isEmpty() ... 504

occurrencesOf() ... 505

operator =() .. 506

operator ==() .. 507

remove() .. 508

removeAll() ... 509

16 Stack Container .. 511

WCStack<Type,FType> Class Description .. 512

WCStack() ... 513

WCStack() ... 514

~WCStack() ... 515

clear() ... 516

entries() .. 517

isEmpty() ... 518

pop() .. 519

push() ... 520

top() ... 521

17 Vector Containers .. 523

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type> Class Description 524

WCPtrOrderedVector() ... 526

WCPtrOrderedVector() ... 527

~WCPtrOrderedVector() ... 528

xiv

Table of Contents

WCPtrSortedVector() .. 529

WCPtrSortedVector() .. 530

~WCPtrSortedVector() .. 531

append() ... 532

clear() ... 533

clearAndDestroy() ... 534

contains() ... 535

entries() .. 536

find() .. 537

first() .. 538

index() .. 539

insert() .. 540

insertAt() .. 541

isEmpty() ... 542

last() ... 543

occurrencesOf() ... 544

operator []() ... 545

operator =() .. 546

operator ==() .. 547

prepend() .. 548

remove() .. 549

removeAll() ... 550

removeAt() .. 551

removeFirst() ... 552

removeLast() .. 553

resize() ... 554

WCPtrVector<Type> Class Description ... 555

WCPtrVector() .. 556

WCPtrVector() .. 557

WCPtrVector() .. 558

~WCPtrVector() .. 559

clear() ... 560

clearAndDestroy() ... 561

length() .. 562

operator []() ... 563

operator =() .. 564

operator ==() .. 565

resize() ... 566

WCValSortedVector<Type>, WCValOrderedVector<Type> Class Description 567

WCValOrderedVector() .. 570

WCValOrderedVector() .. 571

~WCValOrderedVector() .. 572

WCValSortedVector() ... 573

WCValSortedVector() ... 574

~WCValSortedVector() ... 575

append() ... 576

clear() ... 577

contains() ... 578

entries() .. 579

find() .. 580

first() .. 581

index() .. 582

xv

Table of Contents

insert() .. 583

insertAt() .. 584

isEmpty() ... 585

last() ... 586

occurrencesOf() ... 587

operator []() ... 588

operator =() .. 589

operator ==() .. 590

prepend() .. 591

remove() .. 592

removeAll() ... 593

removeAt() .. 594

removeFirst() ... 595

removeLast() .. 596

resize() ... 597

WCValVector<Type> Class Description .. 598

WCValVector() ... 599

WCValVector() ... 600

WCValVector() ... 601

~WCValVector() ... 602

clear() ... 603

length() .. 604

operator []() ... 605

operator =() .. 606

operator ==() .. 607

resize() ... 608

18 Input/Output Classes .. 609

filebuf Class Description ... 610

attach() ... 612

close() .. 613

fd() ... 614

filebuf() .. 615

filebuf() .. 616

filebuf() .. 617

~filebuf() .. 618

is_open() .. 619

open() ... 620

openprot ... 621

overflow() .. 622

pbackfail() .. 623

seekoff() ... 624

setbuf() ... 625

sync() ... 626

underflow() .. 627

fstream Class Description .. 628

fstream() .. 629

fstream() .. 630

fstream() .. 631

fstream() .. 632

~fstream() .. 633

open() ... 634

xvi

Table of Contents

fstreambase Class Description .. 635

attach() ... 636

close() .. 637

fstreambase() ... 638

fstreambase() ... 639

fstreambase() ... 640

fstreambase() ... 641

~fstreambase() ... 642

is_open() .. 643

fd() ... 644

open() ... 645

rdbuf() .. 646

setbuf() ... 647

ifstream Class Description .. 648

ifstream() ... 649

ifstream() ... 650

ifstream() ... 651

ifstream() ... 652

~ifstream() ... 653

open() ... 654

ios Class Description ... 655

bad() ... 657

bitalloc() .. 658

clear() ... 659

eof() ... 660

exceptions() ... 661

fail() ... 662

fill() .. 663

flags() ... 664

fmtflags .. 665

good() .. 668

init() ... 669

ios() .. 670

ios() .. 671

~ios() .. 672

iostate ... 673

iword() ... 674

openmode .. 675

operator !() ... 677

operator void *() .. 678

precision() .. 679

pword() .. 680

rdbuf() .. 681

rdstate() .. 682

seekdir .. 683

setf() ... 684

setstate() ... 685

sync_with_stdio() .. 686

tie() .. 687

unsetf() ... 688

width() ... 689

xalloc() ... 690

xvii

Table of Contents

iostream Class Description .. 691

iostream() ... 692

iostream() ... 693

iostream() ... 694

~iostream() .. 695

operator =() .. 696

operator =() .. 697

istream Class Description .. 698

eatwhite() ... 700

gcount() .. 701

get() .. 702

get() .. 703

get() .. 704

get() .. 705

getline() .. 706

ignore() .. 707

ipfx() .. 708

isfx() .. 709

istream() ... 710

istream() ... 711

istream() ... 712

~istream() .. 713

operator =() .. 714

operator =() .. 715

operator >>() .. 716

operator >>() .. 717

operator >>() .. 718

operator >>() .. 719

operator >>() .. 720

operator >>() .. 721

peek() ... 722

putback() .. 723

read() .. 724

seekg() ... 725

seekg() ... 726

sync() ... 727

tellg() ... 728

istrstream Class Description .. 729

istrstream() ... 730

istrstream() ... 731

~istrstream() .. 732

Manipulators .. 733

manipulator dec() ... 734

manipulator endl() ... 735

manipulator ends() ... 736

manipulator flush() .. 737

manipulator hex() .. 738

manipulator oct() ... 739

manipulator resetiosflags() .. 740

manipulator setbase() ... 741

manipulator setfill() ... 742

manipulator setiosflags() ... 743

xviii

Table of Contents

manipulator setprecision() ... 744

manipulator setw() ... 745

manipulator setwidth() ... 746

manipulator ws() .. 747

ofstream Class Description .. 748

ofstream() .. 749

ofstream() .. 750

ofstream() .. 751

ofstream() .. 752

~ofstream() .. 753

open() ... 754

ostream Class Description ... 755

flush() .. 757

operator <<() .. 758

operator <<() .. 759

operator <<() .. 760

operator <<() .. 761

operator <<() .. 762

operator <<() .. 763

operator <<() .. 764

operator =() .. 765

operator =() .. 766

opfx() ... 767

osfx() .. 768

ostream() .. 769

ostream() .. 770

ostream() .. 771

~ostream() .. 772

put() ... 773

seekp() ... 774

seekp() ... 775

tellp() ... 776

write() .. 777

ostrstream Class Description ... 778

ostrstream() .. 779

ostrstream() .. 780

~ostrstream() .. 781

pcount() .. 782

str() .. 783

stdiobuf Class Description .. 784

overflow() .. 785

stdiobuf() ... 786

stdiobuf() ... 787

~stdiobuf() ... 788

sync() ... 789

underflow() .. 790

streambuf Class Description .. 791

allocate() .. 794

base() ... 795

blen() .. 796

dbp() .. 797

do_sgetn() .. 798

xix

Table of Contents

do_sputn() .. 799

doallocate() .. 800

eback() ... 801

ebuf() ... 802

egptr() .. 803

epptr() .. 804

gbump() ... 805

gptr() .. 806

in_avail() .. 807

out_waiting() ... 808

overflow() .. 809

pbackfail() .. 810

pbase() ... 811

pbump() ... 812

pptr() .. 813

sbumpc() .. 814

seekoff() ... 815

seekpos() .. 816

setb() .. 817

setbuf() ... 818

setg() .. 819

setp() .. 820

sgetc() .. 821

sgetchar() ... 822

sgetn() .. 823

snextc() .. 824

speekc() .. 825

sputbackc() .. 826

sputc() .. 827

sputn() .. 828

stossc() ... 829

streambuf() .. 830

streambuf() .. 831

~streambuf() .. 832

sync() ... 833

unbuffered() ... 834

underflow() .. 835

strstream Class Description ... 836

str() .. 837

strstream() .. 838

strstream() .. 839

~strstream() .. 840

strstreambase Class Description .. 841

rdbuf() .. 842

strstreambase() ... 843

strstreambase() ... 844

~strstreambase() ... 845

strstreambuf Class Description .. 846

alloc_size_increment() .. 847

doallocate() .. 848

freeze() ... 849

overflow() .. 850

xx

Table of Contents

seekoff() ... 851

setbuf() ... 852

str() .. 853

strstreambuf() .. 854

strstreambuf() .. 855

strstreambuf() .. 856

strstreambuf() .. 857

~strstreambuf() .. 858

sync() ... 859

underflow() .. 860

19 String Class .. 861

String Class Description .. 862

alloc_mult_size() ... 864

get_at() ... 865

index() .. 866

length() .. 867

lower() ... 868

match() ... 869

operator !() ... 870

String operator !=() .. 871

operator ()() ... 872

operator ()() ... 873

String operator +() ... 874

operator +=() .. 875

String operator <() ... 876

String operator <<() ... 877

String operator <=() ... 878

operator =() .. 879

String operator ==() ... 880

String operator >() ... 881

String operator >=() ... 882

String operator >>() ... 883

operator []() ... 884

operator char() ... 885

operator char const *() ... 886

put_at() .. 887

String() ... 888

String() ... 889

String() ... 890

String() ... 891

String() ... 892

~String() .. 893

upper() ... 894

String valid() .. 895

valid() .. 896

xxi

xxii

Open Watcom C++ Class Library
Reference

Open Watcom C++ Class Library Reference

2

1 Header Files

The following header files are supplied with the Open Watcom C++ library. When a class or function from

the library is used in a source file the related header file should be included in that source file. The header

files can be included multiple times and in any order with no ill effect.

The facilities of the C standard library can be used in C++ programs by including the appropriate "cname"

header. In that case all of the C standard library functions are in namespace std. For example, to use

function std::printf one should include the header cstdio. Note that the cname headers declare in the

global namespace any non-standard names they contain as extensions. It is also possible to include in a

C++ program the same headers used by C programs. In that case, the standard functions are in both the

global namespace as well as in namespace std.

Some of C++ standard library headers described below come in a form with a .h extension and in a form

without an extension. The extensionless headers declare their library classes and functions in namespace

std. The headers with a .h extension declare their library classes and functions in both the global

namespace and in namespace std. Such headers are provided as a convenience and for compatibility with

legacy code. Programs that intend to conform to Standard C++ should use the extensionless headers to

access the facilities of the C++ standard library.

Certain headers defined by Standard C++ have names that are longer than the 8.3 limit imposed by the

FAT16 filesystem. Such headers are provided with names that are truncated to eight characters so they can

be used with the DOS host. However, one can still refer to them in #include directives using their full

names as defined by the standard. If the Open Watcom C++ compiler is unable to open a header with the

long name, it will truncate the name and try again.

The Open Watcom C++ library contains some components that were developed before C++ was

standardized. These legacy components continue to be supported and are described in this documentation.

The header files are all located in the \WATCOM\H directory.

algorithm (algorith) This header file defines the standard algorithm templates.

complex This header file defines the std::complex class template and related function templates.

This template can be instantiated for the three different floating point types. It can be used

to represent complex numbers and to perform complex arithmetic.

complex.h This header file defines the legacy Complex class. This class is used to represent complex

numbers and to perform complex arithmetic. The class defined in this header is not the

Standard C++ std::complex class template.

exception/exception.h (exceptio/exceptio.h) This header file defines components to be used with the

exception handling mechanism. It defines the base class of the standard exception

hierarchy.

functional (function) This header file defines the standard functional templates. This includes the functors

and binders described by Standard C++.

Header Files 3

Open Watcom C++ Class Library Reference

fstream/fstream.h This header file defines the filebuf, fstreambase, ifstream, ofstream, and

fstream classes. These classes are used to perform C++ file input and output operations.

The various class members are declared and inline member functions for the classes are

defined.

generic.h This header file is part of the macro support required to implement generic containers prior

to the introduction of templates in the C++ language. It is retained for backwards

compatibility.

iomanip/iomanip.h This header file defines the parameterized manipulators.

ios/ios.h This header file defines the class ios that is used as a base of the other iostream classes.

iosfwd/iosfwd.h This header file provides forward declarations of the iostream classes. It should be used in

cases where the full class definitions are not needed but where one still wants to declare

pointers or references to iostream related objects. Typically this occurs in a header for

another class that wants to provide overloaded inserter or extractor operators. By including

iosfwd instead of iostream (for example), compilation speed can be improved because

less material must be processed by the compiler.

Note that including iosfwd is the only appropriate way to forward declare the iostream

classes. Manually writing forward declarations is not recommended.

iostream/iostream.h This header file (indirectly) defines the ios, istream, ostream, and iostream
classes. These classes form the basis of the C++ formatted input and output support. The

various class members are declared and inline member functions for the classes are defined.

The cin, cout, cerr, and clog predefined objects are declared along with the

non-parameterized manipulators.

istream/istream.h This header file defines class istream and class iostream. It also defines their

associated parameterless manipulators.

iterator This header file defines several templates to facilitate the handling of iterators. In

particular, it defines the std::iterator_traits template as well as several other

supporting iterator related templates.

limits This header file defines the std::�umeric_limits template and provides

specializations of that template for each of the built-in types.

Note that this header is not directly related to the header limits.h from the C standard

library (or to the C++ form of that header, climits).

list This header file defines the std::list class template. It provides a way to make a

sequence of objects with efficient insert and erase operations.

map This header file defines the std::map and std::multimap class templates. They

provide ways to associate keys to values.

memory This header file defines the default allocator template, std::allocator, as well as

several function templates for manipulating raw (uninitialized) memory regions. In

addition this header defines the std::auto_ptr template.

Note that the header memory.h is part of the Open Watcom C library and is unrelated to

memory.

4 Header Files

Header Files

new/new.h This header file provides declarations to be used with the intrinsic operator new and

operator delete memory management functions.

numeric This header file defines several standard algorithm templates pertaining to numerical

computation.

ostream/ostream.h This header file defines class ostream. It also defines its associated parameterless

manipulators.

set This header file defines the std::set and std::multiset class templates. They

provide ways to make ordered collections of objects with efficient insert, erase, and find

operations.

stdiobuf.h This header file defines the stdiobuf class which provides the support for the C++ input

and output operations to standard input, standard output, and standard error streams.

streambuf/streambuf.h (streambu/streambu.h) This header file defines the streambuf class which

provides the support for buffering of input and output operations. This header file is

automatically included by the iostream.h header file.

string This header file defines the std::basic_string class template. It also contains the

type definitions for std::string and std::wstring. In addition, this header

contains specializations of the std::char_traits template for both characters and

wide characters.

string.hpp This header file defines the legacy String class. The String class is used to

manipulate character strings. Note that the hpp extension is used to avoid colliding with

the Standard C string.h header file. The class defined in this header is not the Standard

C++ std::string class.

strstream.h (strstrea.h) This header files defines the strstreambuf, strstreambase,

istrstream, ostrstream, and strstream classes. These classes are used to

perform C++ in-memory formatting. The various class members are declared and inline

member functions for the classes are defined.

vector This header contains the std::vector class template.

wcdefs.h This header file contains definitions used by the Open Watcom legacy container libraries.

If a container class needs any of these definitions, the file is automatically included.

Note that all headers having names that start with "wc" are related to the legacy container

libraries.

wclbase.h This header file defines the base classes which are used by the list containers.

wclcom.h This header file defines the classes which are common to the list containers.

wclibase.h This header file defines the base classes which are used by the list iterators.

wclist.h This header file defines the list container classes. The available list container classes are

single and double linked versions of intrusive, value and pointer lists.

wclistit.h This header file defines the iterator classes that correspond to the list containers.

Header Files 5

Open Watcom C++ Class Library Reference

wcqueue.h This header file defines the queue class. Entries in a queue class are accessed first in, first

out.

wcstack.h This header file defines the stack class. Entries in a stack class are accessed last in, first

out.

6 Header Files

2 Common Types

The set of classes that make up the C++ class library use several common typedefs and macros. They are

declared in <iostream.h> and <fstream.h>.

typedef long streampos;
typedef long streamoff;
typedef int filedesc;
#define __NOT_EOF 0
#define EOF -1

The streampos type represents an absolute position within the file. For Open Watcom C++, the file

position can be represented by an integral type. For some file systems, or at a lower level within the file

system, the stream position might be represented by an aggregate (structure) containing information such as

cylinder, track, sector and offset.

The streamoff type represents a relative position within the file. The offset can always be represented

as a signed integer quantity since it is a number of characters before or after an absolute position within the

file.

The filedesc type represents the type of a C library file handle. It is used in places where the I/O stream

library takes a C library file handle as an argument.

The __NOT_EOF macro is defined for cases where a function needs to return something other than EOF to

indicate success.

The EOF macro is defined to be identical to the value provided by the <stdio.h> header file.

Common Types 7

Open Watcom C++ Class Library Reference

8 Common Types

3 Predefined Objects

Most programs interact in some manner with the keyboard and screen. The C programming language

provides three values, stdin, stdout and stderr, that are used for communicating with these

"standard" devices, which are opened before the user program starts execution at main(). These three

values are FILE pointers and can be used in virtually any file operation supported by the C library.

In a similar manner, C++ provides seven objects for communicating with the same "standard" devices.

C++ provides the three C FILE pointers stdin, stdout and stderr, but they cannot be used with the

extractors and inserters provided as part of the C++ library. C++ provides four new objects, called cin,

cout, cerr and clog, which correspond to stdin, stdout, stderr and buffered stderr.

3.1 cin

cin is an istream object which is connected to "standard input" (usually the keyboard) prior to program

execution. Values extracted using the istream operator >> class extractor operators are read from

standard input and interpreted according to the type of the object being extracted.

Extractions from standard input via cin skip whitespace characters by default because the ios::skipws
bit is on. The default behavior can be changed with the ios::setf public member function or with the

setiosflags manipulator.

3.2 cout

cout is an ostream object which is connected to "standard output" (usually the screen) prior to program

execution. Values inserted using the ostream operator << class inserter operators are converted to

characters and written to standard output according to the type of the object being inserted.

Insertions to standard output via cout are buffered by default because the ios::unitbuf bit is not on.

The default behavior can be changed with the ios::setf public member function or with the

setiosflags manipulator.

3.3 cerr

cerr is an ostream object which is connected to "standard error" (the screen) prior to program

execution. Values inserted using the ostream operator << class inserter operators are converted to

characters and written to standard error according to the type of the object being inserted.

Insertions to standard error via cerr are not buffered by default because the ios::unitbuf bit is on.

The default behavior can be changed with the ios::setf public member function or with the

setiosflags manipulator.

cerr 9

Open Watcom C++ Class Library Reference

3.4 clog

clog is an ostream object which is connected to "standard error" (the screen) prior to program

execution. Values inserted using the ostream operator << class inserter operators are converted to

characters and written to standard error according to the type of the object being inserted.

Insertions to standard error via clog are buffered by default because the ios::unitbuf bit is not on.

The default behavior can be changed with the ios::setf public member function or with the

setiosflags manipulator.

10 clog

4 istream Input

This chapter describes formatted and unformatted input.

4.1 Formatted Input: Extractors

The operator >> function is used to read formatted values from a stream. It is called an extractor.

Characters are read and interpreted according to the type of object being extracted.

All operator >> functions perform the same basic sequence of operations. First, the input prefix

function ipfx is called with a parameter of zero, causing leading whitespace characters to be discarded if

ios::skipws is set in ios::fmtflags. If the input prefix function fails and returns zero, the

operator >> function also fails and returns immediately. If the input prefix function succeeds,

characters are read from the stream and interpreted in terms of the type of object being extracted and

ios::fmtflags. Finally, the input suffix function isfx is called.

The operator >> functions return a reference to the specified stream so that multiple extractions can be

done in one statement.

Errors are indicated via ios::iostate. ios::failbit is set if the characters read from the stream

could not be interpreted for the required type. ios::badbit is set if the extraction of characters from

the stream failed in such a way as to make subsequent extractions impossible. ios::eofbit is set if the

stream was located at the end when the extraction was attempted.

4.2 Unformatted Input

The unformatted input functions are used to read characters from the stream without interpretation.

Like the extractors, the unformatted input functions follow a pattern. First, they call ipfx, the input prefix

function, with a parameter of one, causing no leading whitespace characters to be discarded. If the input

prefix function fails and returns zero, the unformatted input function also fails and returns immediately. If

the input prefix function succeeds, characters are read from the stream without interpretation. Finally,

isfx, the input suffix function, is called.

Errors are indicated via the iostate bits. ios::failbit is set if the extraction of characters from the

stream failed. ios::eofbit is set if the stream was located at the end of input when the operation was

attempted.

Unformatted Input 11

Open Watcom C++ Class Library Reference

12 Unformatted Input

5 ostream Output

This chapter describes formatted and unformatted output.

5.1 Formatted Output: Inserters

The operator << function is used to write formatted values to a stream. It is called an inserter. Values

are formatted and written according to the type of object being inserted and ios::fmtflags.

All operator << functions perform the same basic sequence of operations. First, the output prefix

function opfx is called. If it fails and returns zero, the operator << function also fails and returns

immediately. If the output prefix function succeeds, the object is formatted according to its type and

ios::fmtflags. The formatted sequence of characters is then written to the specified stream. Finally,

the output suffix function osfx is called.

The operator << functions return a reference to the specified stream so that multiple insertions can be

done in one statement.

For details on the interpretation of ios::fmtflags, see the ios::fmtflags section of the Library

Functions and Types Chapter.

Errors are indicated via ios::iostate. ios::failbit is set if the operator << function fails

while writing the characters to the stream.

5.2 Unformatted Output

The unformatted output functions are used to write characters to the stream without conversion.

Like the inserters, the unformatted output functions follow a pattern. First, they call the output prefix

function opfx and fail if it fails. Then the characters are written without conversion. Finally, the output

suffix function osfx is called.

Errors are indicated via ios::iostate. ios::failbit is set if the function fails while writing the

characters to the stream.

Unformatted Output 13

Open Watcom C++ Class Library Reference

14 Unformatted Output

6 Library Functions and Types

Each of the classes and functions in the Class Library is described in this chapter. Each description consists

of a number of subsections:

Declared: This optional subsection specifies which header file contains the declaration for a class. It is only found

in sections describing class declarations.

Derived From:

This optional subsection shows the inheritance for a class. It is only found in sections describing class

declarations.

Derived By: This optional subsection shows which classes inherit from this class. It is only found in sections

describing class declarations.

Synopsis: This subsection gives the name of the header file that contains the declaration of the function. This

header file must be included in order to reference the function.

For class member functions, the protection associated with the function is indicated via the presence of

one of the private, protected, or public keywords.

The full function prototype is specified. Virtual class member functions are indicated via the presence

of the virtual keyword in the function prototype.

Semantics: This subsection is a description of the function.

Derived Implementation Protocol:

This optional subsection is present for virtual member functions. It describes how derived

implementations of the virtual member function should behave.

Default Implementation:

This optional subsection is present for virtual member functions. It describes how the default

implementation provided with the base class definition behaves.

Results: This optional subsection describes the function’s return value, if any, and the impact of a member

function on its object’s state.

See Also: This optional subsection provides a list of related functions or classes.

Functions and Types 15

Open Watcom C++ Class Library Reference

16 Functions and Types

7 Complex Class

This class is used for the storage and manipulation of complex numbers, which are often represented by

real and imaginary components (Cartesian coordinates), or by magnitude and angle (polar coordinates).

Each object stores exactly one complex number. An object may be used in expressions in the same manner

as floating-point values.

The class documented here is the Open Watcom legacy complex class. It is not the std::complex class

template specified by Standard C++.

Complex Class 17

Complex

Declared: complex.h

The Complex class is used for the storage and manipulation of complex numbers, which are often

represented by real and imaginary components (Cartesian coordinates), or by magnitude and angle

(polar coordinates). Each Complex object stores exactly one complex number. A Complex object

may be used in expressions in the same manner as floating-point values.

Public Member Functions

The following constructors and destructors are declared:

Complex();
Complex(Complex const &);
Complex(double, double = 0.0);
~Complex();

The following arithmetic member functions are declared:

Complex &operator =(Complex const &);
Complex &operator =(double);
Complex &operator +=(Complex const &);
Complex &operator +=(double);
Complex &operator -=(Complex const &);
Complex &operator -=(double);
Complex &operator *=(Complex const &);
Complex &operator *=(double);
Complex &operator /=(Complex const &);
Complex &operator /=(double);
Complex operator +() const;
Complex operator -() const;
double imag() const;
double real() const;

Friend Functions

The following I/O Stream inserter and extractor friend functions are declared:

friend istream &operator >>(istream &, Complex &);
friend ostream &operator <<(ostream &, Complex const &);

Related Operators

The following operators are declared:

Complex operator +(Complex const &, Complex const &);
Complex operator +(Complex const &, double);
Complex operator +(double , Complex const &);
Complex operator -(Complex const &, Complex const &);
Complex operator -(Complex const &, double);
Complex operator -(double , Complex const &);
Complex operator *(Complex const &, Complex const &);
Complex operator *(Complex const &, double);
Complex operator *(double , Complex const &);
Complex operator /(Complex const &, Complex const &);
Complex operator /(Complex const &, double);
Complex operator /(double , Complex const &);
int operator ==(Complex const &, Complex const &);

18 Complex Class

Complex

int operator ==(Complex const &, double);
int operator ==(double , Complex const &);
int operator !=(Complex const &, Complex const &);
int operator !=(Complex const &, double);
int operator !=(double , Complex const &);

Related Functions

The following related functions are declared:

double abs (Complex const &);
Complex acos (Complex const &);
Complex acosh(Complex const &);
double arg (Complex const &);
Complex asin (Complex const &);
Complex asinh(Complex const &);
Complex atan (Complex const &);
Complex atanh(Complex const &);
Complex conj (Complex const &);
Complex cos (Complex const &);
Complex cosh (Complex const &);
Complex exp (Complex const &);
double imag (Complex const &);
Complex log (Complex const &);
Complex log10(Complex const &);
double norm (Complex const &);
Complex polar(double , double = 0);
Complex pow (Complex const &, Complex const &);
Complex pow (Complex const &, double);
Complex pow (double , Complex const &);
Complex pow (Complex const &, int);
double real (Complex const &);
Complex sin (Complex const &);
Complex sinh (Complex const &);
Complex sqrt (Complex const &);
Complex tan (Complex const &);
Complex tanh (Complex const &);

Complex Class 19

Complex abs()

Synopsis: #include <complex.h>
double abs(Complex const &num);

Semantics: The abs function computes the magnitude of num, which is equivalent to the length (magnitude) of the

vector when the num is represented in polar coordinates.

Results: The abs function returns the magnitude of num.

See Also: arg, norm, polar

20 Complex Class

Complex acos()

Synopsis: #include <complex.h>
Complex acos(Complex const &num);

Semantics: The acos function computes the arccosine of num.

Results: The acos function returns the arccosine of num.

See Also: asin, atan, cos

Complex Class 21

Complex acosh()

Synopsis: #include <complex.h>
Complex acosh(Complex const &num);

Semantics: The acosh function computes the inverse hyperbolic cosine of num.

Results: The acosh function returns the inverse hyperbolic cosine of num.

See Also: asinh, atanh, cosh

22 Complex Class

Complex arg()

Synopsis: #include <complex.h>
double arg(Complex const &num);

Semantics: The arg function computes the angle of the vector when the num is represented in polar coordinates.

The angle has the same sign as the real component of the num. It is positive in the 1st and 2nd

quadrants, and negative in the 3rd and 4th quadrants.

Results: The arg function returns the angle of the vector when the num is represented in polar coordinates.

See Also: abs, norm, polar

Complex Class 23

Complex asin()

Synopsis: #include <complex.h>
Complex asin(Complex const &num);

Semantics: The asin function computes the arcsine of num.

Results: The asin function returns the arcsine of num.

See Also: acos, atan, sin

24 Complex Class

Complex asinh()

Synopsis: #include <complex.h>
Complex asinh(Complex const &num);

Semantics: The asinh function computes the inverse hyperbolic sine of num.

Results: The asinh function returns the inverse hyperbolic sine of num.

See Also: acosh, atanh, sinh

Complex Class 25

Complex atan()

Synopsis: #include <complex.h>
Complex atan(Complex const &num);

Semantics: The atan function computes the arctangent of num.

Results: The atan function returns the arctangent of num.

See Also: acos, asin, tan

26 Complex Class

Complex atanh()

Synopsis: #include <complex.h>
Complex atanh(Complex const &num);

Semantics: The atanh function computes the inverse hyperbolic tangent of num.

Results: The atanh function returns the inverse hyperbolic tangent of num.

See Also: acosh, asinh, tanh

Complex Class 27

Complex::Complex()

Synopsis: #include <complex.h>
public:
Complex::Complex();

Semantics: This form of the public Complex constructor creates a default Complex object with value zero for

both the real and imaginary components.

Results: This form of the public Complex constructor produces a default Complex object.

See Also: ~Complex, real, imag

28 Complex Class

Complex::Complex()

Synopsis: #include <complex.h>
public:
Complex::Complex(Complex const &num);

Semantics: This form of the public Complex constructor creates a Complex object with the same value as num.

Results: This form of the public Complex constructor produces a Complex object.

See Also: ~Complex, real, imag

Complex Class 29

Complex::Complex()

Synopsis: #include <complex.h>
public:
Complex::Complex(double real, double imag = 0.0);

Semantics: This form of the public Complex constructor creates a Complex object with the real component set to

real and the imaginary component set to imag. If no imaginary component is specified, imag takes the

default value of zero.

Results: This form of the public Complex constructor produces a Complex object.

See Also: ~Complex, real, imag

30 Complex Class

Complex::~Complex()

Synopsis: #include <complex.h>
public:
Complex::~Complex();

Semantics: The public ~Complex destructor destroys the Complex object. The call to the public ~Complex
destructor is inserted implicitly by the compiler at the point where the Complex object goes out of

scope.

Results: The Complex object is destroyed.

See Also: Complex

Complex Class 31

Complex conj()

Synopsis: #include <complex.h>
Complex conj(Complex const &num);

Semantics: The conj function computes the conjugate of num. The conjugate consists of the unchanged real

component, and the negative of the imaginary component.

Results: The conj function returns the conjugate of num.

32 Complex Class

Complex cos()

Synopsis: #include <complex.h>
Complex cos(Complex const &num);

Semantics: The cos function computes the cosine of num.

Results: The cos function returns the cosine of num.

See Also: acos, sin, tan

Complex Class 33

Complex cosh()

Synopsis: #include <complex.h>
Complex cosh(Complex const &num);

Semantics: The cosh function computes the hyperbolic cosine of num.

Results: The cosh function returns the hyperbolic cosine of num.

See Also: acosh, sinh, tanh

34 Complex Class

Complex exp()

Synopsis: #include <complex.h>
Complex exp(Complex const &num);

Semantics: The exp function computes the value of e raised to the power num.

Results: The exp function returns the value of e raised to the power num.

See Also: log, log10, pow, sqrt

Complex Class 35

Complex::imag()

Synopsis: #include <complex.h>
public:
double Complex::imag();

Semantics: The imag public member function extracts the imaginary component of the Complex object.

Results: The imag public member function returns the imaginary component of the Complex object.

See Also: imag, real
Complex::real

36 Complex Class

Complex imag()

Synopsis: #include <complex.h>
double imag(Complex const &num);

Semantics: The imag function extracts the imaginary component of num.

Results: The imag function returns the imaginary component of num.

See Also: real
Complex::imag, real

Complex Class 37

Complex log()

Synopsis: #include <complex.h>
Complex log(Complex const &num);

Semantics: The log function computes the natural, or base e, logarithm of num.

Results: The log function returns the natural, or base e, logarithm of num.

See Also: exp, log10, pow, sqrt

38 Complex Class

Complex log10()

Synopsis: #include <complex.h>
Complex log10(Complex const &num);

Semantics: The log10 function computes the base 10 logarithm of num.

Results: The log10 function returns the base 10 logarithm of num.

See Also: exp, log, pow, sqrt

Complex Class 39

Complex norm()

Synopsis: #include <complex.h>
double norm(Complex const &num);

Semantics: The norm function computes the square of the magnitude of num, which is equivalent to the square of

the length (magnitude) of the vector when num is represented in polar coordinates.

Results: The norm function returns the square of the magnitude of num.

See Also: arg, polar

40 Complex Class

Complex operator !=()

Synopsis: #include <complex.h>
int operator !=(Complex const &num1, Complex const &num2);
int operator !=(Complex const &num1, double num2);
int operator !=(double num1, Complex const &num2);

Semantics: The operator != function compares num1 and num2 for inequality. At least one of the parameters

must be a Complex object for this function to be called.

Two Complex objects are not equal if either of their corresponding real or imaginary components are

not equal.

If the operator != function is used with a Complex object and an object of any other built-in

numeric type, the non- Complex object is converted to a double and the second or third form of the

operator != function is used.

Results: The operator != function returns a non-zero value if num1 is not equal to num2, otherwise zero is

returned.

See Also: operator ==

Complex Class 41

Complex operator *()

Synopsis: #include <complex.h>
Complex operator *(Complex const &num1, Complex const &num2);
Complex operator *(Complex const &num1, double num2);
Complex operator *(double num1, Complex const &num2);

Semantics: The operator * function is used to multiply num1 by num2 yielding a Complex object.

The first operator * function multiplies two Complex objects.

The second operator * function multiplies a Complex object and a floating-point value. In effect,

the real and imaginary components of the Complex object are multiplied by the floating-point value.

The third operator * function multiplies a floating-point value and a Complex object. In effect,

the real and imaginary components of the Complex object are multiplied by the floating-point value.

If the operator * function is used with a Complex object and an object of any other built-in

numeric type, the non- Complex object is converted to a double and the second or third form of the

operator * function is used.

Results: The operator * function returns a Complex object that is the product of num1 and num2.

See Also: operator +, operator -, operator /
Complex::operator *=

42 Complex Class

Complex::operator *=()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator *=(Complex const &num);
Complex &Complex::operator *=(double num);

Semantics: The operator *= public member function is used to multiply the num argument into the Complex
object.

The first form of the operator *= public member function multiplies the Complex object by the

Complex parameter.

The second form of the operator *= public member function multiplies the real and imaginary

components of the Complex object by num.

A call to the operator *= public member function where num is any of the other built-in numeric

types, causes num to be promoted to double and the second form of the operator *= public

member function to be used.

Results: The operator *= public member function returns a reference to the target of the assignment.

See Also: operator *
Complex::operator +=, operator -=, operator /=, operator =

Complex Class 43

Complex::operator +()

Synopsis: #include <complex.h>
public:
Complex Complex::operator +();

Semantics: The unary operator + public member function is provided for completeness. It performs no

operation on the Complex object.

Results: The unary operator + public member function returns a Complex object with the same value as

the original Complex object.

See Also: operator +
Complex::operator +=, operator -

44 Complex Class

Complex operator +()

Synopsis: #include <complex.h>
Complex operator +(Complex const &num1, Complex const &num2);
Complex operator +(Complex const &num1, double num2);
Complex operator +(double num1, Complex const &num2);

Semantics: The operator + function is used to add num1 to num2 yielding a Complex object.

The first operator + function adds two Complex objects.

The second operator + function adds a Complex object and a floating-point value. In effect, the

floating-point value is added to the real component of the Complex object.

The third operator + function adds a floating-point value and a Complex object. In effect, the

floating-point value is added to the real component of the Complex object.

If the operator + function is used with a Complex object and an object of any other built-in

numeric type, the non- Complex object is converted to a double and the second or third form of the

operator + function is used.

Results: The operator + function returns a Complex object that is the sum of num1 and num2.

See Also: operator *, operator -, operator /
Complex::operator +, operator +=

Complex Class 45

Complex::operator +=()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator +=(Complex const &num);
Complex &Complex::operator +=(double num);

Semantics: The operator += public member function is used to add num to the value of the Complex object.

The second form of the operator += public member function adds num to the real component of the

Complex object.

A call to the operator += public member function where num is any of the other built-in numeric

types, causes num to be promoted to double and the second form of the operator += public

member function to be used.

Results: The operator += public member function returns a reference to the target of the assignment.

See Also: operator +
Complex::operator *=, operator +, operator /=, operator -=, operator =

46 Complex Class

Complex::operator -()

Synopsis: #include <complex.h>
public:
Complex Complex::operator -();

Semantics: The unary operator - public member function yields a Complex object with the real and

imaginary components having the same magnitude as those of the original object, but with opposite

sign.

Results: The unary operator - public member function returns a Complex object with the same magnitude

as the original Complex object and with opposite sign.

See Also: operator -
Complex::operator +, operator -=

Complex Class 47

Complex operator -()

Synopsis: #include <complex.h>
Complex operator -(Complex const &num1, Complex const &num2);
Complex operator -(Complex const &num1, double num2);
Complex operator -(double num1, Complex const &num2);

Semantics: The operator - function is used to subtract num2 from num1 yielding a Complex object.

The first operator - function computes the difference between two Complex objects.

The second operator - function computes the difference between a Complex object and a

floating-point value. In effect, the floating-point value is subtracted from the real component of the

Complex object.

The third operator - function computes the difference between a floating-point value and a

Complex object. In effect, the real component of the result is num1 minus the real component of num2

:CONT, and the imaginary component of the result is the negative of the imaginary component of num2

.

If the operator - function is used with a Complex object and an object of any other built-in

numeric type, the non- Complex object is converted to a double and the second or third form of the

operator - function is used.

Results: The operator - function returns a Complex object that is the difference between num1 and num2.

See Also: operator *, operator +, operator /
Complex::operator -, operator -=

48 Complex Class

Complex::operator -=()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator -=(Complex const &num);
Complex &Complex::operator -=(double num);

Semantics: The operator -= public member function is used to subtract num from the value of the Complex
object. The second form of the operator -= public member function subtracts num from the real

component of the *obj..

A call to the operator -= public member function where num is any of the other built-in numeric

types, causes num to be promoted to double and the second form of the operator -= public

member function to be used.

Results: The operator -= public member function returns a reference to the target of the assignment.

See Also: operator -
Complex::operator *=, operator +=, operator -, operator /=, operator =

Complex Class 49

Complex operator /()

Synopsis: #include <complex.h>
Complex operator /(Complex const &num1, Complex const &num2);
Complex operator /(Complex const &num1, double num2);
Complex operator /(double num1, Complex const &num2);

Semantics: The operator / function is used to divide num1 by num2 yielding a Complex object.

The first operator / function divides two Complex objects.

The second operator / function divides a Complex object by a floating-point value. In effect, the

real and imaginary components of the complex number are divided by the floating-point value.

The third operator / function divides a floating-point value by a Complex object. Conceptually,

the floating-point value is converted to a Complex object and then the division is done.

If the operator / function is used with a Complex object and an object of any other built-in

numeric type, the non- Complex object is converted to a double and the second or third form of the

operator / function is used.

Results: The operator / function returns a Complex object that is the quotient of num1 divided by num2.

See Also: operator *, operator +, operator -
Complex::operator /=

50 Complex Class

Complex::operator /=()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator /=(Complex const &num);
Complex &Complex::operator /=(double num);

Semantics: The operator /= public member function is used to divide the Complex object by num. The

second form of the operator /= public member function divides the real and imaginary components

of the Complex object by num.

A call to the operator /= public member function where num is any of the other built-in numeric

types, causes num to be promoted to double and the second form of the operator /= public

member function to be used.

Results: The operator /= public member function returns a reference to the target of the assignment.

See Also: operator /
Complex::operator *=, operator +=, operator -=, operator =

Complex Class 51

Complex operator <<()

Synopsis: #include <complex.h>
friend ostream &operator <<(ostream &strm, Complex &num);

Semantics: The operator << function is used to write Complex objects to an I/O stream. The Complex
object is always written in the form:

(real,imag)

The real and imaginary components are written using the normal rules for formatting floating-point

numbers. Any formatting options specified prior to inserting the num apply to both the real and

imaginary components. If the real and imaginary components are to be inserted using different formats,

the real and imag member functions should be used to insert each component separately.

Results: The operator << function returns a reference to the strm object.

See Also: istream

52 Complex Class

Complex::operator =()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator =(Complex const &num);
Complex &Complex::operator =(double num);

Semantics: The operator = public member function is used to set the value of the Complex object to num.

The first assignment operator copies the value of num into the Complex object.

The second assignment operator sets the real component of the Complex object to num and the

imaginary component to zero.

A call to the operator = public member function where num is any of the other built-in numeric

types, causes num to be promoted to double and the second form of the operator = public

member function to be used.

Results: The operator = public member function returns a reference to the target of the assignment.

See Also: Complex::operator *=, operator +=, operator -=, operator /=

Complex Class 53

Complex operator ==()

Synopsis: #include <complex.h>
int operator ==(Complex const &num1, Complex const &num2);
int operator ==(Complex const &num1, double num2);
int operator ==(double num1, Complex const &num2);

Semantics: The operator == function compares num1 and num2 for equality. At least one of the arguments

must be a Complex object for this function to be called.

Two Complex objects are equal if their corresponding real and imaginary components are equal.

If the operator == function is used with a Complex object and an object of any other built-in

numeric type, the non- Complex object is converted to a double and the second or third form of the

operator == function is used.

Results: The operator == function returns a non-zero value if num1 is equal to num2, otherwise zero is

returned.

See Also: operator !=

54 Complex Class

Complex operator >>()

Synopsis: #include <complex.h>
friend istream &operator >>(istream &strm, Complex &num);

Semantics: The operator >> function is used to read a Complex object from an I/O stream. A valid complex

value is of one of the following forms:

(real,imag)
real,imag
(real)

If the imaginary portion is omitted, zero is assumed.

While reading a Complex object, whitespace is ignored before and between the various components of

the number if the ios::skipws bit is set in ios::fmtflags.

Results: The operator >> function returns a reference to strm. num contains the value read from strm on

success, otherwise it is unchanged.

See Also: istream

Complex Class 55

Complex polar()

Synopsis: #include <complex.h>
Complex polar(double mag, double angle = 0.0);

Semantics: The polar function converts mag and angle (polar coordinates) into a complex number. The angle is

optional and defaults to zero if it is unspecified.

Results: The polar function returns a Complex object that is mag and angle interpreted as polar coordinates.

See Also: abs, arg, norm

56 Complex Class

Complex pow()

Synopsis: #include <complex.h>
Complex pow(Complex const &num, Complex const &exp);
Complex pow(Complex const &num, double exp);
Complex pow(double num, Complex const &exp);
Complex pow(Complex const &num, int exp);

Semantics: The pow function computes num raised to the power exp. The various forms are provided to minimize

the amount of floating-point calculation performed.

Results: The pow function returns a Complex object that is num raised to the power a Complex object that is

exp.

See Also: exp, log, log10, sqrt

Complex Class 57

Complex::real()

Synopsis: #include <complex.h>
public:
double Complex::real();

Semantics: The real public member function extracts the real component of the Complex object.

Results: The real public member function returns the real component of the Complex object.

See Also: imag, real
Complex::imag

58 Complex Class

Complex real()

Synopsis: #include <complex.h>
double real(Complex const &num);

Semantics: The real function extracts the real component of num.

Results: The real function returns the real component of num.

See Also: imag
Complex::imag, real

Complex Class 59

Complex sin()

Synopsis: #include <complex.h>
Complex sin(Complex const &num);

Semantics: The sin function computes the sine of num.

Results: The sin function returns the sine of num.

See Also: asin, cos, tan

60 Complex Class

Complex sinh()

Synopsis: #include <complex.h>
Complex sinh(Complex const &num);

Semantics: The sinh function computes the hyperbolic sine of num.

Results: The sinh function returns the hyperbolic sine of num.

See Also: asinh, cosh, tanh

Complex Class 61

Complex sqrt()

Synopsis: #include <complex.h>
Complex sqrt(Complex const &num);

Semantics: The sqrt function computes the square root of num.

Results: The sqrt function returns the square root of num.

See Also: exp, log, log10, pow

62 Complex Class

Complex tan()

Synopsis: #include <complex.h>
Complex tan(Complex const &num);

Semantics: The tan function computes the tangent of num.

Results: The tan function returns the tangent of num.

See Also: atan, cos, sin

Complex Class 63

Complex tanh()

Synopsis: #include <complex.h>
Complex tanh(Complex const &num);

Semantics: The tanh function computes the hyperbolic tangent of num.

Results: The tanh function returns the hyperbolic tangent of num.

See Also: atanh, cosh, sinh

64 Complex Class

8 Container Exception Classes

This chapter describes exception handling for the container classes.

Container Exception Classes 65

WCExcept

Declared: wcexcept.h

The WCExcept class provides the exception handling for the container classes. If you have compiled

your code with exception handling enabled, the C++ exception processing can be used to catch errors.

Your source file must be compiled with the exception handling compile switch for C++ exception

processing to occur. The container classes will attempt to set the container object into a reasonable state

if there is an error and exception handling is not enabled, or if the trap for the specific error has not been

enabled by your program.

By default, no exception traps are enabled and no exceptions will be thrown. Exception traps are

enabled by setting the exception state with the exceptions member function.

The wcexcept.h header file is included by the header files for each of the container classes. There is

normally no need to explicitly include the wcexcept.h header file, but no errors will result if it is

included. This class is inherited as a base class for each of the containers. You do not need to derive

from it directly.

The WCListExcept class (formally used by the list container classes) has been replaced by the

WCExcept class. A typedef of the WCListExcept class to the WCExcept class and the

wclist_state type to the wc_state type provide backward compatability with previous versions

of the list containers.

Public Enumerations

The following enumeration typedefs are declared in the public interface:

typedef int wc_state;

Public Member Functions

The following public member functions are declared:

WCExcept();
virtual ~WCExcept();
wc_state exceptions() const;
wc_state exceptions(wc_state);

66 Container Exception Classes

WCExcept::WCExcept()

Synopsis: #include <wcexcept.h>
public:
WCExcept();

Semantics: This form of the public WCExcept constructor creates an WCExcept object.

The public WCExcept constructor is used implicitly by the compiler when it generates a constructor

for a derived class. It is automatically used by the list container classes, and should not be required in

any user derived classes.

Results: The public WCExcept constructor produces an initialized WCExcept object with no exception traps

enabled.

See Also: ~WCExcept

Container Exception Classes 67

WCExcept::~WCExcept()

Synopsis: #include <wcexcept.h>
public:
virtual ~WCExcept();

Semantics: The public ~WCExcept destructor does not do anything explicit. The call to the public ~WCExcept
destructor is inserted implicitly by the compiler at the point where the object derived from WCExcept
goes out of scope.

Results: The object derived from WCExcept is destroyed.

See Also: WCExcept

68 Container Exception Classes

WCExcept::exceptions()

Synopsis: #include <wcexcept.h>
public:
wc_state exceptions() const;
wc_state exceptions(wc_state set_flags);

Semantics: The exceptions public member function queries and/or sets the bits that control which exceptions

are enabled for the list class. Each bit corresponds to an exception, and is set if the exception is

enabled. The first form of the exceptions public member function returns the current settings of the

exception bits. The second form of the function sets the exception bits to those specified by set_flags.

Results: The current exception bits are returned. If a new set of bits are being set, the returned value is the old

set of exception bits.

Container Exception Classes 69

WCExcept::wc_state

Synopsis: #include <wcexcept.h>
public:
enum wcstate {
all_fine = 0x0000, // - no errors
check_none = all_fine,// - throw no exceptions
not_empty = 0x0001, // - container not empty
index_range = 0x0002, // - index is out of range
empty_container= 0x0004, // - empty container error
out_of_memory = 0x0008, // - allocation failed
resize_required= 0x0010, // - request needs resize
not_unique = 0x0020, // - adding duplicate
zero_buckets = 0x0040, // - resizing hash to zero
// value to use to check for all errors
check_all = (not_empty|index_range|empty_container
|out_of_memory|resize_required
|not_unique|zero_buckets)
};
typedef int wc_state;

Semantics: The type WCExcept::wcstate is a set of bits representing the current state of the container object.

The WCExcept::wc_state member typedef represents the same set of bits, but uses an int to

represent the values, thereby avoiding problems made possible by the compiler’s ability to use smaller

types for enumerations. All uses of these bits should use the WCExcept::wc_state member

typedef.

The bit values defined by the WCExcept::wc_state member typedef can be read and set by the

exceptions member function, which is also used to control exception handling.

The WCExcept::not_empty bit setting traps the destruction of a container when the container has

at one or more entries. If this error is not trapped, memory may not be properly released back to the

system.

The WCExcept::index_range state setting traps an attempt to access a container item by an index

value that is either not positive or is larger than the index of the last item in the container.

The WCExcept::empty_container bit setting traps an attempt to perform and invalid operation

on a container with no entries.

The WCExcept::out_of_memory bit setting traps any container class allocation failures. If this

exception is not enabled, the operation in which the allocation failed will return a FALSE (zero) value.

Container class copy constructors and assignment operators can also throw this exception, and if not

enabled incomplete copies may result.

The WCExcept::resize_required bit setting traps any vector operations which cannot be

performed unless the vector is resized to a larger size. If this exception is not enabled, the vector class

will attempt an appropriate resize when necessary for an operation.

The WCExcept::not_unique bit setting traps an attempt to add a duplicate value to a set container,

or a duplicate key to a dictionary container. The duplicate value is not added to the container object

regardless of the exception trap state.

The WCExcept::zero_buckets bit setting traps an attempt to resize of hash container to have zero

buckets. No resize is performed whether or not the exception is enabled.

70 Container Exception Classes

WCIterExcept

Declared: wcexcept.h

The WCIterExcept class provides the exception handling for the container iterators. If you have

compiled your code with exception handling enabled, the C++ exception processing can be used to

catch errors. Your source file must be compiled with the exception handling compile switch for C++

exception processing to occur. The iterators will attempt to set the class into a reasonable state if there

is an error and exception handling is not enabled, or if the trap for the specific error has not been

enabled by your program.

By default, no exception traps are enabled and no exceptions will be thrown. Exception traps are

enabled by setting the exception state with the exceptions member function.

The wcexcept.h header file is included by the header files for each of the iterator classes. There is

normally no need to explicitly include the wcexcept.h header file, but no errors will result if it is

included. This class is inherited as part of the base construction for each of the iterators. You do not

need to derive from it directly.

Public Enumerations

The following enumeration typedefs are declared in the public interface:

typedef int wciter_state;

Public Member Functions

The following public member functions are declared:

WCIterExcept();
virtual ~WCIterExcept();
wciter_state exceptions() const;
wciter_state exceptions(wciter_state);

Container Exception Classes 71

WCIterExcept::WCIterExcept()

Synopsis: #include <wcexcept.h>
public:
WCIterExcept();

Semantics: This form of the public WCIterExcept constructor creates an WCIterExcept object.

The public WCIterExcept constructor is used implicitly by the compiler when it generates a

constructor for a derived class.

Results: The public WCIterExcept constructor produces an initialized WCIterExcept object with no

exception traps enabled.

See Also: ~WCIterExcept

72 Container Exception Classes

WCIterExcept::~WCIterExcept()

Synopsis: #include <wcexcept.h>
public:
virtual ~WCIterExcept();

Semantics: The public ~WCIterExcept destructor does not do anything explicit. The call to the public

~WCIterExcept destructor is inserted implicitly by the compiler at the point where the object

derived from WCIterExcept goes out of scope.

Results: The object derived from WCIterExcept is destroyed.

See Also: WCIterExcept

Container Exception Classes 73

WCIterExcept::exceptions()

Synopsis: #include <wcexcept.h>
public:
wciter_state exceptions() const;
wciter_state exceptions(wciter_state set_flags);

Semantics: The exceptions public member function queries and/or sets the bits that control which exceptions

are enabled for the iterator class. Each bit corresponds to an exception, and is set if the exception is

enabled. The first form of the exceptions public member function returns the current settings of the

exception bits. The second form of the function sets the exception bits to those specified by set_flags.

Results: The current exception bits are returned. If a new set of bits are being set, the returned value is the old

set of exception bits.

74 Container Exception Classes

WCIterExcept::wciter_state

Synopsis: #include <wcexcept.h>
public:
enum wciterstate {
all_fine = 0x0000, // - no errors
check_none = all_fine,// - disable all exceptions
undef_iter = 0x0001, // - position is undefined
undef_item = 0x0002, // - iterator item is undefined
iter_range = 0x0004, // - advance value is bad
// value to use to check for all errors
check_all= (undef_iter|undef_item|iter_range)
};
typedef int wciter_state;

Semantics: The type WCIterExcept::wciterstate is a set of bits representing the current state of the

iterator. The WCIterExcept::wciter_state member typedef represents the same set of bits, but

uses an int to represent the values, thereby avoiding problems made possible by the compiler’s ability

to use smaller types for enumerations. All uses of these bits should use the

WCIterExcept::wciter_state member typedef.

The bit values defined by the WCIterExcept::wciter_state member typedef can be read and

set by the member function exceptions, which is used to control exception handling.

The WCIterExcept::undef_iter bit setting traps the use of the iterator when the position within

the container object is undefined. Trying to operate on an iterator with no associated container object,

increment an iterator which is after the last element, or decrement an iterator positioned before the first

element is an undefined operation.

The WCIterExcept::undef_item bit setting traps an attempt to obtain the current element of the

iterator when the iterator has no associated container object, or is positioned either before or after the

container elements. The undef_item exception can be thrown only by the key and value
dictionary iterator member functions, and the current member function for non-dictionary iterators.

The WCIterExcept::iter_range bit setting traps an attempt to use a iteration count value that

would place the iterator more than one element past the end or before the beginning of the container

elements. The iter_range exception can be thrown only by the operator += and operator
-= operators.

Container Exception Classes 75

WCIterExcept::wciter_state

76 Container Exception Classes

9 Container Allocators and Deallocators

Example

#include <iostream.h>
#include <wclist.h>
#include <wclistit.h>
#include <wcskip.h>
#include <wcskipit.h>
#include <stdlib.h>

#pragma warning 549 9

const int ElemsPerBlock = 50;

//
// Simple block allocation class. Allocate blocks for ElemsPerBlock
// elements, and use part of the block for each of the next ElemsPerBlock
// allocations, incrementing the number allocated elements. Repeat getting
// more blocks as needed.
//
// Store the blocks in an intrusive single linked list.
//
// On a element deallocation, assume we allocated the memory and just
// decrement the count of allocated elements. When the count gets to zero,
// free all allocated blocks
//
// This implementation assumes sizeof(char) == 1
//

class BlockAlloc {
private:

// the size of elements (in bytes)
unsigned elem_size;

// number of elements allocated
unsigned num_allocated;

// free space of this number of elements available in first block
unsigned num_free_in_block;

// list of blocks used to store elements (block are chunks of memory,
// pointed by (char *) pointers.
WCPtrSList<char> block_list;

// pointer to the first block in the list
char *curr_block;

public:
inline BlockAlloc(unsigned size)

: elem_size(size), num_allocated(0)
, num_free_in_block(0) {};

inline BlockAlloc() {
block_list.clearAndDestroy();

};

// get memory for an element using block allocation
void *allocator(size_t elem_size);

// free memory for an element using block allocation and deallocation
void deallocator(void *old_ptr, size_t elem_size);

};

Container Allocators and Deallocators 77

WCIterExcept::wciter_state

void *BlockAlloc::allocator(size_t size) {
// need a new block to perform allocation
if(num_free_in_block == 0) {

// allocate memory for ElemsPerBlock elements
curr_block = new char [size * ElemsPerBlock];
if(curr_block == 0) {

// allocation failed
return(0);

}
// add new block to beginning of list
if(!block_list.insert(curr_block)) {

// allocation of list element failed
delete[] curr_block;
return(0);

}
num_free_in_block = ElemsPerBlock;

}

// curr block points to a block of memory with some free memory
num_allocated++;
num_free_in_block--;
// return pointer to a free part of the block, starting at the end
// of the block
return(curr_block + num_free_in_block * size);

}

void BlockAlloc::deallocator(void *, size_t) {
// just decrement the count
// don’t free anything until all elements are deallocated
num_allocated--;
if(num_allocated == 0) {

// all the elements allocated BlockAlloc object have now been
// deallocated, free all the blocks
block_list.clearAndDestroy();
num_free_in_block = 0;

}
}

const unsigned NumTestElems = 200;

// array with random elements
static unsigned test_elems[NumTestElems];

static void fill_test_elems() {
for(int i = 0; i < NumTestElems; i++) {

test_elems[i] = rand();
}

}

void test_isv_list();
void test_val_list();
void test_val_skip_list();

void main() {
fill_test_elems();

test_isv_list();
test_val_list();
test_val_skip_list();

}

// An intrusive list class

class isvInt : public WCSLink {
public:

static BlockAlloc memory_manage;
int data;

78 Container Allocators and Deallocators

Container Allocators and Deallocators

isvInt(int datum) : data(datum) {};

void *operator new(size_t size) {
return(memory_manage.allocator(size));

};

void operator delete(void *old, size_t size) {
memory_manage.deallocator(old, size);

};
};

// define static member data
BlockAlloc isvInt::memory_manage(sizeof(isvInt));

void test_isv_list() {
WCIsvSList<isvInt> list;

for(int i = 0; i < NumTestElems; i++) {
list.insert(new isvInt(test_elems[i]));

}

WCIsvSListIter<isvInt> iter(list);
while(++iter) {

cout << iter.current()->data << " ";
}
cout << "\n\n\n";
list.clearAndDestroy();

}

// WCValSList<int> memory allocator/dealloctor support
static BlockAlloc val_list_manager(WCValSListItemSize(int));

static void *val_list_alloc(size_t size) {
return(val_list_manager.allocator(size));

}

static void val_list_dealloc(void *old, size_t size) {
val_list_manager.deallocator(old, size);

}

// test WCValSList<int>
void test_val_list() {

WCValSList<int> list(&val_list_alloc, &val_list_dealloc);

for(int i = 0; i < NumTestElems; i++) {
list.insert(test_elems[i]);

}

WCValSListIter<int> iter(list);
while(++iter) {

cout << iter.current() << " ";
}
cout << "\n\n\n";
list.clear();

}

// skip list allocator dealloctors: just use allocator and dealloctor
// functions on skip list elements with one and two pointers
// (this will handle 94% of the elements)
const int one_ptr_size = WCValSkipListItemSize(int, 1);

Container Allocators and Deallocators 79

WCIterExcept::wciter_state

const int two_ptr_size = WCValSkipListItemSize(int, 2);

static BlockAlloc one_ptr_manager(one_ptr_size);
static BlockAlloc two_ptr_manager(two_ptr_size);

static void *val_skip_list_alloc(size_t size) {
switch(size) {
case one_ptr_size:

return(one_ptr_manager.allocator(size));
case two_ptr_size:

return(two_ptr_manager.allocator(size));
default:

return(new char[size]);
}

}

static void val_skip_list_dealloc(void *old, size_t size) {
switch(size) {
case one_ptr_size:

one_ptr_manager.deallocator(old, size);
break;

case two_ptr_size:
two_ptr_manager.deallocator(old, size);
break;

default:
delete old;
break;

}
}

// test WCValSkipList<int>
void test_val_skip_list() {

WCValSkipList<int> skiplist(WCSKIPLIST_PROB_QUARTER
, WCDEFAULT_SKIPLIST_MAX_PTRS
, &val_skip_list_alloc
, &val_skip_list_dealloc);

for(int i = 0; i < NumTestElems; i++) {
skiplist.insert(test_elems[i]);

}

WCValSkipListIter<int> iter(skiplist);
while(++iter) {

cout << iter.current() << " ";
}
cout << "\n\n\n";
skiplist.clear();

}

80 Container Allocators and Deallocators

10 Hash Containers

This chapter describes hash containers.

Hash Containers 81

WCPtrHashDict<Key,Value>

Declared: wchash.h

The WCPtrHashDict<Key,Value> class is a templated class used to store objects in a dictionary.

Dictionaries store values with an associated key, which may be of any type. One example of a

dictionary used in everyday life is the phone book. The phone numbers are the data values, and the

customer name is the key. An example of a specialized dictionary is a vector, where the key value is the

integer index.

As an element is looked up or inserted into the dictionary, the associated key is hashed. Hashing

converts the key into a numeric index value which is used to locate the value. The storage area

referenced by the hash value is usually called a bucket. If more than one key results in the same hash,

the values associated with the keys are placed in a list stored in the bucket. The equality operator of the

key’s type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template parameter

defining the type of the indices pointed to by the pointers stored in the dictionary. The text Value is

used to indicate the template parameter defining the type of the data pointed to by the pointers stored in

the dictionary.

The constructor for the WCPtrHashDict<Key,Value> class requires a hashing function, which

given a reference to Key, returns an unsigned value. The returned value modulo the number of

buckets determines the bucket into which the key-value pair will be located. The return values of the

hash function can be spread over the entire range of unsigned numbers. The hash function return value

must be the same for values which are equivalent by the equivalence operator for Key.

Note that pointers to the key values are stored in the dictionary. Destructors are not called on the keys

pointed to. The key values pointed to in the dictionary should not be changed such that the equivalence

to the old value is modified.

The WCExcept class is a base class of the WCPtrHashDict<Key,Value> class and provides the

exceptions member function. This member function controls the exceptions which can be thrown

by the WCPtrHashDict<Key,Value> object. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Key

The WCPtrHashDict<Key,Value> class requires Key to have:

A well defined equivalence operator with constant parameters

(int operator ==(const Key &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCPtrHashDict(unsigned (*hash_fn)(const Key &), unsigned =
WC_DEFAULT_HASH_SIZE);
WCPtrHashDict(unsigned (*hash_fn)(const Key &), unsigned =
WC_DEFAULT_HASH_SIZE, void * (*user_alloc)(size_t size), void
(*user_dealloc)(void *old, size_t size));
WCPtrHashDict(const WCPtrHashDict &);
virtual ~WCPtrHashDict();
static unsigned bitHash(const void *, size_t);
unsigned buckets() const;
void clear();

82 Hash Containers

WCPtrHashDict<Key,Value>

void clearAndDestroy();
int contains(const Key *) const;
unsigned entries() const;
Value * find(const Key *) const;
Value * findKeyAndValue(const Key *, Key * &) const;
void forAll(void (*user_fn)(Key *, Value *, void *) , void *);
int insert(Key *, Value *);
int isEmpty() const;
Value * remove(const Key *);
void resize(unsigned);

Public Member Operators

The following member operators are declared in the public interface:

Value * & operator [](const Key &);
const Value * & operator [](const Key &) const;
WCPtrHashDict & operator =(const WCPtrHashDict &);
int operator ==(const WCPtrHashDict &) const;

Hash Containers 83

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis: #include <wchash.h>
public:
WCPtrHashDict(unsigned (*hash_fn)(const Key &),
unsigned = WC_DEFAULT_HASH_SIZE);

Semantics: The public WCPtrHashDict<Key,Value> constructor creates an

WCPtrHashDict<Key,Value> object with no entries and with the number of buckets in the second

optional parameter, which defaults to the constant WC_DEFAULT_HASH_SIZE (currently defined as

101). The number of buckets specified must be greater than zero, and will be forced to at least one. If

the hash dictionary object can be created, but an allocation failure occurs when creating the buckets, the

table will be created with zero buckets. If the out_of_memory exception is enabled, then attempting

to insert into a hash table with zero buckets with throw an out_of_memory error.

The hash function hash_fn is used to determine which bucket each key-value pair will be assigned. If

no hash function exists, the static member function bitHash is available to help create one.

Results: The public WCPtrHashDict<Key,Value> constructor creates an initialized

WCPtrHashDict<Key,Value> object with the specified number of buckets and hash function.

See Also: ~WCPtrHashDict, bitHash, WCExcept::out_of_memory

84 Hash Containers

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis: #include <wchash.h>
public:
WCPtrHashDict(unsigned (*hash_fn)(const Key &),
unsigned = WC_DEFAULT_HASH_SIZE,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

hash dictionary. The semantics of this constructor are the same as the constructor without the memory

management functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a hash dictionary. To determine the size of the objects that the memory

management functions will be required to allocate and free, the following macro may be used:
WCPtrHashDictItemSize(Key, Value)

Results: The public WCPtrHashDict<Key,Value> constructor creates an initialized

WCPtrHashDict<Key,Value> object with the specified number of buckets and hash function.

See Also: ~WCPtrHashDict, bitHash, WCExcept::out_of_memory

Hash Containers 85

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis: #include <wchash.h>
public:
WCPtrHashDict(const WCPtrHashDict &);

Semantics: The public WCPtrHashDict<Key,Value> constructor is the copy constructor for the

WCPtrHashDict<Key,Value> class. The new dictionary is created with the same number of

buckets, hash function, all values or pointers stored in the dictionary, and the exception trap states. If

the hash dictionary object can be created, but an allocation failure occurs when creating the buckets, the

table will be created with zero buckets. If there is not enough memory to copy all of the values in the

dictionary, then only some will be copied, and the number of entries will correctly reflect the number

copied. If all of the elements cannot be copied, then the out_of_memory exception is thrown if it is

enabled.

Results: The public WCPtrHashDict<Key,Value> constructor creates an

WCPtrHashDict<Key,Value> object which is a copy of the passed dictionary.

See Also: ~WCPtrHashDict, operator =, WCExcept::out_of_memory

86 Hash Containers

WCPtrHashDict<Key,Value>::~WCPtrHashDict()

Synopsis: #include <wchash.h>
public:
virtual ~WCPtrHashDict();

Semantics: The public ~WCPtrHashDict<Key,Value> destructor is the destructor for the

WCPtrHashDict<Key,Value> class. If the number of dictionary elements is not zero and the

not_empty exception is enabled, the exception is thrown. Otherwise, the dictionary elements are

cleared using the clear member function. The objects which the dictionary elements point to are not

deleted unless the clearAndDestroy member function is explicitly called before the destructor is

called. The call to the public ~WCPtrHashDict<Key,Value> destructor is inserted implicitly by

the compiler at the point where the WCPtrHashDict<Key,Value> object goes out of scope.

Results: The public ~WCPtrHashDict<Key,Value> destructor destroys an

WCPtrHashDict<Key,Value> object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

Hash Containers 87

WCPtrHashDict<Key,Value>::bitHash()

Synopsis: #include <wchash.h>
public:
static unsigned bitHash(void *, size_t);

Semantics: The bitHash public member function can be used to implement a hashing function for any type. A

hashing value is generated from the value stored for the number of specified bytes pointed to by the first

parameter.

Results: The bitHash public member function returns an unsigned value which can be used as the basis of a

user defined hash function.

See Also: WCPtrHashDict

88 Hash Containers

WCPtrHashDict<Key,Value>::buckets()

Synopsis: #include <wchash.h>
public:
unsigned buckets const;

Semantics: The buckets public member function is used to find the number of buckets contained in the

WCPtrHashDict<Key,Value> object.

Results: The buckets public member function returns the number of buckets in the dictionary.

See Also: resize

Hash Containers 89

WCPtrHashDict<Key,Value>::clear()

Synopsis: #include <wchash.h>
public:
void clear();

Semantics: The clear public member function is used to clear the dictionary so that it has no entries. The number

of buckets remain unaffected. Objects pointed to by the dictionary elements are not deleted. The

dictionary object is not destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the dictionary to have no elements.

See Also: ~WCPtrHashDict, clearAndDestroy, operator =

90 Hash Containers

WCPtrHashDict<Key,Value>::clearAndDestroy()

Synopsis: #include <wchash.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the dictionary and delete the objects

pointed to by the dictionary elements. The dictionary object is not destroyed and re-created by this

function, so the dictionary object destructor is not invoked.

Results: The clearAndDestroy public member function clears the dictionary by deleting the objects pointed

to by the dictionary elements.

See Also: clear

Hash Containers 91

WCPtrHashDict<Key,Value>::contains()

Synopsis: #include <wchash.h>
public:
int contains(const Key *) const;

Semantics: The contains public member function returns non-zero if an element with the specified key is stored

in the dictionary, or zero if there is no equivalent element. Note that equivalence is based on the

equivalence operator of the Key type.

Results: The contains public member function returns a non-zero value if the Key is found in the dictionary.

See Also: find, findKeyAndValue

92 Hash Containers

WCPtrHashDict<Key,Value>::entries()

Synopsis: #include <wchash.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements stored in the

dictionary.

Results: The entries public member function returns the number of elements in the dictionary.

See Also: buckets, isEmpty

Hash Containers 93

WCPtrHashDict<Key,Value>::find()

Synopsis: #include <wchash.h>
public:
Value * find(const Key *) const;

Semantics: The find public member function is used to find an element with an equivalent key in the dictionary.

If an equivalent element is found, a pointer to the element Value is returned. Zero is returned if the

element is not found. Note that equivalence is based on the equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

94 Hash Containers

WCPtrHashDict<Key,Value>::findKeyAndValue()

Synopsis: #include <wchash.h>
public:
Value * findKeyAndValue(const Key *,
Key &, Value &) const;

Semantics: The findKeyAndValue public member function is used to find an element in the dictionary with an

key equivalent to the first parameter. If an equivalent element is found, a pointer to the element Value
is returned. The reference to a Key passed as the second parameter is assigned the found element’s key.

Zero is returned if the element is not found. Note that equivalence is based on the equivalence operator

of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

Hash Containers 95

WCPtrHashDict<Key,Value>::forAll()

Synopsis: #include <wchash.h>
public:
void forAll(
void (*user_fn)(Key *, Value *, void *),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for every

key-value pair in the dictionary. The user function has the prototype

void user_func(Key * key, Value * value, void * data);

As the elements are visited, the user function is invoked with the Key and Value components of the

element passed as the first two parameters. The second parameter of the forAll function is passed as

the third parameter to the user function. This value can be used to pass any appropriate data from the

main code to the user function.

Results: The elements in the dictionary are all visited, with the user function being invoked for each one.

See Also: find, findKeyAndValue

96 Hash Containers

WCPtrHashDict<Key,Value>::insert()

Synopsis: #include <wchash.h>
public:
int insert(Key *, Value *);

Semantics: The insert public member function inserts a key and value into the dictionary, using the hash

function on the key to determine to which bucket it should be stored. If allocation of the node to store

the key-value pair fails, then the out_of_memory exception is thrown if it is enabled. If the

exception is not enabled, the insert will not be completed.

At some point, the number of buckets initially selected may be too small for the number of elements

inserted. The resize of the dictionary can be controlled by the insertion mechanism by using

WCPtrHashDict as a base class, and providing an insert member function to do a resize when

appropriate. This insert could then call WCPtrHashDict::insert to insert the element. Note that

copy constructors and assignment operators are not inherited in your class, but you can provide the

following inline definitions (assuming that the class inherited from WCPtrHashDict is named

MyHashDict):

inline MyHashDict(const MyHashDict &orig) : WCPtrHashDict(orig) {};
inline MyHashDict &operator=(const MyHashDict &orig) {

return(WCPtrHashDict::operator=(orig));
}

Results: The insert public member function inserts a key and value into the dictionary. If the insert is

successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =, WCExcept::out_of_memory

Hash Containers 97

WCPtrHashDict<Key,Value>::isEmpty()

Synopsis: #include <wchash.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the dictionary is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero if the

dictionary is empty.

See Also: buckets, entries

98 Hash Containers

WCPtrHashDict<Key,Value>::operator []()

Synopsis: #include <wchash.h>
public:
Value * & operator[](const Key &);

Semantics: operator [] is the dictionary index operator. A reference to the object stored in the dictionary with

the given Key is returned. If no equivalent element is found, then a new key-value pair is created with

the specified Key value, and initialized with the default constructor. The returned reference can then be

assigned to, so that insertions can be made with the operator. If an allocation error occurs while

inserting a new key-value pair, then the out_of_memory exception is thrown if it is enabled. If the

exception is not enabled, then a reference to address zero will be returned. This will result in a run-time

error on systems which trap address zero references.

Results: The operator [] public member function returns a reference to the element at the given key value.

If the key does not exist, a reference to a created element is returned. The result of the operator may be

assigned to.

See Also: WCExcept::out_of_memory

Hash Containers 99

WCPtrHashDict<Key,Value>::operator []()

Synopsis: #include <wchash.h>
public:
Value * const & operator[](const Key *) const;

Semantics: operator [] is the dictionary index operator. A constant reference to the object stored in the

dictionary with the given Key is returned. If no equivalent element is found, then the index_range
exception is thrown if it is enabled. If the exception is not enabled, then a reference to address zero will

be returned. This will result in a run-time error on systems which trap address zero references.

Results: The operator [] public member function returns a constant reference to the element at the given

key value. The result of the operator may not be assigned to.

See Also: WCExcept::index_range

100 Hash Containers

WCPtrHashDict<Key,Value>::operator =()

Synopsis: #include <wchash.h>
public:
WCPtrHashDict & operator =(const WCPtrHashDict &);

Semantics: The operator = public member function is the assignment operator for the

WCPtrHashDict<Key,Value> class. The left hand side dictionary is first cleared using the

clear member function, and then the right hand side dictionary is copied. The hash function,

exception trap states, and all of the dictionary elements are copied. If an allocation failure occurs when

creating the buckets, the table will be created with zero buckets, and the out_of_memory exception

is thrown if it is enabled. If there is not enough memory to copy all of the values or pointers in the

dictionary, then only some will be copied, and the out_of_memory exception is thrown if it is

enabled. The number of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side dictionary to be a copy of the

right hand side.

See Also: clear, WCExcept::out_of_memory

Hash Containers 101

WCPtrHashDict<Key,Value>::operator ==()

Synopsis: #include <wchash.h>
public:
int operator ==(const WCPtrHashDict &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCPtrHashDict<Key,Value> class. Two dictionary objects are equivalent if they are the same

object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side dictionary are the same

object. A FALSE (zero) value is returned otherwise.

102 Hash Containers

WCPtrHashDict<Key,Value>::remove()

Synopsis: #include <wchash.h>
public:
Value * remove(const Key *);

Semantics: The remove public member function is used to remove the specified element from the dictionary. If

an equivalent element is found, the pointer value is returned. Zero is returned if the element is not

found. Note that equivalence is based on the equivalence operator of the Key type.

Results: The element is removed from the dictionary if it found.

Hash Containers 103

WCPtrHashDict<Key,Value>::resize()

Synopsis: #include <wchash.h>
public:
void resize(unsigned);

Semantics: The resize public member function is used to change the number of buckets contained in the

dictionary. If the new number is larger than the previous dictionary size, then the hash function will be

used on all of the stored elements to determine which bucket they should be stored into. Entries are not

destroyed or created in the process of being moved. If there is not enough memory to resize the

dictionary, the out_of_memory exception is thrown if it is enabled, and the dictionary will contain

the number of buckets it contained before the resize. If the new number is zero, then the

zero_buckets exception is thrown if it is enabled, and no resize will be performed. The dictionary

is guaranteed to contain the same number of entries after the resize.

Results: The dictionary is resized to the new number of buckets.

See Also: WCExcept::out_of_memory, WCExcept::zero_buckets

104 Hash Containers

WCPtrHashTable<Type>, WCPtrHashSet<Type>

Declared: wchash.h

WCPtrHashTable<Type> and WCPtrHashSet<Type> classes are templated classes used to store

objects in a hash. A hash saves objects in such a way as to make it efficient to locate and retrieve an

element. As an element is looked up or inserted into the hash, the value of the element is hashed.

Hashing results in a numeric index which is used to locate the value. The storage area referenced by the

hash value is usually called a bucket. If more than one element results in the same hash, the value

associated with the hash is placed in a list stored in the bucket. A hash table allows more than one copy

of an element that is equivalent, while the hash set allows only one copy. The equality operator of the

element’s type is used to locate the value.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type of the data pointed to by the pointers stored in the hash.

The constructor for the WCPtrHashTable<Type> and WCPtrHashSet<Type> classes requires a

hashing function, which given a reference to Type, returns an unsigned value. The returned value

modulo the number of buckets determines the bucket into which the element will be located. The return

values of the hash function can be spread over the entire range of unsigned numbers. The hash function

return value must be the same for values which are equivalent by the equivalence operator for Type.

Note that pointers to the elements are stored in the hash. Destructors are not called on the elements

pointed to. The data values pointed to in the hash should not be changed such that the equivalence to

the old value is modified.

The WCExcept class is a base class of the WCPtrHashTable<Type> and

WCPtrHashSet<Type> classes and provides the exceptions member function. This member

function controls the exceptions which can be thrown by the WCPtrHashTable<Type> and

WCPtrHashSet<Type> objects. No exceptions are enabled unless they are set by the exceptions
member function.

Requirements of Type

The WCPtrHashTable<Type> and WCPtrHashSet<Type> classes requires Type to have:

A well defined equivalence operator with constant parameters

(int operator ==(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCPtrHashSet(unsigned (*hash_fn)(const Type &), unsigned =
WC_DEFAULT_HASH_SIZE);
WCPtrHashSet(unsigned (*hash_fn)(const Type &), unsigned =
WC_DEFAULT_HASH_SIZE, void * (*user_alloc)(size_t size), void
(*user_dealloc)(void *old, size_t size));
WCPtrHashSet(const WCPtrHashSet &);
virtual ~WCPtrHashSet();
WCPtrHashTable(unsigned (*hash_fn)(const Type &), unsigned =
WC_DEFAULT_HASH_SIZE);
WCPtrHashTable(unsigned (*hash_fn)(const Type &), unsigned =
WC_DEFAULT_HASH_SIZE, void * (*user_alloc)(size_t size), void
(*user_dealloc)(void *old, size_t size));
WCPtrHashTable(const WCPtrHashTable &);
virtual ~WCPtrHashTable();

Hash Containers 105

WCPtrHashTable<Type>, WCPtrHashSet<Type>

static unsigned bitHash(const void *, size_t);
unsigned buckets() const;
void clear();
void clearAndDestroy();
int contains(const Type *) const;
unsigned entries() const;
Type * find(const Type *) const;
void forAll(void (*user_fn)(Type *, void *) , void *);
int insert(Type *);
int isEmpty() const;
Type * remove(const Type *);
void resize(unsigned);

The following public member functions are available for the WCPtrHashTable class only:

unsigned occurrencesOf(const Type *) const;
unsigned removeAll(const Type *);

Public Member Operators

The following member operators are declared in the public interface:

WCPtrHashSet & operator =(const WCPtrHashSet &);
int operator ==(const WCPtrHashSet &) const;
WCPtrHashTable & operator =(const WCPtrHashTable &);
int operator ==(const WCPtrHashTable &) const;

106 Hash Containers

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis: #include <wchash.h>
public:
WCPtrHashSet(unsigned (*hash_fn)(const Type &),
unsigned = WC_DEFAULT_HASH_SIZE);

Semantics: The WCPtrHashSet<Type> constructor creates a WCPtrHashSet object with no entries and with

the number of buckets in the second optional parameter, which defaults to the constant

WC_DEFAULT_HASH_SIZE (currently defined as 101). The number of buckets specified must be

greater than zero, and will be forced to at least one. If the hash object can be created, but an allocation

failure occurs when creating the buckets, the table will be created with zero buckets. If the

out_of_memory exception is enabled, then attempting to insert into a hash table with zero buckets

with throw an out_of_memory error.

The hash function hash_fn is used to determine which bucket each value will be assigned to. If no

hash function exists, the static member function bitHash is available to help create one.

Results: The WCPtrHashSet<Type> constructor creates an initialized WCPtrHashSet object with the

specified number of buckets and hash function.

See Also: ~WCPtrHashSet, bitHash, WCExcept::out_of_memory

Hash Containers 107

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis: #include <wchash.h>
public:
WCPtrHashSet(unsigned (*hash_fn)(const Type &),
unsigned = WC_DEFAULT_HASH_SIZE,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

hash. The semantics of this constructor are the same as the constructor without the memory

management functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a hash. To determine the size of the objects that the memory management

functions will be required to allocate and free, the following macro may be used:
WCPtrHashSetItemSize(Type)

Results: The WCPtrHashSet<Type> constructor creates an initialized WCPtrHashSet object with the

specified number of buckets and hash function.

See Also: ~WCPtrHashSet, bitHash, WCExcept::out_of_memory

108 Hash Containers

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis: #include <wchash.h>
public:
WCPtrHashSet(const WCPtrHashSet &);

Semantics: The WCPtrHashSet<Type> is the copy constructor for the WCPtrHashSet class. The new hash is

created with the same number of buckets, hash function, all values or pointers stored in the hash, and

the exception trap states. If the hash object can be created, but an allocation failure occurs when

creating the buckets, the hash will be created with zero buckets. If there is not enough memory to copy

all of the values, then only some will be copied, and the number of entries will correctly reflect the

number copied. If all of the elements cannot be copied, then the out_of_memory exception is

thrown if it is enabled.

Results: The WCPtrHashSet<Type> constructor creates a WCPtrHashSet object which is a copy of the

passed hash.

See Also: ~WCPtrHashSet, operator =, WCExcept::out_of_memory

Hash Containers 109

WCPtrHashSet<Type>::~WCPtrHashSet()

Synopsis: #include <wchash.h>
public:
virtual ~WCPtrHashSet();

Semantics: The WCPtrHashSet<Type> destructor is the destructor for the WCPtrHashSet class. If the

number of elements is not zero and the not_empty exception is enabled, the exception is thrown.

Otherwise, the hash elements are cleared using the clear member function. The objects which the

hash elements point to are not deleted unless the clearAndDestroy member function is explicitly

called before the destructor is called. The call to the WCPtrHashSet<Type> destructor is inserted

implicitly by the compiler at the point where the WCPtrHashSet object goes out of scope.

Results: The call to the WCPtrHashSet<Type> destructor destroys a WCPtrHashSet object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

110 Hash Containers

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis: #include <wchash.h>
public:
WCPtrHashTable(unsigned (*hash_fn)(const Type &),
unsigned = WC_DEFAULT_HASH_SIZE);

Semantics: The WCPtrHashTable<Type> constructor creates a WCPtrHashTable object with no entries and

with the number of buckets in the second optional parameter, which defaults to the constant

WC_DEFAULT_HASH_SIZE (currently defined as 101). The number of buckets specified must be

greater than zero, and will be forced to at least one. If the hash object can be created, but an allocation

failure occurs when creating the buckets, the table will be created with zero buckets. If the

out_of_memory exception is enabled, then attempting to insert into a hash table with zero buckets

with throw an out_of_memory error.

The hash function hash_fn is used to determine which bucket each value will be assigned to. If no

hash function exists, the static member function bitHash is available to help create one.

Results: The WCPtrHashTable<Type> constructor creates an initialized WCPtrHashTable object with

the specified number of buckets and hash function.

See Also: ~WCPtrHashTable, bitHash, WCExcept::out_of_memory

Hash Containers 111

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis: #include <wchash.h>
public:
WCPtrHashTable(unsigned (*hash_fn)(const Type &),
unsigned = WC_DEFAULT_HASH_SIZE,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

hash. The semantics of this constructor are the same as the constructor without the memory

management functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a hash. To determine the size of the objects that the memory management

functions will be required to allocate and free, the following macro may be used:
WCPtrHashTableItemSize(Type)

Results: The WCPtrHashTable<Type> constructor creates an initialized WCPtrHashTable object with

the specified number of buckets and hash function.

See Also: ~WCPtrHashTable, bitHash, WCExcept::out_of_memory

112 Hash Containers

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis: #include <wchash.h>
public:
WCPtrHashTable(const WCPtrHashTable &);

Semantics: The WCPtrHashTable<Type> is the copy constructor for the WCPtrHashTable class. The new

hash is created with the same number of buckets, hash function, all values or pointers stored in the hash,

and the exception trap states. If the hash object can be created, but an allocation failure occurs when

creating the buckets, the hash will be created with zero buckets. If there is not enough memory to copy

all of the values, then only some will be copied, and the number of entries will correctly reflect the

number copied. If all of the elements cannot be copied, then the out_of_memory exception is

thrown if it is enabled.

Results: The WCPtrHashTable<Type> constructor creates a WCPtrHashTable object which is a copy of

the passed hash.

See Also: ~WCPtrHashTable, operator =, WCExcept::out_of_memory

Hash Containers 113

WCPtrHashTable<Type>::~WCPtrHashTable()

Synopsis: #include <wchash.h>
public:
virtual ~WCPtrHashTable();

Semantics: The WCPtrHashTable<Type> destructor is the destructor for the WCPtrHashTable class. If the

number of elements is not zero and the not_empty exception is enabled, the exception is thrown.

Otherwise, the hash elements are cleared using the clear member function. The objects which the

hash elements point to are not deleted unless the clearAndDestroy member function is explicitly

called before the destructor is called. The call to the WCPtrHashTable<Type> destructor is inserted

implicitly by the compiler at the point where the WCPtrHashTable object goes out of scope.

Results: The call to the WCPtrHashTable<Type> destructor destroys a WCPtrHashTable object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

114 Hash Containers

WCPtrHashTable<Type>::bitHash(), WCPtrHashSet<Type>::bitHash()

Synopsis: #include <wchash.h>
public:
static unsigned bitHash(void *, size_t);

Semantics: The bitHash public member function can be used to implement a hashing function for any type. A

hashing value is generated from the value stored for the number of specified bytes pointed to by the first

parameter.

Results: The bitHash public member function returns an unsigned value which can be used as the basis of a

user defined hash function.

See Also: WCPtrHashSet, WCPtrHashTable

Hash Containers 115

WCPtrHashTable<Type>::buckets(), WCPtrHashSet<Type>::buckets()

Synopsis: #include <wchash.h>
public:
unsigned buckets() const;

Semantics: The buckets public member function is used to find the number of buckets contained in the hash

object.

Results: The buckets public member function returns the number of buckets in the hash.

See Also: resize

116 Hash Containers

WCPtrHashTable<Type>::clear(), WCPtrHashSet<Type>::clear()

Synopsis: #include <wchash.h>
public:
void clear();

Semantics: The clear public member function is used to clear the hash so that it has no entries. The number of

buckets remain unaffected. Objects pointed to by the hash elements are not deleted. The hash object is

not destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the hash to have no elements.

See Also: ~WCPtrHashSet, ~WCPtrHashTable, clearAndDestroy, operator =

Hash Containers 117

WCPtrHashTable<Type>,WCPtrHashSet<Type>::clearAndDestroy()

Synopsis: #include <wchash.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the hash and delete the objects

pointed to by the hash elements. The hash object is not destroyed and re-created by this function, so the

hash object destructor is not invoked.

Results: The clearAndDestroy public member function clears the hash by deleting the objects pointed to by

the hash elements.

See Also: clear

118 Hash Containers

WCPtrHashTable<Type>::contains(), WCPtrHashSet<Type>::contains()

Synopsis: #include <wchash.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function returns non-zero if the element is stored in the hash, or zero if

there is no equivalent element. Note that equivalence is based on the equivalence operator of the

element type.

Results: The contains public member function returns a non-zero value if the element is found in the hash.

See Also: find

Hash Containers 119

WCPtrHashTable<Type>::entries(), WCPtrHashSet<Type>::entries()

Synopsis: #include <wchash.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements stored in the

hash.

Results: The entries public member function returns the number of elements in the hash.

See Also: buckets, isEmpty

120 Hash Containers

WCPtrHashTable<Type>::find(), WCPtrHashSet<Type>::find()

Synopsis: #include <wchash.h>
public:
Type * find(const Type *) const;

Semantics: The find public member function is used to find an element with an equivalent key in the hash. If an

equivalent element is found, a pointer to the element is returned. Zero is returned if the element is not

found. Note that equivalence is based on the equivalence operator of the element type.

Results: The element equivalent to the passed key is located in the hash.

Hash Containers 121

WCPtrHashTable<Type>::forAll(), WCPtrHashSet<Type>::forAll()

Synopsis: #include <wchash.h>
public:
void forAll(
void (*user_fn)(Type *, void *),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for every value in

the hash. The user function has the prototype

void user_func(Type * value, void * data);

As the elements are visited, the user function is invoked with the element passed as the first. The

second parameter of the forAll function is passed as the second parameter to the user function. This

value can be used to pass any appropriate data from the main code to the user function.

Results: The elements in the hash are all visited, with the user function being invoked for each one.

See Also: find

122 Hash Containers

WCPtrHashTable<Type>::insert(), WCPtrHashSet<Type>::insert()

Synopsis: #include <wchash.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts a value into the hash, using the hash function to determine

to which bucket it should be stored. If allocation of the node to store the value fails, then the

out_of_memory exception is thrown if it is enabled. If the exception is not enabled, the insert will

not be completed.

With a WCPtrHashSet, there must be only one equivalent element in the set. If an element

equivalent to the inserted element is already in the hash set, the hash set will remain unchanged, and the

not_unique exception is thrown if it is enabled. If the exception is not enabled, the insert will not be

completed.

At some point, the number of buckets initially selected may be too small for the number of elements

inserted. The resize of the hash can be controlled by the insertion mechanism by using

WCPtrHashSet (or WCPtrHashTable) as a base class, and providing an insert member function to

do a resize when appropriate. This insert could then call WCPtrHashSet::insert (or

WCPtrHashTable::insert) to insert the element. Note that copy constructors and assignment

operators are not inherited in your class, but you can provide the following inline definitions (assuming

that the class inherited from WCPtrHashTable is named MyHashTable):

inline MyHashTable(const MyHashTable &orig)
: WCPtrHashTable(orig) {};

inline MyHashTable &operator=(const MyHashTable &orig) {
return(WCPtrHashTable::operator=(orig));

}

Results: The insert public member function inserts a value into the hash. If the insert is successful, a

non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =, WCExcept::out_of_memory

Hash Containers 123

WCPtrHashTable<Type>::isEmpty(), WCPtrHashSet<Type>::isEmpty()

Synopsis: #include <wchash.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the hash is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero if the hash

is empty.

See Also: buckets, entries

124 Hash Containers

WCPtrHashTable<Type>::occurencesOf()

Synopsis: #include <wchash.h>
public:
unsigned occurrencesOf(const Type *) const;

Semantics: The occurencesOf public member function is used to return the current number of elements stored

in the hash which are equivalent to the passed value. Note that equivalence is based on the equivalence

operator of the element type.

Results: The occurencesOf public member function returns the number of elements in the hash.

See Also: buckets, entries, find, isEmpty

Hash Containers 125

WCPtrHashTable<Type>::operator =(), WCPtrHashSet<Type>::operator =()

Synopsis: #include <wchash.h>
public:
WCPtrHashSet & operator =(const WCPtrHashSet &);
WCPtrHashTable & operator =(const WCPtrHashTable &);

Semantics: The operator = public member function is the assignment operator for the

WCPtrHashTable<Type> and WCPtrHashSet<Type> classes. The left hand side hash is first

cleared using the clear member function, and then the right hand side hash is copied. The hash

function, exception trap states, and all of the hash elements are copied. If an allocation failure occurs

when creating the buckets, the table will be created with zero buckets, and the out_of_memory
exception is thrown if it is enabled. If there is not enough memory to copy all of the values or pointers

in the hash, then only some will be copied, and the out_of_memory exception is thrown if it is

enabled. The number of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side hash to be a copy of the right

hand side.

See Also: clear, WCExcept::out_of_memory

126 Hash Containers

WCPtrHashTable<Type>::operator ==(), WCPtrHashSet<Type>::operator ==()

Synopsis: #include <wchash.h>
public:
int operator ==(const WCPtrHashSet &) const;
int operator ==(const WCPtrHashTable &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCPtrHashTable<Type> and WCPtrHashSet<Type> classes. Two hash objects are equivalent

if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side hash are the same object.

A FALSE (zero) value is returned otherwise.

Hash Containers 127

WCPtrHashTable<Type>::remove(), WCPtrHashSet<Type>::remove()

Synopsis: #include <wchash.h>
public:
Type * remove(const Type *);

Semantics: The remove public member function is used to remove the specified element from the hash. If an

equivalent element is found, the pointer value is returned. Zero is returned if the element is not found.

If the hash is a table and there is more than one element equivalent to the specified element, then the

first equivalent element added to the table is removed. Note that equivalence is based on the

equivalence operator of the element type.

Results: The element is removed from the hash if it found.

128 Hash Containers

WCPtrHashTable<Type>::removeAll()

Synopsis: #include <wchash.h>
public:
unsigned removeAll(const Type *);

Semantics: The removeAll public member function is used to remove all elements equivalent to the specified

element from the hash. Zero is returned if no equivalent elements are found. Note that equivalence is

based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the hash.

Hash Containers 129

WCPtrHashTable<Type>::resize(), WCPtrHashSet<Type>::resize()

Synopsis: #include <wchash.h>
public:
void resize(unsigned);

Semantics: The resize public member function is used to change the number of buckets contained in the hash. If

the new number is larger than the previous hash size, then the hash function will be used on all of the

stored elements to determine which bucket they should be stored into. Entries are not destroyed or

created in the process of being moved. If there is not enough memory to resize the hash, the

out_of_memory exception is thrown if it is enabled, and the hash will contain the number of buckets

it contained before the resize. If the new number is zero, then the zero_buckets exception is

thrown if it is enabled, and no resize will be performed. The hash is guaranteed to contain the same

number of entries after the resize.

Results: The hash is resized to the new number of buckets.

See Also: WCExcept::out_of_memory, WCExcept::zero_buckets

130 Hash Containers

WCValHashDict<Key,Value>

Declared: wchash.h

The WCValHashDict<Key,Value> class is a templated class used to store objects in a dictionary.

Dictionaries store values with an associated key, which may be of any type. One example of a

dictionary used in everyday life is the phone book. The phone numbers are the data values, and the

customer name is the key. An example of a specialized dictionary is a vector, where the key value is the

integer index.

As an element is looked up or inserted into the dictionary, the associated key is hashed. Hashing

converts the key into a numeric index value which is used to locate the value. The storage area

referenced by the hash value is usually called a bucket. If more than one key results in the same hash,

the values associated with the keys are placed in a list stored in the bucket. The equality operator of the

key’s type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template parameter

defining the type of the indices used to store data in the dictionary. The text Value is used to indicate

the template parameter defining the type of the data stored in the dictionary.

The constructor for the WCValHashDict<Key,Value> class requires a hashing function, which

given a reference to Key, returns an unsigned value. The returned value modulo the number of

buckets determines the bucket into which the key-value pair will be located. The return values of the

hash function can be spread over the entire range of unsigned numbers. The hash function return value

must be the same for values which are equivalent by the equivalence operator for Key.

Values are copied into the dictionary, which could be undesirable if the stored objects are complicated

and copying is expensive. Value dictionaries should not be used to store objects of a base class if any

derived types of different sizes would be stored in the dictionary, or if the destructor for a derived class

must be called.

The WCExcept class is a base class of the WCValHashDict<Key,Value> class and provides the

exceptions member function. This member function controls the exceptions which can be thrown

by the WCValHashDict<Key,Value> object. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Key and Value

The WCValHashDict<Key,Value> class requires Key to have:

A default constructor (Key::Key()).

A well defined copy constructor (Key::Key(const Key &)).

A well defined assignment operator (Key & operator =(const Key &)).

A well defined equivalence operator with constant parameters

(int operator ==(const Key &) const).

The WCValHashDict<Key,Value> class requires Value to have:

A default constructor (Value::Value()).

A well defined copy constructor (Value::Value(const Value &)).

A well defined assignment operator (Value & operator =(const Value &)).

Hash Containers 131

WCValHashDict<Key,Value>

Public Member Functions

The following member functions are declared in the public interface:

WCValHashDict(unsigned (*hash_fn)(const Key &), unsigned =
WC_DEFAULT_HASH_SIZE);
WCValHashDict(unsigned (*hash_fn)(const Key &), unsigned =
WC_DEFAULT_HASH_SIZE, void * (*user_alloc)(size_t size), void
(*user_dealloc)(void *old, size_t size));
WCValHashDict(const WCValHashDict &);
virtual ~WCValHashDict();
static unsigned bitHash(const void *, size_t);
unsigned buckets() const;
void clear();
int contains(const Key &) const;
unsigned entries() const;
int find(const Key &, Value &) const;
int findKeyAndValue(const Key &, Key &, Value &) const;
void forAll(void (*user_fn)(Key, Value, void *), void *);
int insert(const Key &, const Value &);
int isEmpty() const;
int remove(const Key &);
void resize(unsigned);

Public Member Operators

The following member operators are declared in the public interface:

Value & operator [](const Key &);
const Value & operator [](const Key &) const;
WCValHashDict & operator =(const WCValHashDict &);
int operator ==(const WCValHashDict &) const;

132 Hash Containers

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis: #include <wchash.h>
public:
WCValHashDict(unsigned (*hash_fn)(const Key &),
unsigned = WC_DEFAULT_HASH_SIZE);

Semantics: The public WCValHashDict<Key,Value> constructor creates an

WCValHashDict<Key,Value> object with no entries and with the number of buckets in the second

optional parameter, which defaults to the constant WC_DEFAULT_HASH_SIZE (currently defined as

101). The number of buckets specified must be greater than zero, and will be forced to at least one. If

the hash dictionary object can be created, but an allocation failure occurs when creating the buckets, the

table will be created with zero buckets. If the out_of_memory exception is enabled, then attempting

to insert into a hash table with zero buckets with throw an out_of_memory error.

The hash function hash_fn is used to determine which bucket each key-value pair will be assigned. If

no hash function exists, the static member function bitHash is available to help create one.

Results: The public WCValHashDict<Key,Value> constructor creates an initialized

WCValHashDict<Key,Value> object with the specified number of buckets and hash function.

See Also: ~WCValHashDict, bitHash, WCExcept::out_of_memory

Hash Containers 133

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis: #include <wchash.h>
public:
WCValHashDict(unsigned (*hash_fn)(const Key &),
unsigned = WC_DEFAULT_HASH_SIZE,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

hash dictionary. The semantics of this constructor are the same as the constructor without the memory

management functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a hash dictionary. To determine the size of the objects that the memory

management functions will be required to allocate and free, the following macro may be used:
WCValHashDictItemSize(Key, Value)

Results: The public WCValHashDict<Key,Value> constructor creates an initialized

WCValHashDict<Key,Value> object with the specified number of buckets and hash function.

See Also: ~WCValHashDict, bitHash, WCExcept::out_of_memory

134 Hash Containers

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis: #include <wchash.h>
public:
WCValHashDict(const WCValHashDict &);

Semantics: The public WCValHashDict<Key,Value> constructor is the copy constructor for the

WCValHashDict<Key,Value> class. The new dictionary is created with the same number of

buckets, hash function, all values or pointers stored in the dictionary, and the exception trap states. If

the hash dictionary object can be created, but an allocation failure occurs when creating the buckets, the

table will be created with zero buckets. If there is not enough memory to copy all of the values in the

dictionary, then only some will be copied, and the number of entries will correctly reflect the number

copied. If all of the elements cannot be copied, then the out_of_memory exception is thrown if it is

enabled.

Results: The public WCValHashDict<Key,Value> constructor creates an

WCValHashDict<Key,Value> object which is a copy of the passed dictionary.

See Also: ~WCValHashDict, operator =, WCExcept::out_of_memory

Hash Containers 135

WCValHashDict<Key,Value>::~WCValHashDict()

Synopsis: #include <wchash.h>
public:
virtual ~WCValHashDict();

Semantics: The public ~WCValHashDict<Key,Value> destructor is the destructor for the

WCValHashDict<Key,Value> class. If the number of dictionary elements is not zero and the

not_empty exception is enabled, the exception is thrown. Otherwise, the dictionary elements are

cleared using the clear member function. The call to the public ~WCValHashDict<Key,Value>
destructor is inserted implicitly by the compiler at the point where the

WCValHashDict<Key,Value> object goes out of scope.

Results: The public ~WCValHashDict<Key,Value> destructor destroys an

WCValHashDict<Key,Value> object.

See Also: clear, WCExcept::not_empty

136 Hash Containers

WCValHashDict<Key,Value>::bitHash()

Synopsis: #include <wchash.h>
public:
static unsigned bitHash(void *, size_t);

Semantics: The bitHash public member function can be used to implement a hashing function for any type. A

hashing value is generated from the value stored for the number of specified bytes pointed to by the first

parameter. For example:

unsigned my_hash_fn(const int & key) {
return(WCValHashDict<int,String>::bitHash(&key, sizeof(int));

}
WCValHashDict<int,String> data_object(&my_hash_fn);

Results: The bitHash public member function returns an unsigned value which can be used as the basis of a

user defined hash function.

See Also: WCValHashDict

Hash Containers 137

WCValHashDict<Key,Value>::buckets()

Synopsis: #include <wchash.h>
public:
unsigned buckets const;

Semantics: The buckets public member function is used to find the number of buckets contained in the

WCValHashDict<Key,Value> object.

Results: The buckets public member function returns the number of buckets in the dictionary.

See Also: resize

138 Hash Containers

WCValHashDict<Key,Value>::clear()

Synopsis: #include <wchash.h>
public:
void clear();

Semantics: The clear public member function is used to clear the dictionary so that it has no entries. The number

of buckets remain unaffected. Elements stored in the dictionary are destroyed using the destructors of

Key and of Value. The dictionary object is not destroyed and re-created by this function, so the object

destructor is not invoked.

Results: The clear public member function clears the dictionary to have no elements.

See Also: ~WCValHashDict, operator =

Hash Containers 139

WCValHashDict<Key,Value>::contains()

Synopsis: #include <wchash.h>
public:
int contains(const Key &) const;

Semantics: The contains public member function returns non-zero if an element with the specified key is stored

in the dictionary, or zero if there is no equivalent element. Note that equivalence is based on the

equivalence operator of the Key type.

Results: The contains public member function returns a non-zero value if the Key is found in the dictionary.

See Also: find, findKeyAndValue

140 Hash Containers

WCValHashDict<Key,Value>::entries()

Synopsis: #include <wchash.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements stored in the

dictionary.

Results: The entries public member function returns the number of elements in the dictionary.

See Also: buckets, isEmpty

Hash Containers 141

WCValHashDict<Key,Value>::find()

Synopsis: #include <wchash.h>
public:
int find(const Key &, Value &) const;

Semantics: The find public member function is used to find an element with an equivalent key in the dictionary.

If an equivalent element is found, a non-zero value is returned. The reference to a Value passed as the

second argument is assigned the found element’s Value. Zero is returned if the element is not found.

Note that equivalence is based on the equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

142 Hash Containers

WCValHashDict<Key,Value>::findKeyAndValue()

Synopsis: #include <wchash.h>
public:
int findKeyAndValue(const Key &, Key &, Value &) const;

Semantics: The findKeyAndValue public member function is used to find an element in the dictionary with an

key equivalent to the first parameter. If an equivalent element is found, a non-zero value is returned.

The reference to a Key passed as the second parameter is assigned the found element’s key. The

reference to a Value passed as the third argument is assigned the found element’s Value. Zero is

returned if the element is not found. Note that equivalence is based on the equivalence operator of the

Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

Hash Containers 143

WCValHashDict<Key,Value>::forAll()

Synopsis: #include <wchash.h>
public:
void forAll(
void (*user_fn)(Key, Value, void *),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for every

key-value pair in the dictionary. The user function has the prototype

void user_func(Key key, Value value, void * data);

As the elements are visited, the user function is invoked with the Key and Value components of the

element passed as the first two parameters. The second parameter of the forAll function is passed as

the third parameter to the user function. This value can be used to pass any appropriate data from the

main code to the user function.

Results: The elements in the dictionary are all visited, with the user function being invoked for each one.

See Also: find, findKeyAndValue

144 Hash Containers

WCValHashDict<Key,Value>::insert()

Synopsis: #include <wchash.h>
public:
int insert(const Key &, const Value &);

Semantics: The insert public member function inserts a key and value into the dictionary, using the hash

function on the key to determine to which bucket it should be stored. If allocation of the node to store

the key-value pair fails, then the out_of_memory exception is thrown if it is enabled. If the

exception is not enabled, the insert will not be completed.

At some point, the number of buckets initially selected may be too small for the number of elements

inserted. The resize of the dictionary can be controlled by the insertion mechanism by using

WCValHashDict as a base class, and providing an insert member function to do a resize when

appropriate. This insert could then call WCValHashDict::insert to insert the element. Note that

copy constructors and assignment operators are not inherited in your class, but you can provide the

following inline definitions (assuming that the class inherited from WCValHashDict is named

MyHashDict):

inline MyHashDict(const MyHashDict &orig) : WCValHashDict(orig) {};
inline MyHashDict &operator=(const MyHashDict &orig) {

return(WCValHashDict::operator=(orig));
}

Results: The insert public member function inserts a key and value into the dictionary. If the insert is

successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =, WCExcept::out_of_memory

Hash Containers 145

WCValHashDict<Key,Value>::isEmpty()

Synopsis: #include <wchash.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the dictionary is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero if the

dictionary is empty.

See Also: buckets, entries

146 Hash Containers

WCValHashDict<Key,Value>::operator []()

Synopsis: #include <wchash.h>
public:
Value & operator[](const Key &);

Semantics: operator [] is the dictionary index operator. A reference to the object stored in the dictionary with

the given Key is returned. If no equivalent element is found, then a new key-value pair is created with

the specified Key value, and initialized with the default constructor. The returned reference can then be

assigned to, so that insertions can be made with the operator.

WCValHashDict<int,String> data_object(&my_hash_fn);
data_object[5] = "Hello";

If an allocation error occurs while inserting a new key-value pair, then the out_of_memory
exception is thrown if it is enabled. If the exception is not enabled, then a reference to address zero will

be returned. This will result in a run-time error on systems which trap address zero references.

Results: The operator [] public member function returns a reference to the element at the given key value.

If the key does not exist, a reference to a created element is returned. The result of the operator may be

assigned to.

See Also: WCExcept::out_of_memory

Hash Containers 147

WCValHashDict<Key,Value>::operator []()

Synopsis: #include <wchash.h>
public:
const Value & operator[](const Key &) const;

Semantics: operator [] is the dictionary index operator. A constant reference to the object stored in the

dictionary with the given Key is returned. If no equivalent element is found, then the index_range
exception is thrown if it is enabled. If the exception is not enabled, then a reference to address zero will

be returned. This will result in a run-time error on systems which trap address zero references.

Results: The operator [] public member function returns a constant reference to the element at the given

key value. The result of the operator may not be assigned to.

See Also: WCExcept::index_range

148 Hash Containers

WCValHashDict<Key,Value>::operator =()

Synopsis: #include <wchash.h>
public:
WCValHashDict & operator =(const WCValHashDict &);

Semantics: The operator = public member function is the assignment operator for the

WCValHashDict<Key,Value> class. The left hand side dictionary is first cleared using the

clear member function, and then the right hand side dictionary is copied. The hash function,

exception trap states, and all of the dictionary elements are copied. If an allocation failure occurs when

creating the buckets, the table will be created with zero buckets, and the out_of_memory exception

is thrown if it is enabled. If there is not enough memory to copy all of the values or pointers in the

dictionary, then only some will be copied, and the out_of_memory exception is thrown if it is

enabled. The number of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side dictionary to be a copy of the

right hand side.

See Also: clear, WCExcept::out_of_memory

Hash Containers 149

WCValHashDict<Key,Value>::operator ==()

Synopsis: #include <wchash.h>
public:
int operator ==(const WCValHashDict &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCValHashDict<Key,Value> class. Two dictionary objects are equivalent if they are the same

object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side dictionary are the same

object. A FALSE (zero) value is returned otherwise.

150 Hash Containers

WCValHashDict<Key,Value>::remove()

Synopsis: #include <wchash.h>
public:
int remove(const Key &);

Semantics: The remove public member function is used to remove the specified element from the dictionary. If

an equivalent element is found, a non-zero value is returned. Zero is returned if the element is not

found. Note that equivalence is based on the equivalence operator of the Key type.

Results: The element is removed from the dictionary if it found.

Hash Containers 151

WCValHashDict<Key,Value>::resize()

Synopsis: #include <wchash.h>
public:
void resize(unsigned);

Semantics: The resize public member function is used to change the number of buckets contained in the

dictionary. If the new number is larger than the previous dictionary size, then the hash function will be

used on all of the stored elements to determine which bucket they should be stored into. Entries are not

destroyed or created in the process of being moved. If there is not enough memory to resize the

dictionary, the out_of_memory exception is thrown if it is enabled, and the dictionary will contain

the number of buckets it contained before the resize. If the new number is zero, then the

zero_buckets exception is thrown if it is enabled, and no resize will be performed. The dictionary

is guaranteed to contain the same number of entries after the resize.

Results: The dictionary is resized to the new number of buckets.

See Also: WCExcept::out_of_memory, WCExcept::zero_buckets

152 Hash Containers

WCValHashTable<Type>, WCValHashSet<Type>

Declared: wchash.h

WCValHashTable<Type> and WCValHashSet<Type> classes are templated classes used to store

objects in a hash. A hash saves objects in such a way as to make it efficient to locate and retrieve an

element. As an element is looked up or inserted into the hash, the value of the element is hashed.

Hashing results in a numeric index which is used to locate the value. The storage area referenced by the

hash value is usually called a bucket. If more than one element results in the same hash, the value

associated with the hash is placed in a list stored in the bucket. A hash table allows more than one copy

of an element that is equivalent, while the hash set allows only one copy. The equality operator of the

element’s type is used to locate the value.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type of the data to be stored in the hash.

The constructor for the WCValHashTable<Type> and WCValHashSet<Type> classes requires a

hashing function, which given a reference to Type, returns an unsigned value. The returned value

modulo the number of buckets determines the bucket into which the element will be located. The return

values of the hash function can be spread over the entire range of unsigned numbers. The hash function

return value must be the same for values which are equivalent by the equivalence operator for Type.

Values are copied into the hash, which could be undesirable if the stored objects are complicated and

copying is expensive. Value hashes should not be used to store objects of a base class if any derived

types of different sizes would be stored in the hash, or if the destructor for a derived class must be

called.

The WCExcept class is a base class of the WCValHashTable<Type> and

WCValHashSet<Type> classes and provides the exceptions member function. This member

function controls the exceptions which can be thrown by the WCValHashTable<Type> and

WCValHashSet<Type> objects. No exceptions are enabled unless they are set by the exceptions
member function.

Requirements of Type

The WCValHashTable<Type> and WCValHashSet<Type> classes requires Type to have:

A default constructor (Type::Type()).

A well defined copy constructor (Type::Type(const Type &)).

A well defined assignment operator (Type & operator =(const Type &)).

A well defined equivalence operator with constant parameters

(int operator ==(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCValHashSet(unsigned (*hash_fn)(const Type &), unsigned =
WC_DEFAULT_HASH_SIZE);
WCValHashSet(unsigned (*hash_fn)(const Type &), unsigned =
WC_DEFAULT_HASH_SIZE, void * (*user_alloc)(size_t size), void
(*user_dealloc)(void *old, size_t size));
WCValHashSet(const WCValHashSet &);
virtual ~WCValHashSet();

Hash Containers 153

WCValHashTable<Type>, WCValHashSet<Type>

WCValHashTable(unsigned (*hash_fn)(const Type &), unsigned =
WC_DEFAULT_HASH_SIZE);
WCValHashTable(unsigned (*hash_fn)(const Type &), unsigned =
WC_DEFAULT_HASH_SIZE, void * (*user_alloc)(size_t size), void
(*user_dealloc)(void *old, size_t size));
WCValHashTable(const WCValHashTable &);
virtual ~WCValHashTable();
static unsigned bitHash(const void *, size_t);
unsigned buckets() const;
void clear();
int contains(const Type &) const;
unsigned entries() const;
int find(const Type &, Type &) const;
void forAll(void (*user_fn)(Type, void *), void *);
int insert(const Type &);
int isEmpty() const;
int remove(const Type &);
void resize(unsigned);

The following public member functions are available for the WCValHashTable class only:

unsigned occurrencesOf(const Type &) const;
unsigned removeAll(const Type &);

Public Member Operators

The following member operators are declared in the public interface:

WCValHashSet & operator =(const WCValHashSet &);
int operator ==(const WCValHashSet &) const;
WCValHashTable & operator =(const WCValHashTable &);
int operator ==(const WCValHashTable &) const;

154 Hash Containers

WCValHashSet<Type>::WCValHashSet()

Synopsis: #include <wchash.h>
public:
WCValHashSet(unsigned (*hash_fn)(const Type &),
unsigned = WC_DEFAULT_HASH_SIZE);

Semantics: The WCValHashSet<Type> constructor creates a WCValHashSet object with no entries and with

the number of buckets in the second optional parameter, which defaults to the constant

WC_DEFAULT_HASH_SIZE (currently defined as 101). The number of buckets specified must be

greater than zero, and will be forced to at least one. If the hash object can be created, but an allocation

failure occurs when creating the buckets, the table will be created with zero buckets. If the

out_of_memory exception is enabled, then attempting to insert into a hash table with zero buckets

with throw an out_of_memory error.

The hash function hash_fn is used to determine which bucket each value will be assigned to. If no

hash function exists, the static member function bitHash is available to help create one.

Results: The WCValHashSet<Type> constructor creates an initialized WCValHashSet object with the

specified number of buckets and hash function.

See Also: ~WCValHashSet, bitHash, WCExcept::out_of_memory

Hash Containers 155

WCValHashSet<Type>::WCValHashSet()

Synopsis: #include <wchash.h>
public:
WCValHashSet(unsigned (*hash_fn)(const Type &),
unsigned = WC_DEFAULT_HASH_SIZE,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

hash. The semantics of this constructor are the same as the constructor without the memory

management functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a hash. To determine the size of the objects that the memory management

functions will be required to allocate and free, the following macro may be used:
WCValHashSetItemSize(Type)

Results: The WCValHashSet<Type> constructor creates an initialized WCValHashSet object with the

specified number of buckets and hash function.

See Also: ~WCValHashSet, bitHash, WCExcept::out_of_memory

156 Hash Containers

WCValHashSet<Type>::WCValHashSet()

Synopsis: #include <wchash.h>
public:
WCValHashSet(const WCValHashSet &);

Semantics: The WCValHashSet<Type> is the copy constructor for the WCValHashSet class. The new hash is

created with the same number of buckets, hash function, all values or pointers stored in the hash, and

the exception trap states. If the hash object can be created, but an allocation failure occurs when

creating the buckets, the hash will be created with zero buckets. If there is not enough memory to copy

all of the values, then only some will be copied, and the number of entries will correctly reflect the

number copied. If all of the elements cannot be copied, then the out_of_memory exception is

thrown if it is enabled.

Results: The WCValHashSet<Type> constructor creates a WCValHashSet object which is a copy of the

passed hash.

See Also: ~WCValHashSet, operator =, WCExcept::out_of_memory

Hash Containers 157

WCValHashSet<Type>::~WCValHashSet()

Synopsis: #include <wchash.h>
public:
virtual ~WCValHashSet();

Semantics: The WCValHashSet<Type> destructor is the destructor for the WCValHashSet class. If the

number of elements is not zero and the not_empty exception is enabled, the exception is thrown.

Otherwise, the hash elements are cleared using the clear member function. The call to the

WCValHashSet<Type> destructor is inserted implicitly by the compiler at the point where the

WCValHashSet object goes out of scope.

Results: The call to the WCValHashSet<Type> destructor destroys a WCValHashSet object.

See Also: clear, WCExcept::not_empty

158 Hash Containers

WCValHashTable<Type>::WCValHashTable()

Synopsis: #include <wchash.h>
public:
WCValHashTable(unsigned (*hash_fn)(const Type &),
unsigned = WC_DEFAULT_HASH_SIZE);

Semantics: The WCValHashTable<Type> constructor creates a WCValHashTable object with no entries and

with the number of buckets in the second optional parameter, which defaults to the constant

WC_DEFAULT_HASH_SIZE (currently defined as 101). The number of buckets specified must be

greater than zero, and will be forced to at least one. If the hash object can be created, but an allocation

failure occurs when creating the buckets, the table will be created with zero buckets. If the

out_of_memory exception is enabled, then attempting to insert into a hash table with zero buckets

with throw an out_of_memory error.

The hash function hash_fn is used to determine which bucket each value will be assigned to. If no

hash function exists, the static member function bitHash is available to help create one.

Results: The WCValHashTable<Type> constructor creates an initialized WCValHashTable object with

the specified number of buckets and hash function.

See Also: ~WCValHashTable, bitHash, WCExcept::out_of_memory

Hash Containers 159

WCValHashTable<Type>::WCValHashTable()

Synopsis: #include <wchash.h>
public:
WCValHashTable(unsigned (*hash_fn)(const Type &),
unsigned = WC_DEFAULT_HASH_SIZE,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

hash. The semantics of this constructor are the same as the constructor without the memory

management functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a hash. To determine the size of the objects that the memory management

functions will be required to allocate and free, the following macro may be used:
WCValHashTableItemSize(Type)

Results: The WCValHashTable<Type> constructor creates an initialized WCValHashTable object with

the specified number of buckets and hash function.

See Also: ~WCValHashTable, bitHash, WCExcept::out_of_memory

160 Hash Containers

WCValHashTable<Type>::WCValHashTable()

Synopsis: #include <wchash.h>
public:
WCValHashTable(const WCValHashTable &);

Semantics: The WCValHashTable<Type> is the copy constructor for the WCValHashTable class. The new

hash is created with the same number of buckets, hash function, all values or pointers stored in the hash,

and the exception trap states. If the hash object can be created, but an allocation failure occurs when

creating the buckets, the hash will be created with zero buckets. If there is not enough memory to copy

all of the values, then only some will be copied, and the number of entries will correctly reflect the

number copied. If all of the elements cannot be copied, then the out_of_memory exception is

thrown if it is enabled.

Results: The WCValHashTable<Type> constructor creates a WCValHashTable object which is a copy of

the passed hash.

See Also: ~WCValHashTable, operator =, WCExcept::out_of_memory

Hash Containers 161

WCValHashTable<Type>::~WCValHashTable()

Synopsis: #include <wchash.h>
public:
virtual ~WCValHashTable();

Semantics: The WCValHashTable<Type> destructor is the destructor for the WCValHashTable class. If the

number of elements is not zero and the not_empty exception is enabled, the exception is thrown.

Otherwise, the hash elements are cleared using the clear member function. The call to the

WCValHashTable<Type> destructor is inserted implicitly by the compiler at the point where the

WCValHashTable object goes out of scope.

Results: The call to the WCValHashTable<Type> destructor destroys a WCValHashTable object.

See Also: clear, WCExcept::not_empty

162 Hash Containers

WCValHashTable<Type>::bitHash(), WCValHashSet<Type>::bitHash()

Synopsis: #include <wchash.h>
public:
static unsigned bitHash(void *, size_t);

Semantics: The bitHash public member function can be used to implement a hashing function for any type. A

hashing value is generated from the value stored for the number of specified bytes pointed to by the first

parameter. For example:

unsigned my_hash_fn(const int & elem) {
return(WCValHashSet<int,String>::bitHash(&elem, sizeof(int));

}
WCValHashSet<int> data_object(&my_hash_fn);

Results: The bitHash public member function returns an unsigned value which can be used as the basis of a

user defined hash function.

See Also: WCValHashSet, WCValHashTable

Hash Containers 163

WCValHashTable<Type>::buckets(), WCValHashSet<Type>::buckets()

Synopsis: #include <wchash.h>
public:
unsigned buckets() const;

Semantics: The buckets public member function is used to find the number of buckets contained in the hash

object.

Results: The buckets public member function returns the number of buckets in the hash.

See Also: resize

164 Hash Containers

WCValHashTable<Type>::clear(), WCValHashSet<Type>::clear()

Synopsis: #include <wchash.h>
public:
void clear();

Semantics: The clear public member function is used to clear the hash so that it has no entries. The number of

buckets remain unaffected. Elements stored in the hash are destroyed using the destructors of Type.

The hash object is not destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the hash to have no elements.

See Also: ~WCValHashSet, ~WCValHashTable, operator =

Hash Containers 165

WCValHashTable<Type>::contains(), WCValHashSet<Type>::contains()

Synopsis: #include <wchash.h>
public:
int contains(const Type &) const;

Semantics: The contains public member function returns non-zero if the element is stored in the hash, or zero if

there is no equivalent element. Note that equivalence is based on the equivalence operator of the

element type.

Results: The contains public member function returns a non-zero value if the element is found in the hash.

See Also: find

166 Hash Containers

WCValHashTable<Type>::entries(), WCValHashSet<Type>::entries()

Synopsis: #include <wchash.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements stored in the

hash.

Results: The entries public member function returns the number of elements in the hash.

See Also: buckets, isEmpty

Hash Containers 167

WCValHashTable<Type>::find(), WCValHashSet<Type>::find()

Synopsis: #include <wchash.h>
public:
int find(const Type &, Type &) const;

Semantics: The find public member function is used to find an element with an equivalent key in the hash. If an

equivalent element is found, a non-zero value is returned. The reference to the element passed as the

second argument is assigned the found element’s value. Zero is returned if the element is not found.

Note that equivalence is based on the equivalence operator of the element type.

Results: The element equivalent to the passed key is located in the hash.

168 Hash Containers

WCValHashTable<Type>::forAll(), WCValHashSet<Type>::forAll()

Synopsis: #include <wchash.h>
public:
void forAll(
void (*user_fn)(Type, void *),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for every value in

the hash. The user function has the prototype

void user_func(Type & value, void * data);

As the elements are visited, the user function is invoked with the element passed as the first. The

second parameter of the forAll function is passed as the second parameter to the user function. This

value can be used to pass any appropriate data from the main code to the user function.

Results: The elements in the hash are all visited, with the user function being invoked for each one.

See Also: find

Hash Containers 169

WCValHashTable<Type>::insert(), WCValHashSet<Type>::insert()

Synopsis: #include <wchash.h>
public:
int insert(const Type &);

Semantics: The insert public member function inserts a value into the hash, using the hash function to determine

to which bucket it should be stored. If allocation of the node to store the value fails, then the

out_of_memory exception is thrown if it is enabled. If the exception is not enabled, the insert will

not be completed.

With a WCValHashSet, there must be only one equivalent element in the set. If an element

equivalent to the inserted element is already in the hash set, the hash set will remain unchanged, and the

not_unique exception is thrown if it is enabled. If the exception is not enabled, the insert will not be

completed.

At some point, the number of buckets initially selected may be too small for the number of elements

inserted. The resize of the hash can be controlled by the insertion mechanism by using

WCValHashSet (or WCValHashTable) as a base class, and providing an insert member function to

do a resize when appropriate. This insert could then call WCValHashSet::insert (or

WCValHashTable::insert) to insert the element. Note that copy constructors and assignment

operators are not inherited in your class, but you can provide the following inline definitions (assuming

that the class inherited from WCValHashTable is named MyHashTable):

inline MyHashTable(const MyHashTable &orig)
: WCValHashTable(orig) {};

inline MyHashTable &operator=(const MyHashTable &orig) {
return(WCValHashTable::operator=(orig));

}

Results: The insert public member function inserts a value into the hash. If the insert is successful, a

non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =, WCExcept::out_of_memory

170 Hash Containers

WCValHashTable<Type>::isEmpty(), WCValHashSet<Type>::isEmpty()

Synopsis: #include <wchash.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the hash is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero if the hash

is empty.

See Also: buckets, entries

Hash Containers 171

WCValHashTable<Type>::occurencesOf()

Synopsis: #include <wchash.h>
public:
unsigned occurrencesOf(const Type &) const;

Semantics: The occurencesOf public member function is used to return the current number of elements stored

in the hash which are equivalent to the passed value. Note that equivalence is based on the equivalence

operator of the element type.

Results: The occurencesOf public member function returns the number of elements in the hash.

See Also: buckets, entries, find, isEmpty

172 Hash Containers

WCValHashTable<Type>::operator =(), WCValHashSet<Type>::operator =()

Synopsis: #include <wchash.h>
public:
WCValHashSet & operator =(const WCValHashSet &);
WCValHashTable & operator =(const WCValHashTable &);

Semantics: The operator = public member function is the assignment operator for the

WCValHashTable<Type> and WCValHashSet<Type> classes. The left hand side hash is first

cleared using the clear member function, and then the right hand side hash is copied. The hash

function, exception trap states, and all of the hash elements are copied. If an allocation failure occurs

when creating the buckets, the table will be created with zero buckets, and the out_of_memory
exception is thrown if it is enabled. If there is not enough memory to copy all of the values or pointers

in the hash, then only some will be copied, and the out_of_memory exception is thrown if it is

enabled. The number of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side hash to be a copy of the right

hand side.

See Also: clear, WCExcept::out_of_memory

Hash Containers 173

WCValHashTable<Type>::operator ==(), WCValHashSet<Type>::operator ==()

Synopsis: #include <wchash.h>
public:
int operator ==(const WCValHashSet &) const;
int operator ==(const WCValHashTable &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCValHashTable<Type> and WCValHashSet<Type> classes. Two hash objects are equivalent

if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side hash are the same object.

A FALSE (zero) value is returned otherwise.

174 Hash Containers

WCValHashTable<Type>::remove(), WCValHashSet<Type>::remove()

Synopsis: #include <wchash.h>
public:
int remove(const Type &);

Semantics: The remove public member function is used to remove the specified element from the hash. If an

equivalent element is found, a non-zero value is returned. Zero is returned if the element is not found.

If the hash is a table and there is more than one element equivalent to the specified element, then the

first equivalent element added to the table is removed. Note that equivalence is based on the

equivalence operator of the element type.

Results: The element is removed from the hash if it found.

Hash Containers 175

WCValHashTable<Type>::removeAll()

Synopsis: #include <wchash.h>
public:
unsigned removeAll(const Type &);

Semantics: The removeAll public member function is used to remove all elements equivalent to the specified

element from the hash. Zero is returned if no equivalent elements are found. Note that equivalence is

based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the hash.

176 Hash Containers

WCValHashTable<Type>::resize(), WCValHashSet<Type>::resize()

Synopsis: #include <wchash.h>
public:
void resize(unsigned);

Semantics: The resize public member function is used to change the number of buckets contained in the hash. If

the new number is larger than the previous hash size, then the hash function will be used on all of the

stored elements to determine which bucket they should be stored into. Entries are not destroyed or

created in the process of being moved. If there is not enough memory to resize the hash, the

out_of_memory exception is thrown if it is enabled, and the hash will contain the number of buckets

it contained before the resize. If the new number is zero, then the zero_buckets exception is

thrown if it is enabled, and no resize will be performed. The hash is guaranteed to contain the same

number of entries after the resize.

Results: The hash is resized to the new number of buckets.

See Also: WCExcept::out_of_memory, WCExcept::zero_buckets

Hash Containers 177

WCValHashTable<Type>::resize(), WCValHashSet<Type>::resize()

178 Hash Containers

11 Hash Iterators

Hash iterators are used to step through a hash one or more elements at a time. Iterators which are newly

constructed or reset are positioned before the first element in the hash. The hash may be traversed one

element at a time using the pre-increment or call operator. An increment operation causing the iterator to

be positioned after the end of the hash returns zero. Further increments will cause the undef_iter
exception to be thrown, if it is enabled. The WCIterExcept class provides the common exception

handling control interface for all of the iterators.

Since the iterator classes are all template classes, most of the functionality was derived from common base

classes. In the listing of class member functions, those public member functions which appear to be in the

iterator class but are actually defined in the common base class are identified as if they were explicitly

specified in the iterator class.

Hash Iterators 179

WCPtrHashDictIter<Key,Value>

Declared: wchiter.h

The WCPtrHashDictIter<Key,Value> class is the templated class used to create iterator objects

for WCPtrHashDict<Key,Value> objects. In the description of each member function, the text

Key is used to indicate the template parameter defining the type of the indices pointed to by the pointers

stored in the dictionary. The text Value is used to indicate the template parameter defining the type of

the data pointed to by the pointers stored in the dictionary. The WCIterExcept class is a base class

of the WCPtrHashDictIter<Key,Value> class and provides the exceptions member

function. This member function controls the exceptions which can be thrown by the

WCPtrHashDictIter<Key,Value> object. No exceptions are enabled unless they are set by the

exceptions member function.

Public Member Functions

The following member functions are declared in the public interface:

WCPtrHashDictIter();
WCPtrHashDictIter(const WCPtrHashDict<Key,Value> &);
~WCPtrHashDictIter();
const WCPtrHashDict<Key,Value> *container() const;
Key *key();
void reset();
void reset(WCPtrHashDict<Key,Value> &);
Value * value();

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

180 Hash Iterators

WCPtrHashDictIter<Key,Value>::WCPtrHashDictIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashDictIter();

Semantics: The public WCPtrHashDictIter<Key,Value> constructor is the default constructor for the class

and initializes the iterator with no hash to operate on. The reset member function must be called to

provide the iterator with a hash to iterate over.

Results: The public WCPtrHashDictIter<Key,Value> constructor creates an initialized

WCPtrHashDictIter hash iterator object.

See Also: ~WCPtrHashDictIter, reset

Hash Iterators 181

WCPtrHashDictIter<Key,Value>::WCPtrHashDictIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashDictIter(WCPtrHashDict<Key,Value> &);

Semantics: The public WCPtrHashDictIter<Key,Value> constructor is a constructor for the class. The

value passed as a parameter is a WCPtrHashDict hash object. The iterator will be initialized for that

hash object and positioned before the first hash element. To position the iterator to a valid element

within the hash, increment it using one of the operator ++ or operator () operators.

Results: The public WCPtrHashDictIter<Key,Value> constructor creates an initialized

WCPtrHashDictIter hash iterator object positioned before the first element in the hash.

See Also: ~WCPtrHashDictIter, operator (), operator ++, reset

182 Hash Iterators

WCPtrHashDictIter<Key,Value>::~WCPtrHashDictIter()

Synopsis: #include <wchiter.h>
public:
~WCPtrHashDictIter();

Semantics: The public ~WCPtrHashDictIter<Key,Value> destructor is the destructor for the class. The

call to the destructor is inserted implicitly by the compiler at the point where the

WCPtrHashDictIter hash iterator object goes out of scope.

Results: The WCPtrHashDictIter hash iterator object is destroyed.

See Also: WCPtrHashDictIter

Hash Iterators 183

WCPtrHashDictIter<Key,Value>::container()

Synopsis: #include <wchiter.h>
public:
WCPtrHashDict<Key,Value> *container() const;

Semantics: The container public member function returns a pointer to the hash container object. If the iterator

has not been initialized with a hash object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a hash.

See Also: WCPtrHashDictIter, reset, WCIterExcept::undef_iter

184 Hash Iterators

WCPtrHashDictIter<Key,Value>::key()

Synopsis: #include <wchiter.h>
public:
Key *key();

Semantics: The key public member function returns a pointer to the Key value of the hash item at the current

iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first element or

past the last element in the hash, the current iterator position is undefined. In this case the

undef_item exception is thrown, if enabled.

Results: A pointer to Key at the current iterator element is returned. If the current element is undefined, an

undefined pointer is returned.

See Also: operator (), operator ++, reset, WCIterExcept::undef_item

Hash Iterators 185

WCPtrHashDictIter<Key,Value>::operator ()()

Synopsis: #include <wchiter.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The hash element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the hash, the iterator is positioned after the end of the hash.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first hash element, the current item will be set to the first

element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was past the last

element the hash, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is positioned on a

hash item. Zero(0) is returned when the iterator is incremented past the end of the hash.

See Also: operator ++, reset, WCIterExcept::undef_iter

186 Hash Iterators

WCPtrHashDictIter<Key,Value>::operator ++()

Synopsis: #include <wchiter.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The hash

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the hash, the iterator is positioned after the end of the hash.

The operator ++ public member function has the same semantics as the call operator, operator
().

The current item will be set to the first hash element if the iterator was positioned before the first

element in the hash. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was past the last

element the hash, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is positioned on a

hash item. Zero(0) is returned when the iterator is incremented past the end of the hash.

See Also: operator (), reset, WCIterExcept::undef_iter

Hash Iterators 187

WCPtrHashDictIter<Key,Value>::reset()

Synopsis: #include <wchiter.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

See Also: WCPtrHashDictIter, container

188 Hash Iterators

WCPtrHashDictIter<Key,Value>::reset()

Synopsis: #include <wchiter.h>
public:
void reset(WCPtrHashDict<Key,Value> &);

Semantics: The reset public member function resets the iterator to operate on the specified hash. The iterator is

positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

See Also: WCPtrHashDictIter, container

Hash Iterators 189

WCPtrHashDictIter<Key,Value>::value()

Synopsis: #include <wchiter.h>
public:
Value *value();

Semantics: The value public member function returns a pointer to the Value the current iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first element or

past the last element in the hash, the current iterator position is undefined. In this case the

undef_item exception is thrown, if enabled.

Results: A pointer to the Value at the current iterator element is returned. If the current element is undefined,

an undefined pointer is returned.

See Also: operator (), operator ++, reset, WCIterExcept::undef_item

190 Hash Iterators

WCValHashDictIter<Key,Value>

Declared: wchiter.h

The WCValHashDictIter<Key,Value> class is the templated class used to create iterator objects

for WCValHashDict<Key,Value> objects. In the description of each member function, the text

Key is used to indicate the template parameter defining the type of the indices used to store data in the

dictionary. The text Value is used to indicate the template parameter defining the type of the data

stored in the dictionary. The WCIterExcept class is a base class of the

WCValHashDictIter<Key,Value> class and provides the exceptions member function. This

member function controls the exceptions which can be thrown by the

WCValHashDictIter<Key,Value> object. No exceptions are enabled unless they are set by the

exceptions member function.

Public Member Functions

The following member functions are declared in the public interface:

WCValHashDictIter();
WCValHashDictIter(const WCValHashDict<Key,Value> &);
~WCValHashDictIter();
const WCValHashDict<Key,Value> *container() const;
Key key();
void reset();
void reset(WCValHashDict<Key,Value> &);
Value value();

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

Hash Iterators 191

WCValHashDictIter<Key,Value>::WCValHashDictIter()

Synopsis: #include <wchiter.h>
public:
WCValHashDictIter();

Semantics: The public WCValHashDictIter<Key,Value> constructor is the default constructor for the class

and initializes the iterator with no hash to operate on. The reset member function must be called to

provide the iterator with a hash to iterate over.

Results: The public WCValHashDictIter<Key,Value> constructor creates an initialized

WCValHashDictIter hash iterator object.

See Also: ~WCValHashDictIter, reset

192 Hash Iterators

WCValHashDictIter<Key,Value>::WCValHashDictIter()

Synopsis: #include <wchiter.h>
public:
WCValHashDictIter(WCValHashDict<Key,Value> &);

Semantics: The public WCValHashDictIter<Key,Value> constructor is a constructor for the class. The

value passed as a parameter is a WCValHashDict hash object. The iterator will be initialized for that

hash object and positioned before the first hash element. To position the iterator to a valid element

within the hash, increment it using one of the operator ++ or operator () operators.

Results: The public WCValHashDictIter<Key,Value> constructor creates an initialized

WCValHashDictIter hash iterator object positioned before the first element in the hash.

See Also: ~WCValHashDictIter, operator (), operator ++, reset

Hash Iterators 193

WCValHashDictIter<Key,Value>::~WCValHashDictIter()

Synopsis: #include <wchiter.h>
public:
~WCValHashDictIter();

Semantics: The public ~WCValHashDictIter<Key,Value> destructor is the destructor for the class. The

call to the destructor is inserted implicitly by the compiler at the point where the

WCValHashDictIter hash iterator object goes out of scope.

Results: The WCValHashDictIter hash iterator object is destroyed.

See Also: WCValHashDictIter

194 Hash Iterators

WCValHashDictIter<Key,Value>::container()

Synopsis: #include <wchiter.h>
public:
WCValHashDict<Key,Value> *container() const;

Semantics: The container public member function returns a pointer to the hash container object. If the iterator

has not been initialized with a hash object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a hash.

See Also: WCValHashDictIter, reset, WCIterExcept::undef_iter

Hash Iterators 195

WCValHashDictIter<Key,Value>::key()

Synopsis: #include <wchiter.h>
public:
Key key();

Semantics: The key public member function returns the value of Key at the current iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first element or

past the last element in the hash, the current iterator position is undefined. In this case the

undef_item exception is thrown, if enabled.

Results: The value of Key at the current iterator element is returned. If the current element is undefined, a

default initialized object is returned.

See Also: operator (), operator ++, reset, WCIterExcept::undef_item

196 Hash Iterators

WCValHashDictIter<Key,Value>::operator ()()

Synopsis: #include <wchiter.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The hash element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the hash, the iterator is positioned after the end of the hash.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first hash element, the current item will be set to the first

element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was past the last

element the hash, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is positioned on a

hash item. Zero(0) is returned when the iterator is incremented past the end of the hash.

See Also: operator ++, reset, WCIterExcept::undef_iter

Hash Iterators 197

WCValHashDictIter<Key,Value>::operator ++()

Synopsis: #include <wchiter.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The hash

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the hash, the iterator is positioned after the end of the hash.

The operator ++ public member function has the same semantics as the call operator, operator
().

The current item will be set to the first hash element if the iterator was positioned before the first

element in the hash. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was past the last

element the hash, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is positioned on a

hash item. Zero(0) is returned when the iterator is incremented past the end of the hash.

See Also: operator (), reset, WCIterExcept::undef_iter

198 Hash Iterators

WCValHashDictIter<Key,Value>::reset()

Synopsis: #include <wchiter.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

See Also: WCValHashDictIter, container

Hash Iterators 199

WCValHashDictIter<Key,Value>::reset()

Synopsis: #include <wchiter.h>
public:
void reset(WCValHashDict<Key,Value> &);

Semantics: The reset public member function resets the iterator to operate on the specified hash. The iterator is

positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

See Also: WCValHashDictIter, container

200 Hash Iterators

WCValHashDictIter<Key,Value>::value()

Synopsis: #include <wchiter.h>
public:
Value value();

Semantics: The value public member function returns the value of Value at the current iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first element or

past the last element in the hash, the current iterator position is undefined. In this case the

undef_item exception is thrown, if enabled.

Results: The value of the Value at the current iterator element is returned. If the current element is undefined,

a default initialized object is returned.

See Also: operator (), operator ++, reset, WCIterExcept::undef_item

Hash Iterators 201

WCPtrHashSetIter<Type>, WCPtrHashTableIter<Type>

Declared: wchiter.h

The WCPtrHashSetIter<Type> and WCPtrHashTableIter<Type> classes are the templated

classes used to create iterator objects for WCPtrHashTable<Type> and WCPtrHashSet<Type>
objects. In the description of each member function, the text Type is used to indicate the hash element

type specified as the template parameter. The WCIterExcept class is a base class of the

WCPtrHashSetIter<Type> and WCPtrHashTableIter<Type> classes and provides the

exceptions member function. This member function controls the exceptions which can be thrown

by the WCPtrHashSetIter<Type> and WCPtrHashTableIter<Type> objects. No

exceptions are enabled unless they are set by the exceptions member function.

Public Member Functions

The following member functions are declared in the public interface:

WCPtrHashSetIter();
WCPtrHashSetIter(const WCPtrHashSet<Type> &);
~WCPtrHashSetIter();
WCPtrHashTableIter();
WCPtrHashTableIter(const WCPtrHashTable<Type> &);
~WCPtrHashTableIter();
const WCPtrHashTable<Type> *container() const;
const WCPtrHashSet<Type> *container() const;
Type *current() const;
void reset();
void WCPtrHashSetIter<Type>::reset(WCPtrHashSet<Type> &);
void WCPtrHashTableIter<Type>::reset(WCPtrHashTable<Type> &);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

202 Hash Iterators

WCPtrHashSetIter<Type>::WCPtrHashSetIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashSetIter();

Semantics: The public WCPtrHashSetIter<Type> constructor is the default constructor for the class and

initializes the iterator with no hash to operate on. The reset member function must be called to

provide the iterator with a hash to iterate over.

Results: The public WCPtrHashSetIter<Type> constructor creates an initialized WCPtrHashSetIter
hash iterator object.

See Also: ~WCPtrHashSetIter, WCPtrHashTableIter, reset

Hash Iterators 203

WCPtrHashSetIter<Type>::WCPtrHashSetIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashSetIter(WCPtrHashSet<Type> &);

Semantics: The public WCPtrHashSetIter<Type> constructor is a constructor for the class. The value passed

as a parameter is a WCPtrHashSet hash object. The iterator will be initialized for that hash object

and positioned before the first hash element. To position the iterator to a valid element within the hash,

increment it using one of the operator ++ or operator () operators.

Results: The public WCPtrHashSetIter<Type> constructor creates an initialized WCPtrHashSetIter
hash iterator object positioned before the first element in the hash.

See Also: ~WCPtrHashSetIter, operator (), operator ++, reset

204 Hash Iterators

WCPtrHashSetIter<Type>::~WCPtrHashSetIter()

Synopsis: #include <wchiter.h>
public:
~WCPtrHashSetIter();

Semantics: The public ~WCPtrHashSetIter<Type> destructor is the destructor for the class. The call to the

destructor is inserted implicitly by the compiler at the point where the WCPtrHashSetIter hash

iterator object goes out of scope.

Results: The WCPtrHashSetIter hash iterator object is destroyed.

See Also: WCPtrHashSetIter, WCPtrHashTableIter

Hash Iterators 205

WCPtrHashTableIter<Type>::WCPtrHashTableIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashTableIter();

Semantics: The public WCPtrHashTableIter<Type> constructor is the default constructor for the class and

initializes the iterator with no hash to operate on. The reset member function must be called to

provide the iterator with a hash to iterate over.

Results: The public WCPtrHashTableIter<Type> constructor creates an initialized

WCPtrHashTableIter hash iterator object.

See Also: ~WCPtrHashTableIter, WCPtrHashSetIter, reset

206 Hash Iterators

WCPtrHashTableIter<Type>::WCPtrHashTableIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashTableIter(WCPtrHashTable<Type> &);

Semantics: The public WCPtrHashTableIter<Type> constructor is a constructor for the class. The value

passed as a parameter is a WCPtrHashTable hash object. The iterator will be initialized for that hash

object and positioned before the first hash element. To position the iterator to a valid element within the

hash, increment it using one of the operator ++ or operator () operators.

Results: The public WCPtrHashTableIter<Type> constructor creates an initialized

WCPtrHashTableIter hash iterator object positioned before the first element in the hash.

See Also: ~WCPtrHashTableIter, operator (), operator ++, reset

Hash Iterators 207

WCPtrHashTableIter<Type>::~WCPtrHashTableIter()

Synopsis: #include <wchiter.h>
public:
~WCPtrHashTableIter();

Semantics: The WCPtrHashTableIter<Type> destructor is the destructor for the class. The call to the

destructor is inserted implicitly by the compiler at the point where the WCPtrHashTableIter hash

iterator object goes out of scope.

Results: The WCPtrHashTableIter hash iterator object is destroyed.

See Also: WCPtrHashSetIter, WCPtrHashTableIter

208 Hash Iterators

WCPtrHashSetIter<Type>,WCPtrHashTableIter<Type>::container()

Synopsis: #include <wchiter.h>
public:
WCPtrHashTable<Type> *WCPtrHashTableIter<Type>::container() const;
WCPtrHashSet<Type> *WCPtrHashSetIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the hash container object. If the iterator

has not been initialized with a hash object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a hash.

See Also: WCPtrHashSetIter, WCPtrHashTableIter, reset, WCIterExcept::undef_iter

Hash Iterators 209

WCPtrHashSetIter<Type>::current(), WCPtrHashTableIter<Type>::current()

Synopsis: #include <wchiter.h>
public:
Type *current();

Semantics: The current public member function returns a pointer to the hash item at the current iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first element or

past the last element in the hash, the current iterator position is undefined. In this case the

undef_item exception is thrown, if enabled.

Results: A pointer to the current iterator element is returned. If the current element is undefined, NULL(0) is

returned.

See Also: operator (), operator ++, reset, WCIterExcept::undef_item

210 Hash Iterators

WCPtrHashSetIter<Type>,WCPtrHashTableIter<Type>::operator ()()

Synopsis: #include <wchiter.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The hash element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the hash, the iterator is positioned after the end of the hash.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first hash element, the current item will be set to the first

element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was past the last

element the hash, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is positioned on a

hash item. Zero(0) is returned when the iterator is incremented past the end of the hash.

See Also: operator ++, reset, WCIterExcept::undef_iter

Hash Iterators 211

WCPtrHashSetIter<Type>,WCPtrHashTableIter<Type>::operator ++()

Synopsis: #include <wchiter.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The hash

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the hash, the iterator is positioned after the end of the hash.

The operator ++ public member function has the same semantics as the call operator, operator
().

The current item will be set to the first hash element if the iterator was positioned before the first

element in the hash. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was past the last

element the hash, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is positioned on a

hash item. Zero(0) is returned when the iterator is incremented past the end of the hash.

See Also: current, operator (), reset, WCIterExcept::undef_iter

212 Hash Iterators

WCPtrHashSetIter<Type>::reset(), WCPtrHashTableIter<Type>::reset()

Synopsis: #include <wchiter.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

See Also: WCPtrHashSetIter, WCPtrHashTableIter, container

Hash Iterators 213

WCPtrHashSetIter<Type>::reset(), WCPtrHashTableIter<Type>::reset()

Synopsis: #include <wchiter.h>
public:
void WCPtrHashSetIter<Type>::reset(WCPtrHashSet<Type> &);
void WCPtrHashTableIter<Type>::reset(WCPtrHashTable<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified hash. The iterator is

positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

See Also: WCPtrHashSetIter, WCPtrHashTableIter, container

214 Hash Iterators

WCValHashSetIter<Type>, WCValHashTableIter<Type>

Declared: wchiter.h

The WCValHashSetIter<Type> and WCValHashTableIter<Type> classes are the templated

classes used to create iterator objects for WCValHashTable<Type> and WCValHashSet<Type>
objects. In the description of each member function, the text Type is used to indicate the hash element

type specified as the template parameter. The WCIterExcept class is a base class of the

WCValHashSetIter<Type> and WCValHashTableIter<Type> classes and provides the

exceptions member function. This member function controls the exceptions which can be thrown

by the WCValHashSetIter<Type> and WCValHashTableIter<Type> objects. No

exceptions are enabled unless they are set by the exceptions member function.

Public Member Functions

The following member functions are declared in the public interface:

WCValHashSetIter();
WCValHashSetIter(const WCValHashSet<Type> &);
~WCValHashSetIter();
WCValHashTableIter();
WCValHashTableIter(const WCValHashTable<Type> &);
~WCValHashTableIter();
const WCValHashTable<Type> *container() const;
const WCValHashSet<Type> *container() const;
Type current() const;
void reset();
void WCValHashSetIter<Type>::reset(WCValHashSet<Type> &);
void WCValHashTableIter<Type>::reset(WCValHashTable<Type> &);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

Hash Iterators 215

WCValHashSetIter<Type>::WCValHashSetIter()

Synopsis: #include <wchiter.h>
public:
WCValHashSetIter();

Semantics: The public WCValHashSetIter<Type> constructor is the default constructor for the class and

initializes the iterator with no hash to operate on. The reset member function must be called to

provide the iterator with a hash to iterate over.

Results: The public WCValHashSetIter<Type> constructor creates an initialized WCValHashSetIter
hash iterator object.

See Also: ~WCValHashSetIter, WCValHashTableIter, reset

216 Hash Iterators

WCValHashSetIter<Type>::WCValHashSetIter()

Synopsis: #include <wchiter.h>
public:
WCValHashSetIter(WCValHashSet<Type> &);

Semantics: The public WCValHashSetIter<Type> constructor is a constructor for the class. The value passed

as a parameter is a WCValHashSet hash object. The iterator will be initialized for that hash object

and positioned before the first hash element. To position the iterator to a valid element within the hash,

increment it using one of the operator ++ or operator () operators.

Results: The public WCValHashSetIter<Type> constructor creates an initialized WCValHashSetIter
hash iterator object positioned before the first element in the hash.

See Also: ~WCValHashSetIter, operator (), operator ++, reset

Hash Iterators 217

WCValHashSetIter<Type>::~WCValHashSetIter()

Synopsis: #include <wchiter.h>
public:
~WCValHashSetIter();

Semantics: The public ~WCValHashSetIter<Type> destructor is the destructor for the class. The call to the

destructor is inserted implicitly by the compiler at the point where the WCValHashSetIter hash

iterator object goes out of scope.

Results: The WCValHashSetIter hash iterator object is destroyed.

See Also: WCValHashSetIter, WCValHashTableIter

218 Hash Iterators

WCValHashTableIter<Type>::WCValHashTableIter()

Synopsis: #include <wchiter.h>
public:
WCValHashTableIter();

Semantics: The public WCValHashTableIter<Type> constructor is the default constructor for the class and

initializes the iterator with no hash to operate on. The reset member function must be called to

provide the iterator with a hash to iterate over.

Results: The public WCValHashTableIter<Type> constructor creates an initialized

WCValHashTableIter hash iterator object.

See Also: ~WCValHashTableIter, WCValHashSetIter, reset

Hash Iterators 219

WCValHashTableIter<Type>::WCValHashTableIter()

Synopsis: #include <wchiter.h>
public:
WCValHashTableIter(WCValHashTable<Type> &);

Semantics: The public WCValHashTableIter<Type> constructor is a constructor for the class. The value

passed as a parameter is a WCValHashTable hash object. The iterator will be initialized for that hash

object and positioned before the first hash element. To position the iterator to a valid element within the

hash, increment it using one of the operator ++ or operator () operators.

Results: The public WCValHashTableIter<Type> constructor creates an initialized

WCValHashTableIter hash iterator object positioned before the first element in the hash.

See Also: ~WCValHashTableIter, operator (), operator ++, reset

220 Hash Iterators

WCValHashTableIter<Type>::~WCValHashTableIter()

Synopsis: #include <wchiter.h>
public:
~WCValHashTableIter();

Semantics: The WCValHashTableIter<Type> destructor is the destructor for the class. The call to the

destructor is inserted implicitly by the compiler at the point where the WCValHashTableIter hash

iterator object goes out of scope.

Results: The WCValHashTableIter hash iterator object is destroyed.

See Also: WCValHashSetIter, WCValHashTableIter

Hash Iterators 221

WCValHashSetIter<Type>,WCValHashTableIter<Type>::container()

Synopsis: #include <wchiter.h>
public:
WCValHashTable<Type> *WCValHashTableIter<Type>::container() const;
WCValHashSet<Type> *WCValHashSetIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the hash container object. If the iterator

has not been initialized with a hash object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a hash.

See Also: WCValHashSetIter, WCValHashTableIter, reset, WCIterExcept::undef_iter

222 Hash Iterators

WCValHashSetIter<Type>::current(), WCValHashTableIter<Type>::current()

Synopsis: #include <wchiter.h>
public:
Type current();

Semantics: The current public member function returns the value of the hash element at the current iterator

position.

If the iterator is not associated with a hash, or the iterator position is either before the first element or

past the last element in the hash, the current iterator position is undefined. In this case the

undef_item exception is thrown, if enabled.

Results: The value at the current iterator element is returned. If the current element is undefined, a default

initialized object is returned.

See Also: operator (), operator ++, reset, WCIterExcept::undef_item

Hash Iterators 223

WCValHashSetIter<Type>,WCValHashTableIter<Type>::operator ()()

Synopsis: #include <wchiter.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The hash element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the hash, the iterator is positioned after the end of the hash.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first hash element, the current item will be set to the first

element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was past the last

element the hash, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is positioned on a

hash item. Zero(0) is returned when the iterator is incremented past the end of the hash.

See Also: operator ++, reset, WCIterExcept::undef_iter

224 Hash Iterators

WCValHashSetIter<Type>,WCValHashTableIter<Type>::operator ++()

Synopsis: #include <wchiter.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The hash

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the hash, the iterator is positioned after the end of the hash.

The operator ++ public member function has the same semantics as the call operator, operator
().

The current item will be set to the first hash element if the iterator was positioned before the first

element in the hash. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was past the last

element the hash, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is positioned on a

hash item. Zero(0) is returned when the iterator is incremented past the end of the hash.

See Also: current, operator (), reset, WCIterExcept::undef_iter

Hash Iterators 225

WCValHashSetIter<Type>::reset(), WCValHashTableIter<Type>::reset()

Synopsis: #include <wchiter.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

See Also: WCValHashSetIter, WCValHashTableIter, container

226 Hash Iterators

WCValHashSetIter<Type>::reset(), WCValHashTableIter<Type>::reset()

Synopsis: #include <wchiter.h>
public:
void WCValHashSetIter<Type>::reset(WCValHashSet<Type> &);
void WCValHashTableIter<Type>::reset(WCValHashTable<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified hash. The iterator is

positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

See Also: WCValHashSetIter, WCValHashTableIter, container

Hash Iterators 227

WCValHashSetIter<Type>::reset(), WCValHashTableIter<Type>::reset()

228 Hash Iterators

12 List Containers

List containers are single or double linked lists. The choice of which type of list to use is determined by the

direction in which the list is traversed and by what is stored in the list. A list to which items are just added

and removed may be most efficiently implemented as a single linked list. If frequent retrievals of items at

given indexes within the list are made, double linked lists can offer some improved search performance.

There are three sets of list container classes: value, pointer and intrusive.

Value lists are the simplest to use but have the most requirements on the type stored in the lists. Copies are

made of the values stored in the list, which could be undesirable if the stored objects are complicated and

copying is expensive. Value lists should not be used to store objects of a base class if any derived types of

different sizes would be stored in the list, or if the destructor for the derived class must be called. The

WCValSList<Type> container class implements single linked value lists, and the

WCValDList<Type> class double linked value lists.

Pointer list elements store pointers to objects. No creating, copying or destroying of objects stored in the

list occurs. The only requirement of the type pointed to is that an equivalence operator is provided so that

lookups can be performed. The WCPtrSList<Type> class implements single linked pointer lists, and

the WCPtrDList<Type> class double linked pointer lists.

Intrusive lists require that the list elements are objects derived from the WCSLink or WCDLink class,

depending on whether a single or double linked list is used. The list classes require nothing else from the

list elements. No creating, destroying or copying of any object is performed by the intrusive list classes,

and must be done by the user of the class. One advantage of an intrusive list is a list element can be

removed from one list and inserted into another list without creating new list element objects or deleting

old objects. The WCIsvSList<Type> class implements single linked intrusive lists, and the

WCIsvDList<Type> class double linked intrusive lists.

A list may be traversed using the corresponding list iterator class. Iterators allow lists to be stepped

through one or more elements at a time. The iterator classes which correspond to single linked list

containers have some functionality inhibited. If backward traversal is required, the double linked

containers and iterators must be used.

The classes are presented in alphabetical order. The WCSLink and WCDLink class provide a common

control interface for the list elements for the intrusive classes.

Since the container classes are all template classes, deriving most of the functionality from common base

classes was used. In the listing of class member functions, those public member functions which appear to

be in the container class but are actually defined in the common base class are identified as if they were

explicitly specified in the container class.

List Containers 229

WCDLink

Declared: wclcom.h

Derived from: WCSLink

The WCDLink class is the building block for all of the double linked list classes. It is implemented in

terms of the WCSLink base class. Since no user data is stored directly with it, the WCDLink class

should only be used as a base class to derive a user defined class.

When creating a double linked intrusive list, the WCDLink class is used to derive the user defined class

that holds the data to be inserted into the list.

The wclcom.h header file is included by the wclist.h header file. There is no need to explicitly

include the wclcom.h header file unless the wclist.h header file is not included. No errors will

result if it is included.

Note that the destructor is non-virtual so that list elements are of minimum size. Objects created as a

class derived from the WCDLink class, but destroyed while typed as a WCDLink object will not invoke

the destructor of the derived class..

Public Member Functions

The following public member functions are declared:

WCDLink();
~WCDLink();

See Also: WCSLink

230 List Containers

WCDLink::WCDLink()

Synopsis: #include <wclist.h>
public:
WCDLink();

Semantics: The public WCDLink constructor creates an WCDLink object. The public WCDLink constructor is

used implicitly by the compiler when it generates a constructor for a derived class.

Results: The public WCDLink constructor produces an initialized WCDLink object.

See Also: ~WCDLink

List Containers 231

WCDLink::~WCDLink()

Synopsis: #include <wclist.h>
public:
~WCDLink();

Semantics: The public ~WCDLink destructor does not do anything explicit. The call to the public ~WCDLink
destructor is inserted implicitly by the compiler at the point where the object derived from WCDLink

goes out of scope.

Results: The object derived from WCDLink is destroyed.

See Also: WCDLink

232 List Containers

WCIsvSList<Type>, WCIsvDList<Type>

Declared: wclist.h

The WCIsvSList<Type> and WCIsvDList<Type> classes are the templated classes used to

create objects which are single or double linked lists. The created list is intrusive, which means that list

elements which are inserted must be created with a library supplied base class. The class WCSLink
provides the base class definition for single linked lists, and should be inherited by the definition of any

list item for single linked lists. It provides the linkage that is used to traverse the list elements.

Similarly, the class WCDLink provides the base class definition for double lists, and should be inherited

by the definition of any list item for double lists.

In the description of each member function, the text Type is used to indicate the type value specified as

the template parameter. Type is the type of the list elements, derived from WCSLink or WCDLink.

The WCExcept class is a base class of the WCIsvSList<Type> and WCIsvDList<Type> classes

and provides the exceptions member function. This member function controls the exceptions which

can be thrown by the WCIsvSList<Type> and WCIsvDList<Type> objects. No exceptions are

enabled unless they are set by the exceptions member function.

Requirements of Type

The WCIsvSList<Type> class requires only that Type is derived from WCSLink. The

WCIsvDList<Type> class requires only that Type is derived from WCDLink.

Private Member Functions

In an intrusive list, copying a list is undefined. Setting the copy constructor and assignment operator as

private is the standard mechanism to ensure a copy cannot be made. The following member functions

are declared private:

void WCIsvSList(const WCIsvSList &);
void WCIsvDList(const WCIsvDList &);
WCIsvSList & WCIsvSList::operator =(const WCIsvSList &);
WCIsvDList & WCIsvDList::operator =(const WCIsvDList &);

Public Member Functions

The following member functions are declared in the public interface:

WCIsvSList();
~WCIsvSList();
WCIsvDList();
~WCIsvDList();
int append(Type *);
void clear();
void clearAndDestroy();
int contains(const Type *) const;
int entries() const;
Type * find(int = 0) const;
Type * findLast() const;
void forAll(void (*)(Type *, void *), void *);
Type * get(int = 0);
int index(const Type *) const;
int index(int (*)(const Type *, void *), void *) const;
int insert(Type *);
int isEmpty() const;

List Containers 233

WCIsvSList<Type>, WCIsvDList<Type>

Public Member Operators

The following member operators are declared in the public interface:

int WCIsvSList::operator ==(const WCIsvSList &) const;
int WCIsvDList::operator ==(const WCIsvDList &) const;

Sample Program Using an Intrusive List

#include <wclist.h>
#include <iostream.h>

class int_ddata : public WCDLink {
public:

inline int_ddata() {};
inline int_ddata() {};
inline int_ddata(int datum) : info(datum) {};

int info;
};

static void test1(void);

void data_isv_prt(int_ddata * data, void * str) {
cout << (char *)str << "[" << data->info << "]\n";

}

void main() {
try {

test1();
} catch(...) {

cout << "we caught an unexpected exception\n";
}
cout.flush();

}

void test1 (void) {
WCIsvDList<int_ddata> list;
int_ddata data1(1);
int_ddata data2(2);
int_ddata data3(3);
int_ddata data4(4);
int_ddata data5(5);

list.exceptions(WCExcept::check_all);
list.append(&data2);
list.append(&data3);
list.append(&data4);

list.insert(&data1);
list.append(&data5);
cout << "<intrusive double list for int_ddata>\n";
list.forAll(data_isv_prt, "");
data_isv_prt(list.find(3), "<the fourth element>");
data_isv_prt(list.get(2), "<the third element>");
data_isv_prt(list.get(), "<the first element>");
list.clear();
cout.flush();

}

234 List Containers

WCIsvSList<Type>::WCIsvSList()

Synopsis: #include <wclist.h>
public:
WCIsvSList();

Semantics: The WCIsvSList public member function creates an empty WCIsvSList object.

Results: The WCIsvSList public member function produces an initialized WCIsvSList object.

See Also: ~WCIsvSList

List Containers 235

WCIsvSList<Type>::WCIsvSList()

Synopsis: #include <wclist.h>
private:
void WCIsvSList(const WCIsvSList &);

Semantics: The WCIsvSList private member function is the copy constructor for the single linked list class.

Making a copy of the list object would result in a error condition, since intrusive lists cannot share data

items with other lists.

236 List Containers

WCIsvSList<Type>::~WCIsvSList()

Synopsis: #include <wclist.h>
public:
~WCIsvSList();

Semantics: The ~WCIsvSList public member function destroys the WCIsvSList object. If the list is not

empty and the not_empty exception is enabled, the exception is thrown. If the not_empty
exception is not enabled and the list is not empty, the list is cleared using the clear member function.

The call to the ~WCIsvSList public member function is inserted implicitly by the compiler at the

point where the WCIsvSList object goes out of scope.

Results: The WCIsvSList object is destroyed.

See Also: WCIsvSList, clear, clearAndDestroy, WCExcept::not_empty

List Containers 237

WCIsvDList<Type>::WCIsvDList()

Synopsis: #include <wclist.h>
public:
WCIsvDList();

Semantics: The WCIsvDList public member function creates an empty WCIsvDList object.

Results: The WCIsvDList public member function produces an initialized WCIsvDList object.

See Also: ~WCIsvDList

238 List Containers

WCIsvDList<Type>::WCIsvDList()

Synopsis: #include <wclist.h>
private:
WCIsvDList(const WCIsvDList &);

Semantics: The WCIsvDList private member function is the copy constructor for the double linked list class.

Making a copy of the list object would result in a error condition, since intrusive lists cannot share data

items with other lists.

List Containers 239

WCIsvDList<Type>::~WCIsvDList()

Synopsis: #include <wclist.h>
public:
~WCIsvDList();

Semantics: The ~WCIsvDList public member function destroys the WCIsvDList object. If the list is not

empty and the not_empty exception is enabled, the exception is thrown. If the not_empty
exception is not enabled and the list is not empty, the list is cleared using the clear member function.

The call to the ~WCIsvDList public member function is inserted implicitly by the compiler at the

point where the WCIsvDList object goes out of scope.

Results: The WCIsvDList object is destroyed.

See Also: WCIsvDList, clear, clearAndDestroy, WCExcept::not_empty

240 List Containers

WCIsvSList<Type>::append(), WCIsvDList<Type>::append()

Synopsis: #include <wclist.h>
public:
int append(Type *);

Semantics: The append public member function is used to append the list element object to the end of the list.

The address of (a pointer to) the list element object should be passed, not the value. Since the linkage

information is stored in the list element, it is not possible for the element to be in more than one list, or

in the same list more than once.

The passed list element should be constructed using the appropriate link class as a base. WCSLink
must be used as a list element base class for single linked lists, and WCDLink must be used as a list

element base class for double linked lists.

Results: The list element is appended to the end of the list and a TRUE value (non-zero) is returned.

See Also: insert

List Containers 241

WCIsvSList<Type>::clear(), WCIsvDList<Type>::clear()

Synopsis: #include <wclist.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list object and set it to the state of the object

just after the initial construction. The list object is not destroyed and re-created by this operator, so the

object destructor is not invoked. The list elements are not cleared. Any list items still in the list are lost

unless pointed to by some pointer object in the program code.

If any of the list elements are not allocated with new (local variable or global list elements), then the

clear public member function must be used. When all list elements are allocated with new, the

clearAndDestory member function should be used.

Results: The clear public member function resets the list object to the state of the object immediately after the

initial construction.

See Also: ~WCIsvSList, ~WCIsvDList, clearAndDestroy, get, operator =

242 List Containers

WCIsvSList<Type>,WCIsvDList<Type>::clearAndDestroy()

Synopsis: #include <wclist.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the list object and set it to the state

of the object just after the initial construction. The list object is not destroyed and re-created by this

operator, so the object destructor is not invoked. The link elements are deleted before the list is

re-initialized.

If any elements in the list were not allocated by the new operator, the clearAndDestroy public

member function must not be called. The clearAndDestroy public member function destroys each

list element with the destructor for Type even if the list element was created as an object derived from

Type, unless Type has a pure virtual destructor.

Results: The clearAndDestroy public member function resets the list object to the initial state of the object

immediately after the initial construction and deletes the list elements.

See Also: clear, get

List Containers 243

WCIsvSList<Type>::contains(), WCIsvDList<Type>::contains()

Synopsis: #include <wclist.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function is used to determine if a list element object is already

contained in the list. The address of (a pointer to) the list element object should be passed, not the

value. Each list element is compared to the passed element object to determine if it has the same

address. Note that the comparison is of the addresses of the elements, not the contained values.

Results: Zero(0) is returned if the passed list element object is not found in the list. A non-zero result is returned

if the element is found in the list.

See Also: find, index

244 List Containers

WCIsvSList<Type>::entries(), WCIsvDList<Type>::entries()

Synopsis: #include <wclist.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of list elements contained in

the list object.

Results: The number of entries stored in the list is returned, zero(0) is returned if there are no list elements.

See Also: isEmpty

List Containers 245

WCIsvSList<Type>::find(), WCIsvDList<Type>::find()

Synopsis: #include <wclist.h>
public:
Type * find(int = 0) const;

Semantics: The find public member function returns a pointer to a list element in the list object. The list element

is not removed from the list, so care must be taken not to delete the element returned to you. The

optional parameter specifies which element to locate, and defaults to the first element. Since the first

element of the list is the zero’th element, the last element will be the number of list entries minus one.

If the list is empty and the empty_container exception is enabled, the exception is thrown. If the

index_range exception is enabled, the exception is thrown if the index value is negative or is greater

than the number of list entries minus one.

Results: A pointer to the selected list element or the closest list element is returned. If the index value is

negative, the closest list element is the first element. The last element is the closest element if the index

value is greater than the number of list entries minus one. A value of NULL(0) is returned if there are

no elements in the list.

See Also: findLast, get, index, isEmpty, WCExcept::empty_container,
WCExcept::index_range

246 List Containers

WCIsvSList<Type>::findLast(), WCIsvDList<Type>::findLast()

Synopsis: #include <wclist.h>
public:
Type * findLast() const;

Semantics: The findLast public member function returns a pointer to the last list element in the list object. The

list element is not removed from the list, so care must be taken not to delete the element returned to you.

If the list is empty, one of two exceptions can be thrown. If the empty_container exception is

enabled, it is thrown. The index_range exception is thrown if it is enabled and the

empty_container exception is not enabled.

Results: A pointer to the last list element is returned. A value of NULL(0) is returned if there are no elements in

the list.

See Also: find, get, isEmpty, WCExcept::empty_container, WCExcept::index_range

List Containers 247

WCIsvSList<Type>::forAll(), WCIsvDList<Type>::forAll()

Synopsis: #include <wclist.h>
public:
void forAll(void (*fn)(Type *, void *), void *);

Semantics: The forAll public member function is used to cause the function fn to be invoked for each list

element. The fn function should have the prototype

void (*fn)(Type *, void *)

The first parameter of fn shall accept a pointer to the list element currently active. The second argument

passed to fn is the second argument of the forAll function. This allows a callback function to be

defined which can accept data appropriate for the point at which the forAll function is invoked.

See Also: WCIsvConstSListIter, WCIsvConstDListIter, WCIsvSListIter, WCIsvDListIter

248 List Containers

WCIsvSList<Type>::get(), WCIsvDList<Type>::get()

Synopsis: #include <wclist.h>
public:
Type * get(int = 0);

Semantics: The get public member function returns a pointer to a list element in the list object. The list element is

also removed from the list. The optional parameter specifies which element to remove, and defaults to

the first element. Since the first element of the list is the zero’th element, the last element will be the

number of list entries minus one.

If the list is empty and the empty_container exception is enabled, the exception is thrown. If the

index_range exception trap is enabled, the exception is thrown if the index value is negative or is

greater than the number of list entries minus one.

Results: A pointer to the selected list element or the closest list element is removed and returned. If the index

value is negative, the closest list element is the first element. The last element is the closest element if

the index value is greater than the number of list entries minus one. A value of NULL(0) is returned if

there are no elements in the list.

See Also: clear, clearAndDestroy, find, index, WCExcept::empty_container,
WCExcept::index_range

List Containers 249

WCIsvSList<Type>::index(), WCIsvDList<Type>::index()

Synopsis: #include <wclist.h>
public:
int index(const Type *) const;

Semantics: The index public member function is used to determine the index of the first list element equivalent to

the passed element. The address of (a pointer to) the list element object should be passed, not the value.

Each list element is compared to the passed element object to determine if it has the same address. Note

that the comparison is of the addresses of the elements, not the contained values.

Results: The index of the first element equivalent to the passed element is returned. If the passed element is not

in the list, negative one (-1) is returned.

See Also: contains, find, get

250 List Containers

WCIsvSList<Type>::index(), WCIsvDList<Type>::index()

Synopsis: #include <wclist.h>
public:
int index(int (*test_fn)(const Type *, void *),
void *) const;

Semantics: The index public member function is used to determine the index of the first list element for which the

supplied test_fn function returns true. The test_fn function must have the prototype:

int (*test_fn)(const Type *, void *);

Each list element is passed in turn to the test_fn function as the first argument. The second parameter

passed is the second argument of the index function. This allows the test_fn callback function to

accept data appropriate for the point at which the index function is invoked. The supplied test_fn

shall return a TRUE (non-zero) value when the index of the passed element is desired. Otherwise, a

FALSE (zero) value shall be returned.

Results: The index of the first list element for which the test_fn function returns non-zero is returned. If the

test_fn function returns zero for all list elements, negative one (-1) is returned.

See Also: contains, find, get

List Containers 251

WCIsvSList<Type>::insert(), WCIsvDList<Type>::insert()

Synopsis: #include <wclist.h>
public:
int insert(Type *);

Semantics: The insert public member function is used to insert the list element object to the beginning of the

list. The address of (a pointer to) the list element object should be passed, not the value. Since the

linkage information is stored in the list element, it is not possible for the element to be in more than one

list, or in the same list more than once.

The passed list element should be constructed using the appropriate link class as a base. WCSLink
must be used as a list element base class for single linked lists, and WCDLink must be used as a list

element base class for double linked lists.

Results: The list element is inserted as the first element of the list and a TRUE value (non-zero) is returned.

See Also: append

252 List Containers

WCIsvSList<Type>::isEmpty(), WCIsvDList<Type>::isEmpty()

Synopsis: #include <wclist.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a list object has any list elements

contained in it.

Results: A TRUE value (non-zero) is returned if the list object does not have any list elements contained within

it. A FALSE (zero) result is returned if the list contains at least one element.

See Also: entries

List Containers 253

WCIsvSList<Type>::operator =(), WCIsvDList<Type>::operator =()

Synopsis: #include <wclist.h>
private:
WCIsvSList & WCIsvSList::operator =(const WCIsvSList &);
WCIsvDList & WCIsvDList::operator =(const WCIsvDList &);

Semantics: The operator = private member function is the assignment operator for the class. Since making a

copy of the list object would result in a error condition, it is made inaccessible by making it a private

operator.

254 List Containers

WCIsvSList<Type>::operator ==(), WCIsvDList<Type>::operator ==()

Synopsis: #include <wclist.h>
public:
int WCIsvSList::operator ==(const WCIsvSList &) const;
int WCIsvDList::operator ==(const WCIsvDList &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCIsvSList<Type> and WCIsvDList<Type> classes. Two list objects are equivalent if they are

the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side object and the right hand side objects are the

same object. A FALSE (zero) value is returned otherwise.

List Containers 255

WCPtrSList<Type>, WCPtrDList<Type>

Declared: wclist.h

The WCPtrSList<Type> and WCPtrDList<Type> classes are the templated classes used to

create objects which are single or double linked lists.

In the description of each member function, the text Type is used to indicate the type value specified as

the template parameter. The pointers stored in the list point to values of type Type.

The WCExcept class is a base class of the WCPtrSList<Type> and WCPtrDList<Type> classes

and provides the exceptions member function. This member function controls the exceptions which

can be thrown by the WCPtrSList<Type> and WCPtrDList<Type> objects. No exceptions are

enabled unless they are set by the exceptions member function.

Requirements of Type

The WCPtrSList<Type> and WCPtrDList<Type> classes requires Type to have:

(1) an equivalence operator with constant parameters
Type::operator ==(const Type &) const

Public Member Functions

The following member functions are declared in the public interface:

WCPtrSList();
WCPtrSList(void * (*)(size_t), void (*)(void *, size_t));
WCPtrSList(const WCPtrSList &);
~WCPtrSList();
WCPtrDList();
WCPtrDList(void * (*)(size_t), void (*)(void *, size_t));
WCPtrDList(const WCPtrDList &);
~WCPtrDList();
int append(Type *);
void clear();
void clearAndDestroy();
int contains(const Type *) const;
int entries() const;
Type * find(int = 0) const;
Type * findLast() const;
void forAll(void (*)(Type *, void *), void *) const;
Type * get(int = 0);
int index(const Type *) const;
int insert(Type *);
int isEmpty() const;

Public Member Operators

The following member operators are declared in the public interface:

WCPtrSList & WCPtrSList::operator =(const WCPtrSList &);
WCPtrDList & WCPtrDList::operator =(const WCPtrDList &);
int WCPtrSList::operator ==(const WCPtrSList &) const;
int WCPtrDList::operator ==(const WCPtrDList &) const;

Sample Program Using a Pointer List

256 List Containers

WCPtrSList<Type>, WCPtrDList<Type>

#include <wclist.h>
#include <iostream.h>

static void test1(void);

void data_ptr_prt(int * data, void * str) {
cout << (char *)str << "[" << *data << "]\n";

}

void main() {
try {

test1();
} catch(...) {

cout << "we caught an unexpected exception\n";
}
cout.flush();

}

void test1 (void) {
WCPtrDList<int> list;
int data1(1);
int data2(2);
int data3(3);
int data4(4);
int data5(5);

list.append(&data2);
list.append(&data3);
list.append(&data4);

list.insert(&data1);
list.append(&data5);
cout << "<pointer double list for int>\n";
list.forAll(data_ptr_prt, "");
data_ptr_prt(list.find(3), "<the fourth element>");
data_ptr_prt(list.get(2), "<the third element>");
data_ptr_prt(list.get(), "<the first element>");
list.clear();
cout.flush();

}

List Containers 257

WCPtrSList<Type>::WCPtrSList()

Synopsis: #include <wclist.h>
public:
WCPtrSList();

Semantics: The WCPtrSList public member function creates an empty WCPtrSList object.

Results: The WCPtrSList public member function produces an initialized WCPtrSList object.

See Also: WCPtrSList, ~WCPtrSList

258 List Containers

WCPtrSList<Type>::WCPtrSList()

Synopsis: #include <wclist.h>
public:
WCPtrSList(void *(*allocator)(size_t),
void (*deallocator)(void *, size_t));

Semantics: The WCPtrSList public member function creates an empty WCPtrSList<Type> object. The

allocator function is registered to perform all memory allocations of the list elements, and the

deallocator function to perform all freeing of the list elements’ memory. These functions provide the

ability to control how the allocation and freeing of memory is performed, allowing for more efficient

memory handling than the general purpose global operator new() and operator delete()
can provide. Memory management optimizations may potentially be made through the allocator and

deallocator functions, but are not recommended before managing memory is understood and

determined to be worth while.

The allocator function shall return a pointer to allocated memory of size at least the argument, or

zero(0) if the allocation cannot be performed. Initialization of the memory returned is performed by the

WCPtrSList<Type> class.

The WCPtrSList<Type> class calls the deallocator function only on memory allocated by the

allocator function. The deallocator shall free the memory pointed to by the first argument which is of

size the second argument. The size passed to the deallocator function is guaranteed to be the same size

passed to the allocator function when the memory was allocated.

The allocator and deallocator functions may assume that for a list object instance, the allocator is

always called with the same first argument (the size of the memory to be allocated). The

WCValSListItemSize(Type) macro returns the size of the elements which are allocated by the

allocator function.

Results: The WCPtrSList public member function creates an initialized WCPtrSList<Type> object and

registers the allocator and deallocator functions.

See Also: WCPtrSList, ~WCPtrSList

List Containers 259

WCPtrSList<Type>::WCPtrSList()

Synopsis: #include <wclist.h>
public:
void WCPtrSList(const WCPtrSList &);

Semantics: The WCPtrSList public member function is the copy constructor for the single linked list class. All

of the list elements are copied to the new list, as well as the exception trap states, and any registered

allocator and deallocator functions.

If all of the elements cannot be copied and the out_of_memory is enabled in the list being copied,

the exception is thrown. The new list is created in a valid state, even if all of the list elements could not

be copied.

Results: The WCPtrSList public member function produces a copy of the list.

See Also: WCPtrSList, ~WCPtrSList, clear, WCExcept::out_of_memory

260 List Containers

WCPtrSList<Type>::~WCPtrSList()

Synopsis: #include <wclist.h>
public:
~WCPtrSList();

Semantics: The ~WCPtrSList public member function destroys the WCPtrSList object. If the list is not

empty and the not_empty exception is enabled, the exception is thrown. If the not_empty
exception is not enabled and the list is not empty, the list is cleared using the clear member function.

The call to the ~WCPtrSList public member function is inserted implicitly by the compiler at the

point where the WCPtrSList object goes out of scope.

Results: The WCPtrSList object is destroyed.

See Also: WCPtrSList, clear, clearAndDestroy, WCExcept::not_empty

List Containers 261

WCPtrDList<Type>::WCPtrDList()

Synopsis: #include <wclist.h>
public:
WCPtrDList();

Semantics: The WCPtrDList public member function creates an empty WCPtrDList object.

Results: The WCPtrDList public member function produces an initialized WCPtrDList object.

See Also: WCPtrDList, ~WCPtrDList

262 List Containers

WCPtrDList<Type>::WCPtrDList()

Synopsis: #include <wclist.h>
public:
WCPtrDList(void *(*allocator)(size_t),
void (*deallocator)(void *, size_t));

Semantics: The WCPtrDList public member function creates an empty WCPtrDList<Type> object. The

allocator function is registered to perform all memory allocations of the list elements, and the

deallocator function to perform all freeing of the list elements’ memory. These functions provide the

ability to control how the allocation and freeing of memory is performed, allowing for more efficient

memory handling than the general purpose global operator new() and operator delete()
can provide. Memory management optimizations may potentially be made through the allocator and

deallocator functions, but are not recommended before managing memory is understood and

determined to be worth while.

The allocator function shall return a pointer to allocated memory of size at least the argument, or

zero(0) if the allocation cannot be performed. Initialization of the memory returned is performed by the

WCPtrDList<Type> class.

The WCPtrDList<Type> class calls the deallocator function only on memory allocated by the

allocator function. The deallocator shall free the memory pointed to by the first argument which is of

size the second argument. The size passed to the deallocator function is guaranteed to be the same size

passed to the allocator function when the memory was allocated.

The allocator and deallocator functions may assume that for a list object instance, the allocator is

always called with the same first argument (the size of the memory to be allocated). The

WCValDListItemSize(Type) macro returns the size of the elements which are allocated by the

allocator function.

Results: The WCPtrDList public member function creates an initialized WCPtrDList<Type> object and

registers the allocator and deallocator functions.

See Also: WCPtrDList, ~WCPtrDList

List Containers 263

WCPtrDList<Type>::WCPtrDList()

Synopsis: #include <wclist.h>
public:
WCPtrDList(const WCPtrDList &);

Semantics: The WCPtrDList public member function is the copy constructor for the double linked list class. All

of the list elements are copied to the new list, as well as the exception trap states, and any registered

allocator and deallocator functions.

If all of the elements cannot be copied and the out_of_memory is enabled in the list being copied,

the exception is thrown. The new list is created in a valid state, even if all of the list elements could not

be copied.

Results: The WCPtrDList public member function produces a copy of the list.

See Also: WCPtrDList, ~WCPtrDList, clear, WCExcept::out_of_memory

264 List Containers

WCPtrDList<Type>::~WCPtrDList()

Synopsis: #include <wclist.h>
public:
~WCPtrDList();

Semantics: The ~WCPtrDList public member function destroys the WCPtrDList object. If the list is not

empty and the not_empty exception is enabled, the exception is thrown. If the not_empty
exception is not enabled and the list is not empty, the list is cleared using the clear member function.

The call to the ~WCPtrDList public member function is inserted implicitly by the compiler at the

point where the WCPtrDList object goes out of scope.

Results: The WCPtrDList object is destroyed.

See Also: WCPtrDList, clear, clearAndDestroy, WCExcept::not_empty

List Containers 265

WCPtrSList<Type>::append(), WCPtrDList<Type>::append()

Synopsis: #include <wclist.h>
public:
int append(Type *);

Semantics: The append public member function is used to append the data to the end of the list.

If the out_of_memory exception is enabled and the append fails, the exception is thrown.

Results: The data element is appended to the end of the list. A TRUE value (non-zero) is returned if the append

is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert, WCExcept::out_of_memory

266 List Containers

WCPtrSList<Type>::clear(), WCPtrDList<Type>::clear()

Synopsis: #include <wclist.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list object and set it to the state of the object

just after the initial construction. The list object is not destroyed and re-created by this operator, so the

object destructor is not invoked.

Results: The clear public member function resets the list object to the state of the object immediately after the

initial construction.

See Also: ~WCPtrSList, ~WCPtrDList, clearAndDestroy, get, operator =

List Containers 267

WCPtrSList<Type>,WCPtrDList<Type>::clearAndDestroy()

Synopsis: #include <wclist.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the list object and set it to the state

of the object just after the initial construction. The list object is not destroyed and re-created by this

operator, so the object destructor is not invoked. Before the list object is re-initialized, the the values

pointed to by the list elements are deleted.

Results: The clearAndDestroy public member function resets the list object to the initial state of the object

immediately after the initial construction and deletes the list elements.

See Also: clear, get

268 List Containers

WCPtrSList<Type>::contains(), WCPtrDList<Type>::contains()

Synopsis: #include <wclist.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function is used to determine if a list element object is already

contained in the list. Each list element is compared to the passed element using Type’s operator
== to determine if the passed element is contained in the list. Note that the comparison is of the objects

pointed to.

Results: Zero(0) is returned if the passed list element object is not found in the list. A non-zero result is returned

if the element is found in the list.

See Also: find, index

List Containers 269

WCPtrSList<Type>::entries(), WCPtrDList<Type>::entries()

Synopsis: #include <wclist.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of list elements contained in

the list object.

Results: The number of entries stored in the list is returned, zero(0) is returned if there are no list elements.

See Also: isEmpty

270 List Containers

WCPtrSList<Type>::find(), WCPtrDList<Type>::find()

Synopsis: #include <wclist.h>
public:
Type * find(int = 0) const;

Semantics: The find public member function returns the value of a list element in the list object. The optional

parameter specifies which element to locate, and defaults to the first element. Since the first element of

the list is the zero’th element, the last element will be the number of list entries minus one.

If the list is empty and the empty_container exception is enabled, the exception is thrown. If the

index_range exception is enabled, the exception is thrown if the index value is negative or is greater

than the number of list entries minus one.

Results: The value of the selected list element or the closest element is returned. If the index value is negative,

the closest list element is the first element. The last element is the closest element if the index value is

greater than the number of list entries minus one. An uninitialized pointer is returned if there are no

elements in the list.

See Also: findLast, get, index, isEmpty, WCExcept::empty_container,
WCExcept::index_range

List Containers 271

WCPtrSList<Type>::findLast(), WCPtrDList<Type>::findLast()

Synopsis: #include <wclist.h>
public:
Type * findLast() const;

Semantics: The findLast public member function returns the value of the last list element in the list object.

If the list is empty, one of two exceptions can be thrown. If the empty_container exception is

enabled, it is thrown. The index_range exception is thrown if it is enabled and the

empty_container exception is not enabled.

Results: The value of the last list element is returned. An uninitialized pointer is returned if there are no

elements in the list.

See Also: find, get, isEmpty, WCExcept::empty_container, WCExcept::index_range

272 List Containers

WCPtrSList<Type>::forAll(), WCPtrDList<Type>::forAll()

Synopsis: #include <wclist.h>
public:
void forAll(void (*)(Type *, void *), void *) const;

Semantics: The forAll public member function is used to cause the function fn to be invoked for each list

element. The fn function should have the prototype

void (*fn)(Type *, void *)

The first parameter of fn shall accept the value of the list element currently active. The second

argument passed to fn is the second argument of the forAll function. This allows a callback function

to be defined which can accept data appropriate for the point at which the forAll function is invoked.

See Also: WCPtrConstSListIter, WCPtrConstDListIter, WCPtrSListIter, WCPtrDListIter

List Containers 273

WCPtrSList<Type>::get(), WCPtrDList<Type>::get()

Synopsis: #include <wclist.h>
public:
Type * get(int = 0);

Semantics: The get public member function returns the value of the list element in the list object. The list element

is also removed from the list. The optional parameter specifies which element to remove, and defaults

to the first element. Since the first element of the list is the zero’th element, the last element will be the

number of list entries minus one.

If the list is empty and the empty_container exception is enabled, the exception is thrown. If the

index_range exception trap is enabled, the exception is thrown if the index value is negative or is

greater than the number of list entries minus one.

Results: The value of the selected list element or the closest element is removed and returned. If the index value

is negative, the closest list element is the first element. The last element is the closest element if the

index value is greater than the number of list entries minus one. An uninitialized pointer is returned if

there are no elements in the list.

See Also: clear, clearAndDestroy, find, index, WCExcept::empty_container,
WCExcept::index_range

274 List Containers

WCPtrSList<Type>::index(), WCPtrDList<Type>::index()

Synopsis: #include <wclist.h>
public:
int index(const Type *) const;

Semantics: The index public member function is used to determine the index of the first list element equivalent to

the passed element. Each list element is compared to the passed element using Type’s operator
== until the passed element is found, or all list elements have been checked. Note that the comparison

is of the objects pointed to.

Results: The index of the first element equivalent to the passed element is returned. If the passed element is not

in the list, negative one (-1) is returned.

See Also: contains, find, get

List Containers 275

WCPtrSList<Type>::insert(), WCPtrDList<Type>::insert()

Synopsis: #include <wclist.h>
public:
int insert(Type *);

Semantics: The insert public member function is used to insert the data as the first element of the list.

If the out_of_memory exception is enabled and the insert fails, the exception is thrown.

Results: The data element is inserted into the beginning of the list. A TRUE value (non-zero) is returned if the

insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append, WCExcept::out_of_memory

276 List Containers

WCPtrSList<Type>::isEmpty(), WCPtrDList<Type>::isEmpty()

Synopsis: #include <wclist.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a list object has any list elements

contained in it.

Results: A TRUE value (non-zero) is returned if the list object does not have any list elements contained within

it. A FALSE (zero) result is returned if the list contains at least one element.

See Also: entries

List Containers 277

WCPtrSList<Type>::operator =(), WCPtrDList<Type>::operator =()

Synopsis: #include <wclist.h>
public:
WCPtrSList & WCPtrSList::operator =(const WCPtrSList &);
WCPtrDList & WCPtrDList::operator =(const WCPtrDList &);

Semantics: The operator = public member function is the assignment operator for the class. The left hand side

of the assignment is first cleared with the clear member function. All elements in the right hand side

list are then copied, as well as the exception trap states, and any registered allocator and deallocator

functions.

If all of the elements cannot be copied and the out_of_memory is enabled in the right hand side list,

the exception is thrown. The new list is created in a valid state, even if all of the list elements could not

be copied.

Results: The operator = public member function assigns the right hand side to the left hand side and returns

a reference to the left hand side.

See Also: WCPtrSList, WCPtrDList, clear, WCExcept::out_of_memory

278 List Containers

WCPtrSList<Type>::operator ==(), WCPtrDList<Type>::operator ==()

Synopsis: #include <wclist.h>
public:
int WCPtrSList::operator ==(const WCPtrSList &) const;
int WCPtrDList::operator ==(const WCPtrDList &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCPtrSList<Type> and WCPtrDList<Type> classes. Two list objects are equivalent if they are

the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side object and the right hand side objects are the

same object. A FALSE (zero) value is returned otherwise.

List Containers 279

WCSLink

Declared: wclcom.h

Derived by: WCDLink

The WCSLink class is the building block for all of the list classes. It provides the link that is used to

traverse the list elements. The double link classes use the WCSLink class to implement both links.

Since no user data is stored directly with it, the WCSLink class should only be used as a base class to

derive a user defined class.

When creating a single linked intrusive list, the WCSLink class is used to derive the user defined class

that holds the data to be inserted into the list.

The wclcom.h header file is included by the wclist.h header file. There is no need to explicitly

include the wclcom.h header file unless the wclist.h header file is not included. No errors will

result if it is included unnecessarily.

Note that the destructor is non-virtual so that list elements are of minimum size. Objects created as a

class derived from the WCSLink class, but destroyed while typed as a WCSLink object will not invoke

the destructor of the derived class..

Public Member Functions

The following public member functions are declared:

WCSLink();
~WCSLink();

See Also: WCDLink

280 List Containers

WCSLink::WCSLink()

Synopsis: #include <wclcom.h>
public:
WCSLink();

Semantics: The public WCSLink constructor creates an WCSLink object. The public WCSLink constructor is

used implicitly by the compiler when it generates a constructor for a derived class.

Results: The public WCSLink constructor produces an initialized WCSLink object.

See Also: ~WCSLink

List Containers 281

WCSLink::~WCSLink()

Synopsis: #include <wclcom.h>
public:
~WCSLink();

Semantics: The public ~WCSLink destructor does not do anything explicit. The call to the public ~WCSLink
destructor is inserted implicitly by the compiler at the point where the object derived from WCSLink

goes out of scope.

Results: The object derived from WCSLink is destroyed.

See Also: WCSLink

282 List Containers

WCValSList<Type>, WCValDList<Type>

Declared: wclist.h

The WCValSList<Type> and WCValDList<Type> classes are the templated classes used to

create objects which are single or double linked lists. Values are copied into the list, which could be

undesirable if the stored objects are complicated and copying is expensive. Value lists should not be

used to store objects of a base class if any derived types of different sizes would be stored in the list, or

if the destructor for a derived class must be called.

In the description of each member function, the text Type is used to indicate the type value specified as

the template parameter. Type is the type of the values stored in the list.

The WCExcept class is a base class of the WCValSList<Type> and WCValDList<Type> classes

and provides the exceptions member function. This member function controls the exceptions which

can be thrown by the WCValSList<Type> and WCValDList<Type> objects. No exceptions are

enabled unless they are set by the exceptions member function.

Requirements of Type

The WCValSList<Type> and WCValDList<Type> classes requires Type to have:

(1) a default constructor (Type::Type()).

(2) a well defined copy constructor (Type::Type(const Type &)).

(3) an equivalence operator with constant parameters
Type::operator ==(const Type &) const

Public Member Functions

The following member functions are declared in the public interface:

WCValSList();
WCValSList(void * (*)(size_t), void (*)(void *, size_t));
WCValSList(const WCValSList &);
~WCValSList();
WCValDList();
WCValDList(void * (*)(size_t), void (*)(void *, size_t));
WCValDList(const WCValDList &);
~WCValDList();
int append(const Type &);
void clear();
void clearAndDestroy();
int contains(const Type &) const;
int entries() const;
Type find(int = 0) const;
Type findLast() const;
void forAll(void (*)(Type, void *), void *) const;
Type get(int = 0);
int index(const Type &) const;
int insert(const Type &);
int isEmpty() const;

Public Member Operators

The following member operators are declared in the public interface:

List Containers 283

WCValSList<Type>, WCValDList<Type>

WCValSList & WCValSList::operator =(const WCValSList &);
WCValDList & WCValDList::operator =(const WCValDList &);
int WCValSList::operator ==(const WCValSList &) const;
int WCValDList::operator ==(const WCValDList &) const;

Sample Program Using a Value List

#include <wclist.h>
#include <iostream.h>

static void test1(void);

void data_val_prt(int data, void * str) {
cout << (char *)str << "[" << data << "]\n";

}

void main() {
try {

test1();
} catch(...) {

cout << "we caught an unexpected exception\n";
}
cout.flush();

}

void test1 (void) {
WCValDList<int> list;

list.append(2);
list.append(3);
list.append(4);

list.insert(1);
list.append(5);
cout << "<value double list for int>\n";
list.forAll(data_val_prt, "");
data_val_prt(list.find(3), "<the fourth element>");
data_val_prt(list.get(2), "<the third element>");
data_val_prt(list.get(), "<the first element>");
list.clear();
cout.flush();

}

284 List Containers

WCValSList<Type>::WCValSList()

Synopsis: #include <wclist.h>
public:
WCValSList();

Semantics: The WCValSList public member function creates an empty WCValSList object.

Results: The WCValSList public member function produces an initialized WCValSList object.

See Also: WCValSList, ~WCValSList

List Containers 285

WCValSList<Type>::WCValSList()

Synopsis: #include <wclist.h>
public:
WCValSList(void *(*allocator)(size_t),
void (*deallocator)(void *, size_t));

Semantics: The WCValSList public member function creates an empty WCValSList<Type> object. The

allocator function is registered to perform all memory allocations of the list elements, and the

deallocator function to perform all freeing of the list elements’ memory. These functions provide the

ability to control how the allocation and freeing of memory is performed, allowing for more efficient

memory handling than the general purpose global operator new() and operator delete()
can provide. Memory management optimizations may potentially be made through the allocator and

deallocator functions, but are not recommended before managing memory is understood and

determined to be worth while.

The allocator function shall return a pointer to allocated memory of size at least the argument, or

zero(0) if the allocation cannot be performed. Initialization of the memory returned is performed by the

WCValSList<Type> class.

The WCValSList<Type> class calls the deallocator function only on memory allocated by the

allocator function. The deallocator shall free the memory pointed to by the first argument which is of

size the second argument. The size passed to the deallocator function is guaranteed to be the same size

passed to the allocator function when the memory was allocated.

The allocator and deallocator functions may assume that for a list object instance, the allocator is

always called with the same first argument (the size of the memory to be allocated). The

WCValSListItemSize(Type) macro returns the size of the elements which are allocated by the

allocator function.

Results: The WCValSList public member function creates an initialized WCValSList<Type> object and

registers the allocator and deallocator functions.

See Also: WCValSList, ~WCValSList

286 List Containers

WCValSList<Type>::WCValSList()

Synopsis: #include <wclist.h>
public:
void WCValSList(const WCValSList &);

Semantics: The WCValSList public member function is the copy constructor for the single linked list class. All

of the list elements are copied to the new list, as well as the exception trap states, and any registered

allocator and deallocator functions. Type’s copy constructor is invoked to copy the values contained

by the list elements.

If all of the elements cannot be copied and the out_of_memory is enabled in the list being copied,

the exception is thrown. The new list is created in a valid state, even if all of the list elements could not

be copied.

Results: The WCValSList public member function produces a copy of the list.

See Also: WCValSList, ~WCValSList, clear, WCExcept::out_of_memory

List Containers 287

WCValSList<Type>::~WCValSList()

Synopsis: #include <wclist.h>
public:
~WCValSList();

Semantics: The ~WCValSList public member function destroys the WCValSList object. If the list is not

empty and the not_empty exception is enabled, the exception is thrown. If the not_empty
exception is not enabled and the list is not empty, the list is cleared using the clear member function.

The call to the ~WCValSList public member function is inserted implicitly by the compiler at the

point where the WCValSList object goes out of scope.

Results: The WCValSList object is destroyed.

See Also: WCValSList, clear, clearAndDestroy, WCExcept::not_empty

288 List Containers

WCValDList<Type>::WCValDList()

Synopsis: #include <wclist.h>
public:
WCValDList();

Semantics: The WCValDList public member function creates an empty WCValDList object.

Results: The WCValDList public member function produces an initialized WCValDList object.

See Also: WCValDList, ~WCValDList

List Containers 289

WCValDList<Type>::WCValDList()

Synopsis: #include <wclist.h>
public:
WCValDList(void *(*allocator)(size_t),
void (*deallocator)(void *, size_t));

Semantics: The WCValDList public member function creates an empty WCValDList<Type> object. The

allocator function is registered to perform all memory allocations of the list elements, and the

deallocator function to perform all freeing of the list elements’ memory. These functions provide the

ability to control how the allocation and freeing of memory is performed, allowing for more efficient

memory handling than the general purpose global operator new() and operator delete()
can provide. Memory management optimizations may potentially be made through the allocator and

deallocator functions, but are not recommended before managing memory is understood and

determined to be worth while.

The allocator function shall return a pointer to allocated memory of size at least the argument, or

zero(0) if the allocation cannot be performed. Initialization of the memory returned is performed by the

WCValDList<Type> class.

The WCValDList<Type> class calls the deallocator function only on memory allocated by the

allocator function. The deallocator shall free the memory pointed to by the first argument which is of

size the second argument. The size passed to the deallocator function is guaranteed to be the same size

passed to the allocator function when the memory was allocated.

The allocator and deallocator functions may assume that for a list object instance, the allocator is

always called with the same first argument (the size of the memory to be allocated). The

WCValDListItemSize(Type) macro returns the size of the elements which are allocated by the

allocator function.

Results: The WCValDList public member function creates an initialized WCValDList<Type> object and

registers the allocator and deallocator functions.

See Also: WCValDList, ~WCValDList

290 List Containers

WCValDList<Type>::WCValDList()

Synopsis: #include <wclist.h>
public:
WCValDList(const WCValDList &);

Semantics: The WCValDList public member function is the copy constructor for the double linked list class. All

of the list elements are copied to the new list, as well as the exception trap states, and any registered

allocator and deallocator functions. Type’s copy constructor is invoked to copy the values contained

by the list elements.

If all of the elements cannot be copied and the out_of_memory is enabled in the list being copied,

the exception is thrown. The new list is created in a valid state, even if all of the list elements could not

be copied.

Results: The WCValDList public member function produces a copy of the list.

See Also: WCValDList, ~WCValDList, clear, WCExcept::out_of_memory

List Containers 291

WCValDList<Type>::~WCValDList()

Synopsis: #include <wclist.h>
public:
~WCValDList();

Semantics: The ~WCValDList public member function destroys the WCValDList object. If the list is not

empty and the not_empty exception is enabled, the exception is thrown. If the not_empty
exception is not enabled and the list is not empty, the list is cleared using the clear member function.

The call to the ~WCValDList public member function is inserted implicitly by the compiler at the

point where the WCValDList object goes out of scope.

Results: The WCValDList object is destroyed.

See Also: WCValDList, clear, clearAndDestroy, WCExcept::not_empty

292 List Containers

WCValSList<Type>::append(), WCValDList<Type>::append()

Synopsis: #include <wclist.h>
public:
int append(const Type &);

Semantics: The append public member function is used to append the data to the end of the list. The data stored

in the list is a copy of the data passed as a parameter.

If the out_of_memory exception is enabled and the append fails, the exception is thrown.

Results: The data element is appended to the end of the list. A TRUE value (non-zero) is returned if the append

is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert, WCExcept::out_of_memory

List Containers 293

WCValSList<Type>::clear(), WCValDList<Type>::clear()

Synopsis: #include <wclist.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list object and set it to the state of the object

just after the initial construction. The list object is not destroyed and re-created by this operator, so the

object destructor is not invoked.

The clear public member function has the same sematics as the clearAndDestroy member

function.

Results: The clear public member function resets the list object to the state of the object immediately after the

initial construction.

See Also: ~WCValSList, ~WCValDList, clearAndDestroy, get, operator =

294 List Containers

WCValSList<Type>,WCValDList<Type>::clearAndDestroy()

Synopsis: #include <wclist.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the list object and set it to the state

of the object just after the initial construction. The list object is not destroyed and re-created by this

operator, so the object destructor is not invoked.

Before the list object is re-initialized, the delete operator is called for each list element.

Results: The clearAndDestroy public member function resets the list object to the initial state of the object

immediately after the initial construction.

See Also: clear, get

List Containers 295

WCValSList<Type>::contains(), WCValDList<Type>::contains()

Synopsis: #include <wclist.h>
public:
int contains(const Type &) const;

Semantics: The contains public member function is used to determine if a list element object is already

contained in the list. Each list element is compared to the passed element using Type’s operator
== to determine if the passed element is contained in the list.

Results: Zero(0) is returned if the passed list element object is not found in the list. A non-zero result is returned

if the element is found in the list.

See Also: find, index

296 List Containers

WCValSList<Type>::entries(), WCValDList<Type>::entries()

Synopsis: #include <wclist.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of list elements contained in

the list object.

Results: The number of entries stored in the list is returned, zero(0) is returned if there are no list elements.

See Also: isEmpty

List Containers 297

WCValSList<Type>::find(), WCValDList<Type>::find()

Synopsis: #include <wclist.h>
public:
Type find(int = 0) const;

Semantics: The find public member function returns the value of a list element in the list object. The optional

parameter specifies which element to locate, and defaults to the first element. Since the first element of

the list is the zero’th element, the last element will be the number of list entries minus one.

If the list is empty and the empty_container exception is enabled, the exception is thrown. If the

index_range exception is enabled, the exception is thrown if the index value is negative or is greater

than the number of list entries minus one.

Results: The value of the selected list element or the closest element is returned. If the index value is negative,

the closest list element is the first element. The last element is the closest element if the index value is

greater than the number of list entries minus one. A default initialized value is returned if there are no

elements in the list.

See Also: findLast, get, index, isEmpty, WCExcept::empty_container,
WCExcept::index_range

298 List Containers

WCValSList<Type>::findLast(), WCValDList<Type>::findLast()

Synopsis: #include <wclist.h>
public:
Type findLast() const;

Semantics: The findLast public member function returns the value of the last list element in the list object.

If the list is empty, one of two exceptions can be thrown. If the empty_container exception is

enabled, it is thrown. The index_range exception is thrown if it is enabled and the

empty_container exception is not enabled.

Results: The value of the last list element is returned. A default initialized value is returned if there are no

elements in the list.

See Also: find, get, isEmpty, WCExcept::empty_container, WCExcept::index_range

List Containers 299

WCValSList<Type>::forAll(), WCValDList<Type>::forAll()

Synopsis: #include <wclist.h>
public:
void forAll(void (*)(Type, void *), void *) const;

Semantics: The forAll public member function is used to cause the function fn to be invoked for each list

element. The fn function should have the prototype

void (*fn)(Type, void *)

The first parameter of fn shall accept the value of the list element currently active. The second

argument passed to fn is the second argument of the forAll function. This allows a callback function

to be defined which can accept data appropriate for the point at which the forAll function is invoked.

See Also: WCValConstSListIter, WCValConstDListIter, WCValSListIter, WCValDListIter

300 List Containers

WCValSList<Type>::get(), WCValDList<Type>::get()

Synopsis: #include <wclist.h>
public:
Type get(int = 0);

Semantics: The get public member function returns the value of the list element in the list object. The list element

is also removed from the list. The optional parameter specifies which element to remove, and defaults

to the first element. Since the first element of the list is the zero’th element, the last element will be the

number of list entries minus one.

If the list is empty and the empty_container exception is enabled, the exception is thrown. If the

index_range exception trap is enabled, the exception is thrown if the index value is negative or is

greater than the number of list entries minus one.

Results: The value of the selected list element or the closest element is removed and returned. If the index value

is negative, the closest list element is the first element. The last element is the closest element if the

index value is greater than the number of list entries minus one. A default initialized value is returned if

there are no elements in the list.

See Also: clear, clearAndDestroy, find, index, WCExcept::empty_container,
WCExcept::index_range

List Containers 301

WCValSList<Type>::index(), WCValDList<Type>::index()

Synopsis: #include <wclist.h>
public:
int index(const Type &) const;

Semantics: The index public member function is used to determine the index of the first list element equivalent to

the passed element. Each list element is compared to the passed element using Type’s operator
== until the passed element is found, or all list elements have been checked.

Results: The index of the first element equivalent to the passed element is returned. If the passed element is not

in the list, negative one (-1) is returned.

See Also: contains, find, get

302 List Containers

WCValSList<Type>::insert(), WCValDList<Type>::insert()

Synopsis: #include <wclist.h>
public:
int insert(const Type &);

Semantics: The insert public member function is used to insert the data as the first element of the list. The data

stored in the list is a copy of the data passed as a parameter.

If the out_of_memory exception is enabled and the insert fails, the exception is thrown.

Results: The data element is inserted into the beginning of the list. A TRUE value (non-zero) is returned if the

insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append, WCExcept::out_of_memory

List Containers 303

WCValSList<Type>::isEmpty(), WCValDList<Type>::isEmpty()

Synopsis: #include <wclist.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a list object has any list elements

contained in it.

Results: A TRUE value (non-zero) is returned if the list object does not have any list elements contained within

it. A FALSE (zero) result is returned if the list contains at least one element.

See Also: entries

304 List Containers

WCValSList<Type>::operator =(), WCValDList<Type>::operator =()

Synopsis: #include <wclist.h>
public:
WCValSList & WCValSList::operator =(const WCValSList &);
WCValDList & WCValDList::operator =(const WCValDList &);

Semantics: The operator = public member function is the assignment operator for the class. The left hand side

of the assignment is first cleared with the clear member function. All elements in the right hand side

list are then copied, as well as the exception trap states, and any registered allocator and deallocator

functions. Type’s copy constructor is invoked to copy the values contained by the list elements.

If all of the elements cannot be copied and the out_of_memory is enabled in the right hand side list,

the exception is thrown. The new list is created in a valid state, even if all of the list elements could not

be copied.

Results: The operator = public member function assigns the right hand side to the left hand side and returns

a reference to the left hand side.

See Also: WCValSList, WCValDList, clear, WCExcept::out_of_memory

List Containers 305

WCValSList<Type>::operator ==(), WCValDList<Type>::operator ==()

Synopsis: #include <wclist.h>
public:
int WCValSList::operator ==(const WCValSList &) const;
int WCValDList::operator ==(const WCValDList &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCValSList<Type> and WCValDList<Type> classes. Two list objects are equivalent if they are

the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side object and the right hand side objects are the

same object. A FALSE (zero) value is returned otherwise.

306 List Containers

13 List Iterators

List iterators operate on single or double linked lists. They are used to step through a list one or more

elements at a time. The choice of which type of iterator to use is determined by the list you wish to iterate

over. For example, to iterate over a non-constant WCIsvDList<Type> object, use the

WCIsvDListIter<Type> class. A constant WCValSList<Type> object can be iterated using the

WCValConstSListIter<Type> class. The iterators which correspond to the single link list containers

have some functionality inhibited. If backward traversal is required, the double linked containers and

corresponding iterators must be used.

Like all WATCOM iterators, newly constructed and reset iterators are positioned before the first element in

the list. The list may be traversed one element at a time using the pre-increment or call operator. An

increment operation causing the iterator to be positioned after the end of the list returns zero. Further

increments will cause the undef_iter exception to be thrown, if it is enabled. This behaviour allows

lists to be traversed simply using a while loop, and is demonstrated in the examples for the iterator classes.

The classes are presented in alphabetical order. The WCIterExcept class provides the common

exception handling control interface for all of the iterators.

Since the iterator classes are all template classes, deriving most of the functionality from common base

classes was used. In the listing of class member functions, those public member functions which appear to

be in the iterator class but are actually defined in the common base class are identified as if they were

explicitly specified in the iterator class.

List Iterators 307

WCIsvConstSListIter<Type>, WCIsvConstDListIter<Type>

Declared: wclistit.h

The WCIsvConstSListIter<Type> and WCIsvConstDListIter<Type> classes are the

templated classes used to create iterator objects for constant single and double linked list objects. These

classes may be used to iterate over non-constant lists, but the WCIsvDListIter<Type> and

WCIsvSListIter<Type> classes provide additional functionality for only non-constant lists.

In the description of each member function, the text Type is used to indicate the list element type

specified as the template parameter.

The WCIterExcept class is a base class of the WCIsvConstSListIter<Type> and

WCIsvConstDListIter<Type> classes and provides the exceptions member function. This

member function controls the exceptions which can be thrown by the

WCIsvConstSListIter<Type> and WCIsvConstDListIter<Type> objects. No exceptions

are enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the constant list

iterator classes. Setting those functions as private members in the derived class is the standard

mechanism to prevent them from being invoked.

int append(Type *);
int insert(Type *);

Public Member Functions

The following member functions are declared in the public interface:

WCIsvConstSListIter();
WCIsvConstSListIter(const WCIsvSList<Type> &);
~WCIsvConstSListIter();
WCIsvConstDListIter();
WCIsvConstDListIter(const WCIsvDList<Type> &);
~WCIsvConstDListIter();
const WCIsvSList<Type> *WCIsvConstSListIter<Type>::container() const;
const WCIsvDList<Type> *WCIsvConstDListIter<Type>::container() const;
Type * current() const;
void reset();
void WCIsvConstSListIter<Type>::reset(const WCIsvSList<Type> &);
void WCIsvConstDListIter<Type>::reset(const WCIsvDList<Type> &);

Public Member Operators

The following member operators are declared in the public interface:

Type * operator ()();
Type * operator ++();
Type * operator +=(int);

In the iterators for double linked lists only:

Type * operator --();
Type * operator -=(int);

See Also: WCIsvSList::forAll, WCIsvDList::forAll

308 List Iterators

WCIsvConstSListIter<Type>::WCIsvConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvConstSListIter();

Semantics: The WCIsvConstSListIter public member function is the default constructor for the class and

initializes the iterator with no list to operate on. The reset member function must be called to provide

the iterator with a list to iterate over.

Results: The WCIsvConstSListIter public member function creates an initialized

WCIsvConstSListIter object.

See Also: WCIsvConstSListIter, ~WCIsvConstSListIter, reset

List Iterators 309

WCIsvConstSListIter<Type>::WCIsvConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvConstSListIter(const WCIsvSList<Type> &);

Semantics: The WCIsvConstSListIter public member function is a constructor for the class. The value

passed as a parameter is a WCIsvSList list object. The iterator will be initialized for that list object

and positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCIsvConstSListIter public member function creates an initialized

WCIsvConstSListIter object positioned before the first element in the list.

See Also: ~WCIsvConstSListIter, operator (), operator ++, operator +=, reset

310 List Iterators

WCIsvConstSListIter<Type>::~WCIsvConstSListIter()

Synopsis: #include <wclistit.h>
public:
~WCIsvConstSListIter();

Semantics: The ~WCIsvConstSListIter public member function is the destructor for the class. The call to

the ~WCIsvConstSListIter public member function is inserted implicitly by the compiler at the

point where the WCIsvConstSListIter object goes out of scope.

Results: The WCIsvConstSListIter object is destroyed.

See Also: WCIsvConstSListIter

List Iterators 311

WCIsvConstDListIter<Type>::WCIsvConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvConstDListIter();

Semantics: The WCIsvConstDListIter public member function is the default constructor for the class and

initializes the iterator with no list to operate on. The reset member function must be called to provide

the iterator with a list to iterate over.

Results: The WCIsvConstDListIter public member function creates an initialized

WCIsvConstDListIter object.

See Also: WCIsvConstDListIter, ~WCIsvConstDListIter, reset

312 List Iterators

WCIsvConstDListIter<Type>::WCIsvConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvConstDListIter(const WCIsvDList<Type> &);

Semantics: The WCIsvConstDListIter public member function is a constructor for the class. The value

passed as a parameter is the WCIsvDList list object. The iterator will be initialized for that list object

and positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCIsvConstDListIter public member function creates an initialized

WCIsvConstDListIter object positioned before the first list element.

See Also: WCIsvConstDListIter, ~WCIsvConstDListIter, operator (), operator ++,

operator +=, reset

List Iterators 313

WCIsvConstDListIter<Type>::~WCIsvConstDListIter()

Synopsis: #include <wclistit.h>
public:
~WCIsvConstDListIter();

Semantics: The ~WCIsvConstDListIter public member function is the destructor for the class. The call to

the ~WCIsvConstDListIter public member function is inserted implicitly by the compiler at the

point where the WCIsvConstDListIter object goes out of scope.

Results: The WCIsvConstDListIter object is destroyed.

See Also: WCIsvConstDListIter

314 List Iterators

WCIsvConstSListIter<Type>,WCIsvConstDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
const WCIsvSList<Type> *WCIsvConstSListIter<Type>::container() const;
const WCIsvDList<Type> *WCIsvConstDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the iterator

has not been initialized with a list object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a list.

See Also: WCIsvConstSListIter, WCIsvConstDListIter, reset, WCIterExcept::undef_iter

List Iterators 315

WCIsvConstSListIter<Type>::current(), WCIsvConstDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type * current();

Semantics: The current public member function returns a pointer to the list item at the current iterator position.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. In this case the undef_item
exception is thrown, if enabled.

Results: A pointer to the current list element is returned. If the current element is undefined, NULL(0) is

returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_item

316 List Iterators

WCIsvConstSListIter<Type>,WCIsvConstDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
Type * operator ()();

Semantics: The operator () public member function is the call operator for the class. The list element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is incremented past the end of the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 317

WCIsvConstSListIter<Type>,WCIsvConstDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
Type * operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The list

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the list, the iterator is positioned after the end of the list.

The operator ++ public member function has the same semantics as the call operator, operator
().

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

318 List Iterators

WCIsvConstSListIter<Type>,WCIsvConstDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
Type * operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator to move

that many elements after the current item. If the iterator was positioned before the first element in the

list, the operation will set the current item to be the given element in the list.

If the current item was after the last element in the list previous to the iteration, and the undef_iter
exception is enabled, the exception will be thrown. Attempting to increment the iterator position more

than element after the end of the list, or by less than one element causes the iter_range exception to

be thrown, if enabled.

Results: The operator += public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

List Iterators 319

WCIsvConstDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
Type * operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class. The list

element previous to the current item is set to be the new current item. If the current item was the first

element in the list, the iterator is positioned before the first element in the list. If the list is empty, the

iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to the last

element.

If the iterator is not associated with a list or the iterator position previous to the decrement was before

the first element the list, the undef_iter exception is thrown, if enabled.

Results: The operator -- public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is decremented past the first element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,
WCIterExcept::undef_iter

320 List Iterators

WCIsvConstDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
Type * operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator to move

that many elements before the current item. If the iterator was positioned after the last element in the

list, the operation will set the current item to be the given number of elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and the

undef_iter exception is enabled, the exception will be thrown. Attempting to decrement the iterator

position more than one element before the beginning of the list, or by less than one element causes the

iter_range exception to be thrown, if enabled.

Results: The operator -= public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is decremented past the first element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

List Iterators 321

WCIsvConstSListIter<Type>::reset(), WCIsvConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCIsvConstSListIter, WCIsvConstDListIter, container

322 List Iterators

WCIsvConstSListIter<Type>::reset(), WCIsvConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCIsvConstSListIter<Type>::reset(const WCIsvSList<Type> &);
void WCIsvConstDListIter<Type>::reset(const WCIsvDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The iterator is

positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCIsvConstSListIter, WCIsvConstDListIter, container

List Iterators 323

WCIsvSListIter<Type>, WCIsvDListIter<Type>

Declared: wclistit.h

The WCIsvSListIter<Type> and WCIsvDListIter<Type> classes are the templated classes

used to create iterator objects for single and double linked list objects. These classes can be used only

for non-constant lists. The WCIsvDConstListIter<Type> and

WCIsvSConstListIter<Type> classes are provided to iterate over constant lists.

In the description of each member function, the text Type is used to indicate the list element type

specified as the template parameter.

The WCIterExcept class is a base class of the WCIsvSListIter<Type> and

WCIsvDListIter<Type> classes and provides the exceptions member function. This member

function controls the exceptions which can be thrown by the WCIsvSListIter<Type> and

WCIsvDListIter<Type> objects. No exceptions are enabled unless they are set by the

exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single linked list

iterator classes. Setting those functions as private members in the derived class is the standard

mechanism to prevent them from being invoked. The following member functions are declared in the

single linked list iterator private interface:

Type * operator --();
Type * operator -=(int);
int insert(Type *);

Public Member Functions

The following member functions are declared in the public interface:

WCIsvSListIter();
WCIsvSListIter(WCIsvSList<Type> &);
~WCIsvSListIter();
WCIsvDListIter();
WCIsvDListIter(WCIsvDList<Type> &);
~WCIsvDListIter();
int append(Type *);
WCIsvSList<Type> *WCIsvSListIter<Type>::container() const;
WCIsvDList<Type> *WCIsvDListIter<Type>::container() const;
Type * current() const;
void reset();
void WCIsvSListIter<Type>::reset(WCIsvSList<Type> &);
void WCIsvDListIter<Type>::reset(WCIsvDList<Type> &);

In the iterators for double linked lists only:

int insert(Type *);

Public Member Operators

The following member operators are declared in the public interface:

Type * operator ()();
Type * operator ++();
Type * operator +=(int);

324 List Iterators

WCIsvSListIter<Type>, WCIsvDListIter<Type>

In the iterators for double linked lists only:

Type * operator --();
Type * operator -=(int);

See Also: WCIsvSList::forAll, WCIsvDList::forAll

List Iterators 325

WCIsvSListIter<Type>::WCIsvSListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvSListIter();

Semantics: The WCIsvSListIter public member function is the default constructor for the class and initializes

the iterator with no list to operate on. The reset member function must be called to provide the

iterator with a list to iterate over.

Results: The WCIsvSListIter public member function creates an initialized WCIsvSListIter object.

See Also: WCIsvSListIter, ~WCIsvSListIter, reset

326 List Iterators

WCIsvSListIter<Type>::WCIsvSListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvSListIter(WCIsvSList<Type> &);

Semantics: The WCIsvSListIter public member function is a constructor for the class. The value passed as a

parameter is a WCIsvSList list object. The iterator will be initialized for that list object and

positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCIsvSListIter public member function creates an initialized WCIsvSListIter object

positioned before the first element in the list.

See Also: ~WCIsvSListIter, operator (), operator ++, operator +=, reset

List Iterators 327

WCIsvSListIter<Type>::~WCIsvSListIter()

Synopsis: #include <wclistit.h>
public:
~WCIsvSListIter();

Semantics: The ~WCIsvSListIter public member function is the destructor for the class. The call to the

~WCIsvSListIter public member function is inserted implicitly by the compiler at the point where

the WCIsvSListIter object goes out of scope.

Results: The WCIsvSListIter object is destroyed.

See Also: WCIsvSListIter

328 List Iterators

WCIsvDListIter<Type>::WCIsvDListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvDListIter();

Semantics: The WCIsvDListIter public member function is the default constructor for the class and initializes

the iterator with no list to operate on. The reset member function must be called to provide the

iterator with a list to iterate over.

Results: The WCIsvDListIter public member function creates an initialized WCIsvDListIter object.

See Also: WCIsvDListIter, ~WCIsvDListIter, reset

List Iterators 329

WCIsvDListIter<Type>::WCIsvDListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvDListIter(WCIsvDList<Type> &);

Semantics: The WCIsvDListIter public member function is a constructor for the class. The value passed as a

parameter is the WCIsvDList list object. The iterator will be initialized for that list object and

positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCIsvDListIter public member function creates an initialized WCIsvDListIter object

positioned before the first list element.

See Also: WCIsvDListIter, ~WCIsvDListIter, operator (), operator ++, operator +=,
reset

330 List Iterators

WCIsvDListIter<Type>::~WCIsvDListIter()

Synopsis: #include <wclistit.h>
public:
~WCIsvDListIter();

Semantics: The ~WCIsvDListIter public member function is the destructor for the class. The call to the

~WCIsvDListIter public member function is inserted implicitly by the compiler at the point where

the WCIsvDListIter object goes out of scope.

Results: The WCIsvDListIter object is destroyed.

See Also: WCIsvDListIter

List Iterators 331

WCIsvSListIter<Type>::append(), WCIsvDListIter<Type>::append()

Synopsis: #include <wclistit.h>
public:
int append(Type *);

Semantics: The append public member function inserts a new element into the list container object. The new

element is inserted after the current iterator item.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. The element is not appended. If

the undef_iter exception is enabled, it is thrown.

Results: The new element is inserted after the current iterator item. A TRUE value (non-zero) is returned if the

append is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert, WCExcept::out_of_memory, WCIterExcept::undef_iter

332 List Iterators

WCIsvSListIter<Type>,WCIsvDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
WCIsvSList<Type> *WCIsvSListIter<Type>::container() const;
WCIsvDList<Type> *WCIsvDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the iterator

has not been initialized with a list object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a list.

See Also: WCIsvSListIter, WCIsvDListIter, reset, WCIterExcept::undef_iter

List Iterators 333

WCIsvSListIter<Type>::current(), WCIsvDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type * current();

Semantics: The current public member function returns a pointer to the list item at the current iterator position.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. In this case the undef_item
exception is thrown, if enabled.

Results: A pointer to the current list element is returned. If the current element is undefined, NULL(0) is

returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_item

334 List Iterators

WCIsvDListIter<Type>::insert()

Synopsis: #include <wclistit.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts a new element into the list container object. The new

element is inserted before the current iterator item. This process uses the previous link in the double

linked list, so the insert public member function is not allowed with single linked lists.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. The element is not inserted. If the

undef_iter exception is enabled, the exception is thrown.

Results: The new element is inserted before the current iterator item. A TRUE value (non-zero) is returned if the

insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append, WCExcept::out_of_memory, WCIterExcept::undef_iter

List Iterators 335

WCIsvSListIter<Type>,WCIsvDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
Type * operator ()();

Semantics: The operator () public member function is the call operator for the class. The list element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is incremented past the end of the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

336 List Iterators

WCIsvSListIter<Type>,WCIsvDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
Type * operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The list

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the list, the iterator is positioned after the end of the list.

The operator ++ public member function has the same semantics as the call operator, operator
().

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 337

WCIsvSListIter<Type>,WCIsvDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
Type * operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator to move

that many elements after the current item. If the iterator was positioned before the first element in the

list, the operation will set the current item to be the given element in the list.

If the current item was after the last element in the list previous to the iteration, and the undef_iter
exception is enabled, the exception will be thrown. Attempting to increment the iterator position more

than element after the end of the list, or by less than one element causes the iter_range exception to

be thrown, if enabled.

Results: The operator += public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

338 List Iterators

WCIsvDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
Type * operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class. The list

element previous to the current item is set to be the new current item. If the current item was the first

element in the list, the iterator is positioned before the first element in the list. If the list is empty, the

iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to the last

element.

If the iterator is not associated with a list or the iterator position previous to the decrement was before

the first element the list, the undef_iter exception is thrown, if enabled.

Results: The operator -- public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is decremented past the first element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 339

WCIsvDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
Type * operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator to move

that many elements before the current item. If the iterator was positioned after the last element in the

list, the operation will set the current item to be the given number of elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and the

undef_iter exception is enabled, the exception will be thrown. Attempting to decrement the iterator

position more than one element before the beginning of the list, or by less than one element causes the

iter_range exception to be thrown, if enabled.

Results: The operator -= public member function returns a pointer to the new current item. NULL(0) is

returned when the iterator is decremented past the first element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

340 List Iterators

WCIsvSListIter<Type>::reset(), WCIsvDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCIsvSListIter, WCIsvDListIter, container

List Iterators 341

WCIsvSListIter<Type>::reset(), WCIsvDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCIsvSListIter<Type>::reset(WCIsvSList<Type> &);
void WCIsvDListIter<Type>::reset(WCIsvDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The iterator is

positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCIsvSListIter, WCIsvDListIter, container

342 List Iterators

WCPtrConstSListIter<Type>, WCPtrConstDListIter<Type>

Declared: wclistit.h

The WCPtrConstSListIter<Type> and WCPtrConstDListIter<Type> classes are the

templated classes used to create iterator objects for constant single and double linked list objects. These

classes may be used to iterate over non-constant lists, but the WCPtrDListIter<Type> and

WCPtrSListIter<Type> classes provide additional functionality for only non-constant lists.

In the description of each member function, the text Type is used to indicate the list element type

specified as the template parameter.

The WCIterExcept class is a base class of the WCPtrConstSListIter<Type> and

WCPtrConstDListIter<Type> classes and provides the exceptions member function. This

member function controls the exceptions which can be thrown by the

WCPtrConstSListIter<Type> and WCPtrConstDListIter<Type> objects. No exceptions

are enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the constant list

iterator classes. Setting those functions as private members in the derived class is the standard

mechanism to prevent them from being invoked.

int append(Type *);
int insert(Type *);

Public Member Functions

The following member functions are declared in the public interface:

WCPtrConstSListIter();
WCPtrConstSListIter(const WCPtrSList<Type> &);
~WCPtrConstSListIter();
WCPtrConstDListIter();
WCPtrConstDListIter(const WCPtrDList<Type> &);
~WCPtrConstDListIter();
const WCPtrSList<Type> *WCPtrConstSListIter<Type>::container() const;
const WCPtrDList<Type> *WCPtrConstDListIter<Type>::container() const;
Type * current() const;
void reset();
void WCPtrConstSListIter<Type>::reset(const WCPtrSList<Type> &);
void WCPtrConstDListIter<Type>::reset(const WCPtrDList<Type> &);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();
int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

See Also: WCPtrSList::forAll, WCPtrDList::forAll

List Iterators 343

WCPtrConstSListIter<Type>::WCPtrConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrConstSListIter();

Semantics: The WCPtrConstSListIter public member function is the default constructor for the class and

initializes the iterator with no list to operate on. The reset member function must be called to provide

the iterator with a list to iterate over.

Results: The WCPtrConstSListIter public member function creates an initialized

WCPtrConstSListIter object.

See Also: WCPtrConstSListIter, ~WCPtrConstSListIter, reset

344 List Iterators

WCPtrConstSListIter<Type>::WCPtrConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrConstSListIter(const WCPtrSList<Type> &);

Semantics: The WCPtrConstSListIter public member function is a constructor for the class. The value

passed as a parameter is a WCPtrSList list object. The iterator will be initialized for that list object

and positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCPtrConstSListIter public member function creates an initialized

WCPtrConstSListIter object positioned before the first element in the list.

See Also: ~WCPtrConstSListIter, operator (), operator ++, operator +=, reset

List Iterators 345

WCPtrConstSListIter<Type>::~WCPtrConstSListIter()

Synopsis: #include <wclistit.h>
public:
~WCPtrConstSListIter();

Semantics: The ~WCPtrConstSListIter public member function is the destructor for the class. The call to

the ~WCPtrConstSListIter public member function is inserted implicitly by the compiler at the

point where the WCPtrConstSListIter object goes out of scope.

Results: The WCPtrConstSListIter object is destroyed.

See Also: WCPtrConstSListIter

346 List Iterators

WCPtrConstDListIter<Type>::WCPtrConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrConstDListIter();

Semantics: The WCPtrConstDListIter public member function is the default constructor for the class and

initializes the iterator with no list to operate on. The reset member function must be called to provide

the iterator with a list to iterate over.

Results: The WCPtrConstDListIter public member function creates an initialized

WCPtrConstDListIter object.

See Also: WCPtrConstDListIter, ~WCPtrConstDListIter, reset

List Iterators 347

WCPtrConstDListIter<Type>::WCPtrConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrConstDListIter(const WCPtrDList<Type> &);

Semantics: The WCPtrConstDListIter public member function is a constructor for the class. The value

passed as a parameter is the WCPtrDList list object. The iterator will be initialized for that list object

and positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCPtrConstDListIter public member function creates an initialized

WCPtrConstDListIter object positioned before the first list element.

See Also: WCPtrConstDListIter, ~WCPtrConstDListIter, operator (), operator ++,

operator +=, reset

348 List Iterators

WCPtrConstDListIter<Type>::~WCPtrConstDListIter()

Synopsis: #include <wclistit.h>
public:
~WCPtrConstDListIter();

Semantics: The ~WCPtrConstDListIter public member function is the destructor for the class. The call to

the ~WCPtrConstDListIter public member function is inserted implicitly by the compiler at the

point where the WCPtrConstDListIter object goes out of scope.

Results: The WCPtrConstDListIter object is destroyed.

See Also: WCPtrConstDListIter

List Iterators 349

WCPtrConstSListIter<Type>,WCPtrConstDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
const WCPtrSList<Type> *WCPtrConstSListIter<Type>::container() const;
const WCPtrDList<Type> *WCPtrConstDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the iterator

has not been initialized with a list object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a list.

See Also: WCPtrConstSListIter, WCPtrConstDListIter, reset, WCIterExcept::undef_iter

350 List Iterators

WCPtrConstSListIter<Type>::current(), WCPtrConstDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type * current();

Semantics: The current public member function returns a pointer to the list item at the current iterator position.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. In this case the undef_item
exception is thrown, if enabled.

Results: A pointer to the current list element is returned. If the current element is undefined, an uninitialized

pointer is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_item

List Iterators 351

WCPtrConstSListIter<Type>,WCPtrConstDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The list element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

352 List Iterators

WCPtrConstSListIter<Type>,WCPtrConstDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The list

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the list, the iterator is positioned after the end of the list.

The operator ++ public member function has the same semantics as the call operator, operator
().

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 353

WCPtrConstSListIter<Type>,WCPtrConstDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
int operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator to move

that many elements after the current item. If the iterator was positioned before the first element in the

list, the operation will set the current item to be the given element in the list.

If the current item was after the last element in the list previous to the iteration, and the undef_iter
exception is enabled, the exception will be thrown. Attempting to increment the iterator position more

than element after the end of the list, or by less than one element causes the iter_range exception to

be thrown, if enabled.

Results: The operator += public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

354 List Iterators

WCPtrConstDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
int operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class. The list

element previous to the current item is set to be the new current item. If the current item was the first

element in the list, the iterator is positioned before the first element in the list. If the list is empty, the

iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to the last

element.

If the iterator is not associated with a list or the iterator position previous to the decrement was before

the first element the list, the undef_iter exception is thrown, if enabled.

Results: The operator -- public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is decremented past the first element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 355

WCPtrConstDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
int operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator to move

that many elements before the current item. If the iterator was positioned after the last element in the

list, the operation will set the current item to be the given number of elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and the

undef_iter exception is enabled, the exception will be thrown. Attempting to decrement the iterator

position more than one element before the beginning of the list, or by less than one element causes the

iter_range exception to be thrown, if enabled.

Results: The operator -= public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is decremented past the first element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

356 List Iterators

WCPtrConstSListIter<Type>::reset(), WCPtrConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCPtrConstSListIter, WCPtrConstDListIter, container

List Iterators 357

WCPtrConstSListIter<Type>::reset(), WCPtrConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCPtrConstSListIter<Type>::reset(const WCPtrSList<Type> &);
void WCPtrConstDListIter<Type>::reset(const WCPtrDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The iterator is

positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCPtrConstSListIter, WCPtrConstDListIter, container

358 List Iterators

WCPtrSListIter<Type>, WCPtrDListIter<Type>

Declared: wclistit.h

The WCPtrSListIter<Type> and WCPtrDListIter<Type> classes are the templated classes

used to create iterator objects for single and double linked list objects. These classes can be used only

for non-constant lists. The WCPtrDConstListIter<Type> and

WCPtrSConstListIter<Type> classes are provided to iterate over constant lists.

In the description of each member function, the text Type is used to indicate the list element type

specified as the template parameter.

The WCIterExcept class is a base class of the WCPtrSListIter<Type> and

WCPtrDListIter<Type> classes and provides the exceptions member function. This member

function controls the exceptions which can be thrown by the WCPtrSListIter<Type> and

WCPtrDListIter<Type> objects. No exceptions are enabled unless they are set by the

exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single linked list

iterator classes. Setting those functions as private members in the derived class is the standard

mechanism to prevent them from being invoked. The following member functions are declared in the

single linked list iterator private interface:

int operator --();
int operator -=(int);
int insert(Type *);

Public Member Functions

The following member functions are declared in the public interface:

WCPtrSListIter();
WCPtrSListIter(WCPtrSList<Type> &);
~WCPtrSListIter();
WCPtrDListIter();
WCPtrDListIter(WCPtrDList<Type> &);
~WCPtrDListIter();
int append(Type *);
WCPtrSList<Type> *WCPtrSListIter<Type>::container() const;
WCPtrDList<Type> *WCPtrDListIter<Type>::container() const;
Type * current() const;
void reset();
void WCPtrSListIter<Type>::reset(WCPtrSList<Type> &);
void WCPtrDListIter<Type>::reset(WCPtrDList<Type> &);

In the iterators for double linked lists only:

int insert(Type *);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();
int operator +=(int);

List Iterators 359

WCPtrSListIter<Type>, WCPtrDListIter<Type>

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

See Also: WCPtrSList::forAll, WCPtrDList::forAll

360 List Iterators

WCPtrSListIter<Type>::WCPtrSListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrSListIter();

Semantics: The WCPtrSListIter public member function is the default constructor for the class and initializes

the iterator with no list to operate on. The reset member function must be called to provide the

iterator with a list to iterate over.

Results: The WCPtrSListIter public member function creates an initialized WCPtrSListIter object.

See Also: WCPtrSListIter, ~WCPtrSListIter, reset

List Iterators 361

WCPtrSListIter<Type>::WCPtrSListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrSListIter(WCPtrSList<Type> &);

Semantics: The WCPtrSListIter public member function is a constructor for the class. The value passed as a

parameter is a WCPtrSList list object. The iterator will be initialized for that list object and

positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCPtrSListIter public member function creates an initialized WCPtrSListIter object

positioned before the first element in the list.

See Also: ~WCPtrSListIter, operator (), operator ++, operator +=, reset

362 List Iterators

WCPtrSListIter<Type>::~WCPtrSListIter()

Synopsis: #include <wclistit.h>
public:
~WCPtrSListIter();

Semantics: The ~WCPtrSListIter public member function is the destructor for the class. The call to the

~WCPtrSListIter public member function is inserted implicitly by the compiler at the point where

the WCPtrSListIter object goes out of scope.

Results: The WCPtrSListIter object is destroyed.

See Also: WCPtrSListIter

List Iterators 363

WCPtrDListIter<Type>::WCPtrDListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrDListIter();

Semantics: The WCPtrDListIter public member function is the default constructor for the class and initializes

the iterator with no list to operate on. The reset member function must be called to provide the

iterator with a list to iterate over.

Results: The WCPtrDListIter public member function creates an initialized WCPtrDListIter object.

See Also: WCPtrDListIter, ~WCPtrDListIter, reset

364 List Iterators

WCPtrDListIter<Type>::WCPtrDListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrDListIter(WCPtrDList<Type> &);

Semantics: The WCPtrDListIter public member function is a constructor for the class. The value passed as a

parameter is the WCPtrDList list object. The iterator will be initialized for that list object and

positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCPtrDListIter public member function creates an initialized WCPtrDListIter object

positioned before the first list element.

See Also: WCPtrDListIter, ~WCPtrDListIter, operator (), operator ++, operator +=,
reset

List Iterators 365

WCPtrDListIter<Type>::~WCPtrDListIter()

Synopsis: #include <wclistit.h>
public:
~WCPtrDListIter();

Semantics: The ~WCPtrDListIter public member function is the destructor for the class. The call to the

~WCPtrDListIter public member function is inserted implicitly by the compiler at the point where

the WCPtrDListIter object goes out of scope.

Results: The WCPtrDListIter object is destroyed.

See Also: WCPtrDListIter

366 List Iterators

WCPtrSListIter<Type>::append(), WCPtrDListIter<Type>::append()

Synopsis: #include <wclistit.h>
public:
int append(Type *);

Semantics: The append public member function inserts a new element into the list container object. The new

element is inserted after the current iterator item.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. The element is not appended. If

the undef_iter exception is enabled, it is thrown.

If the append fails, the out_of_memory exception is thrown, if enabled in the list being iterated over.

The list remains unchanged.

Results: The new element is inserted after the current iterator item. A TRUE value (non-zero) is returned if the

append is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert, WCExcept::out_of_memory, WCIterExcept::undef_iter

List Iterators 367

WCPtrSListIter<Type>,WCPtrDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
WCPtrSList<Type> *WCPtrSListIter<Type>::container() const;
WCPtrDList<Type> *WCPtrDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the iterator

has not been initialized with a list object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a list.

See Also: WCPtrSListIter, WCPtrDListIter, reset, WCIterExcept::undef_iter

368 List Iterators

WCPtrSListIter<Type>::current(), WCPtrDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type * current();

Semantics: The current public member function returns a pointer to the list item at the current iterator position.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. In this case the undef_item
exception is thrown, if enabled.

Results: A pointer to the current list element is returned. If the current element is undefined, an uninitialized

pointer is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_item

List Iterators 369

WCPtrDListIter<Type>::insert()

Synopsis: #include <wclistit.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts a new element into the list container object. The new

element is inserted before the current iterator item. This process uses the previous link in the double

linked list, so the insert public member function is not allowed with single linked lists.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. The element is not inserted. If the

undef_iter exception is enabled, the exception is thrown.

If the insert fails and the out_of_memory exception is enabled in the list being iterated over, the

exception is thrown. The list remains unchanged.

Results: The new element is inserted before the current iterator item. A TRUE value (non-zero) is returned if the

insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append, WCExcept::out_of_memory, WCIterExcept::undef_iter

370 List Iterators

WCPtrSListIter<Type>,WCPtrDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The list element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 371

WCPtrSListIter<Type>,WCPtrDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The list

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the list, the iterator is positioned after the end of the list.

The operator ++ public member function has the same semantics as the call operator, operator
().

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

372 List Iterators

WCPtrSListIter<Type>,WCPtrDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
int operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator to move

that many elements after the current item. If the iterator was positioned before the first element in the

list, the operation will set the current item to be the given element in the list.

If the current item was after the last element in the list previous to the iteration, and the undef_iter
exception is enabled, the exception will be thrown. Attempting to increment the iterator position more

than element after the end of the list, or by less than one element causes the iter_range exception to

be thrown, if enabled.

Results: The operator += public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

List Iterators 373

WCPtrDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
int operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class. The list

element previous to the current item is set to be the new current item. If the current item was the first

element in the list, the iterator is positioned before the first element in the list. If the list is empty, the

iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to the last

element.

If the iterator is not associated with a list or the iterator position previous to the decrement was before

the first element the list, the undef_iter exception is thrown, if enabled.

Results: The operator -- public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is decremented past the first element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,
WCIterExcept::undef_iter

374 List Iterators

WCPtrDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
int operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator to move

that many elements before the current item. If the iterator was positioned after the last element in the

list, the operation will set the current item to be the given number of elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and the

undef_iter exception is enabled, the exception will be thrown. Attempting to decrement the iterator

position more than one element before the beginning of the list, or by less than one element causes the

iter_range exception to be thrown, if enabled.

Results: The operator -= public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is decremented past the first element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

List Iterators 375

WCPtrSListIter<Type>::reset(), WCPtrDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCPtrSListIter, WCPtrDListIter, container

376 List Iterators

WCPtrSListIter<Type>::reset(), WCPtrDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCPtrSListIter<Type>::reset(WCPtrSList<Type> &);
void WCPtrDListIter<Type>::reset(WCPtrDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The iterator is

positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCPtrSListIter, WCPtrDListIter, container

List Iterators 377

WCValConstSListIter<Type>, WCValConstDListIter<Type>

Declared: wclistit.h

The WCValConstSListIter<Type> and WCValConstDListIter<Type> classes are the

templated classes used to create iterator objects for constant single and double linked list objects. These

classes may be used to iterate over non-constant lists, but the WCValDListIter<Type> and

WCValSListIter<Type> classes provide additional functionality for only non-constant lists.

In the description of each member function, the text Type is used to indicate the list element type

specified as the template parameter.

The WCIterExcept class is a base class of the WCValConstSListIter<Type> and

WCValConstDListIter<Type> classes and provides the exceptions member function. This

member function controls the exceptions which can be thrown by the

WCValConstSListIter<Type> and WCValConstDListIter<Type> objects. No exceptions

are enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the constant list

iterator classes. Setting those functions as private members in the derived class is the standard

mechanism to prevent them from being invoked.

int append(Type &);
int insert(Type &);

Public Member Functions

The following member functions are declared in the public interface:

WCValConstSListIter();
WCValConstSListIter(const WCValSList<Type> &);
~WCValConstSListIter();
WCValConstDListIter();
WCValConstDListIter(const WCValDList<Type> &);
~WCValConstDListIter();
const WCValSList<Type> *WCValConstSListIter<Type>::container() const;
const WCValDList<Type> *WCValConstDListIter<Type>::container() const;
Type current() const;
void reset();
void WCValConstSListIter<Type>::reset(const WCValSList<Type> &);
void WCValConstDListIter<Type>::reset(const WCValDList<Type> &);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();
int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

See Also: WCValSList::forAll, WCValDList::forAll

378 List Iterators

WCValConstSListIter<Type>::WCValConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCValConstSListIter();

Semantics: The WCValConstSListIter public member function is the default constructor for the class and

initializes the iterator with no list to operate on. The reset member function must be called to provide

the iterator with a list to iterate over.

Results: The WCValConstSListIter public member function creates an initialized

WCValConstSListIter object.

See Also: WCValConstSListIter, ~WCValConstSListIter, reset

List Iterators 379

WCValConstSListIter<Type>::WCValConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCValConstSListIter(const WCValSList<Type> &);

Semantics: The WCValConstSListIter public member function is a constructor for the class. The value

passed as a parameter is a WCValSList list object. The iterator will be initialized for that list object

and positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCValConstSListIter public member function creates an initialized

WCValConstSListIter object positioned before the first element in the list.

See Also: ~WCValConstSListIter, operator (), operator ++, operator +=, reset

380 List Iterators

WCValConstSListIter<Type>::~WCValConstSListIter()

Synopsis: #include <wclistit.h>
public:
~WCValConstSListIter();

Semantics: The ~WCValConstSListIter public member function is the destructor for the class. The call to

the ~WCValConstSListIter public member function is inserted implicitly by the compiler at the

point where the WCValConstSListIter object goes out of scope.

Results: The WCValConstSListIter object is destroyed.

See Also: WCValConstSListIter

List Iterators 381

WCValConstDListIter<Type>::WCValConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCValConstDListIter();

Semantics: The WCValConstDListIter public member function is the default constructor for the class and

initializes the iterator with no list to operate on. The reset member function must be called to provide

the iterator with a list to iterate over.

Results: The WCValConstDListIter public member function creates an initialized

WCValConstDListIter object.

See Also: WCValConstDListIter, ~WCValConstDListIter, reset

382 List Iterators

WCValConstDListIter<Type>::WCValConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCValConstDListIter(const WCValDList<Type> &);

Semantics: The WCValConstDListIter public member function is a constructor for the class. The value

passed as a parameter is the WCValDList list object. The iterator will be initialized for that list object

and positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCValConstDListIter public member function creates an initialized

WCValConstDListIter object positioned before the first list element.

See Also: WCValConstDListIter, ~WCValConstDListIter, operator (), operator ++,

operator +=, reset

List Iterators 383

WCValConstDListIter<Type>::~WCValConstDListIter()

Synopsis: #include <wclistit.h>
public:
~WCValConstDListIter();

Semantics: The ~WCValConstDListIter public member function is the destructor for the class. The call to

the ~WCValConstDListIter public member function is inserted implicitly by the compiler at the

point where the WCValConstDListIter object goes out of scope.

Results: The WCValConstDListIter object is destroyed.

See Also: WCValConstDListIter

384 List Iterators

WCValConstSListIter<Type>,WCValConstDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
const WCValSList<Type> *WCValConstSListIter<Type>::container() const;
const WCValDList<Type> *WCValConstDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the iterator

has not been initialized with a list object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a list.

See Also: WCValConstSListIter, WCValConstDListIter, reset, WCIterExcept::undef_iter

List Iterators 385

WCValConstSListIter<Type>::current(), WCValConstDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type current();

Semantics: The current public member function returns the value of the list element at the current iterator

position.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. In this case the undef_item
exception is thrown, if enabled.

Results: The value at the current iterator element is returned. If the current element is undefined, a default

initialized object is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_item

386 List Iterators

WCValConstSListIter<Type>,WCValConstDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The list element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 387

WCValConstSListIter<Type>,WCValConstDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The list

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the list, the iterator is positioned after the end of the list.

The operator ++ public member function has the same semantics as the call operator, operator
().

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

388 List Iterators

WCValConstSListIter<Type>,WCValConstDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
int operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator to move

that many elements after the current item. If the iterator was positioned before the first element in the

list, the operation will set the current item to be the given element in the list.

If the current item was after the last element in the list previous to the iteration, and the undef_iter
exception is enabled, the exception will be thrown. Attempting to increment the iterator position more

than element after the end of the list, or by less than one element causes the iter_range exception to

be thrown, if enabled.

Results: The operator += public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

List Iterators 389

WCValConstDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
int operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class. The list

element previous to the current item is set to be the new current item. If the current item was the first

element in the list, the iterator is positioned before the first element in the list. If the list is empty, the

iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to the last

element.

If the iterator is not associated with a list or the iterator position previous to the decrement was before

the first element the list, the undef_iter exception is thrown, if enabled.

Results: The operator -- public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is decremented past the first element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,
WCIterExcept::undef_iter

390 List Iterators

WCValConstDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
int operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator to move

that many elements before the current item. If the iterator was positioned after the last element in the

list, the operation will set the current item to be the given number of elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and the

undef_iter exception is enabled, the exception will be thrown. Attempting to decrement the iterator

position more than one element before the beginning of the list, or by less than one element causes the

iter_range exception to be thrown, if enabled.

Results: The operator -= public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is decremented past the first element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

List Iterators 391

WCValConstSListIter<Type>::reset(), WCValConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCValConstSListIter, WCValConstDListIter, container

392 List Iterators

WCValConstSListIter<Type>::reset(), WCValConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCValConstSListIter<Type>::reset(const WCValSList<Type> &);
void WCValConstDListIter<Type>::reset(const WCValDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The iterator is

positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCValConstSListIter, WCValConstDListIter, container

List Iterators 393

WCValSListIter<Type>, WCValDListIter<Type>

Declared: wclistit.h

The WCValSListIter<Type> and WCValDListIter<Type> classes are the templated classes

used to create iterator objects for single and double linked list objects. These classes can be used only

for non-constant lists. The WCValDConstListIter<Type> and

WCValSConstListIter<Type> classes are provided to iterate over constant lists.

In the description of each member function, the text Type is used to indicate the list element type

specified as the template parameter.

The WCIterExcept class is a base class of the WCValSListIter<Type> and

WCValDListIter<Type> classes and provides the exceptions member function. This member

function controls the exceptions which can be thrown by the WCValSListIter<Type> and

WCValDListIter<Type> objects. No exceptions are enabled unless they are set by the

exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single linked list

iterator classes. Setting those functions as private members in the derived class is the standard

mechanism to prevent them from being invoked. The following member functions are declared in the

single linked list iterator private interface:

int operator --();
int operator -=(int);
int insert(Type &);

Public Member Functions

The following member functions are declared in the public interface:

WCValSListIter();
WCValSListIter(WCValSList<Type> &);
~WCValSListIter();
WCValDListIter();
WCValDListIter(WCValDList<Type> &);
~WCValDListIter();
int append(Type &);
WCValSList<Type> *WCValSListIter<Type>::container() const;
WCValDList<Type> *WCValDListIter<Type>::container() const;
Type current() const;
void reset();
void WCValSListIter<Type>::reset(WCValSList<Type> &);
void WCValDListIter<Type>::reset(WCValDList<Type> &);

In the iterators for double linked lists only:

int insert(Type &);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();
int operator +=(int);

394 List Iterators

WCValSListIter<Type>, WCValDListIter<Type>

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

See Also: WCValSList::forAll, WCValDList::forAll

Sample Program Using Value List Iterators

#include <wclistit.h>
#include <iostream.h>

//
// insert elem after all elements in the list less than or equal to
// elem
//

void insert_in_order(WCValDList<int> &list, int elem) {
if(list.entries() == 0) {

// cannot insert in an empty list using a iterator
list.insert(elem);

} else {

WCValDListIter<int> iter(list);
while(++iter) {

if(iter.current() > elem) {
// insert elem before first element in list greater
// than elem
iter.insert(elem);
return;

}
}

// iterated past the end of the list
// append elem to the end of the list
list.append(elem);

}
}

void main() {
WCValDList<int> list;

insert_in_order(list, 5);
insert_in_order(list, 20);
insert_in_order(list, 1);
insert_in_order(list, 25);

cout << "List elements in ascending order:\n";

WCValDListIter<int> iter(list);
while(++iter) {

cout << iter.current() << "\n";
}

cout << "List elements in descending order\n";

// iterator is past the end of the list
while(--iter) {

cout << iter.current() << "\n";
}

}

List Iterators 395

WCValSListIter<Type>::WCValSListIter()

Synopsis: #include <wclistit.h>
public:
WCValSListIter();

Semantics: The WCValSListIter public member function is the default constructor for the class and initializes

the iterator with no list to operate on. The reset member function must be called to provide the

iterator with a list to iterate over.

Results: The WCValSListIter public member function creates an initialized WCValSListIter object.

See Also: WCValSListIter, ~WCValSListIter, reset

396 List Iterators

WCValSListIter<Type>::WCValSListIter()

Synopsis: #include <wclistit.h>
public:
WCValSListIter(WCValSList<Type> &);

Semantics: The WCValSListIter public member function is a constructor for the class. The value passed as a

parameter is a WCValSList list object. The iterator will be initialized for that list object and

positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCValSListIter public member function creates an initialized WCValSListIter object

positioned before the first element in the list.

See Also: ~WCValSListIter, operator (), operator ++, operator +=, reset

List Iterators 397

WCValSListIter<Type>::~WCValSListIter()

Synopsis: #include <wclistit.h>
public:
~WCValSListIter();

Semantics: The ~WCValSListIter public member function is the destructor for the class. The call to the

~WCValSListIter public member function is inserted implicitly by the compiler at the point where

the WCValSListIter object goes out of scope.

Results: The WCValSListIter object is destroyed.

See Also: WCValSListIter

398 List Iterators

WCValDListIter<Type>::WCValDListIter()

Synopsis: #include <wclistit.h>
public:
WCValDListIter();

Semantics: The WCValDListIter public member function is the default constructor for the class and initializes

the iterator with no list to operate on. The reset member function must be called to provide the

iterator with a list to iterate over.

Results: The WCValDListIter public member function creates an initialized WCValDListIter object.

See Also: WCValDListIter, ~WCValDListIter, reset

List Iterators 399

WCValDListIter<Type>::WCValDListIter()

Synopsis: #include <wclistit.h>
public:
WCValDListIter(WCValDList<Type> &);

Semantics: The WCValDListIter public member function is a constructor for the class. The value passed as a

parameter is the WCValDList list object. The iterator will be initialized for that list object and

positioned before the first list element. To position the iterator to a valid element within the list,

increment it using any of the operator ++, operator (), or operator += operators.

Results: The WCValDListIter public member function creates an initialized WCValDListIter object

positioned before the first list element.

See Also: WCValDListIter, ~WCValDListIter, operator (), operator ++, operator +=,
reset

400 List Iterators

WCValDListIter<Type>::~WCValDListIter()

Synopsis: #include <wclistit.h>
public:
~WCValDListIter();

Semantics: The ~WCValDListIter public member function is the destructor for the class. The call to the

~WCValDListIter public member function is inserted implicitly by the compiler at the point where

the WCValDListIter object goes out of scope.

Results: The WCValDListIter object is destroyed.

See Also: WCValDListIter

List Iterators 401

WCValSListIter<Type>::append(), WCValDListIter<Type>::append()

Synopsis: #include <wclistit.h>
public:
int append(Type &);

Semantics: The append public member function inserts a new element into the list container object. The new

element is inserted after the current iterator item.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. The element is not appended. If

the undef_iter exception is enabled, it is thrown.

If the append fails, the out_of_memory exception is thrown, if enabled in the list being iterated over.

The list remains unchanged.

Results: The new element is inserted after the current iterator item. A TRUE value (non-zero) is returned if the

append is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert, WCExcept::out_of_memory, WCIterExcept::undef_iter

402 List Iterators

WCValSListIter<Type>,WCValDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
WCValSList<Type> *WCValSListIter<Type>::container() const;
WCValDList<Type> *WCValDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the iterator

has not been initialized with a list object, and the undef_iter exception is enabled, the exception is

thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator has not

been initialized with a list.

See Also: WCValSListIter, WCValDListIter, reset, WCIterExcept::undef_iter

List Iterators 403

WCValSListIter<Type>::current(), WCValDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type current();

Semantics: The current public member function returns the value of the list element at the current iterator

position.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. In this case the undef_item
exception is thrown, if enabled.

Results: The value at the current iterator element is returned. If the current element is undefined, a default

initialized object is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_item

404 List Iterators

WCValDListIter<Type>::insert()

Synopsis: #include <wclistit.h>
public:
int insert(Type &);

Semantics: The insert public member function inserts a new element into the list container object. The new

element is inserted before the current iterator item. This process uses the previous link in the double

linked list, so the insert public member function is not allowed with single linked lists.

If the iterator is not associated with a list, or the iterator position is either before the first element or past

the last element in the list, the current iterator position is undefined. The element is not inserted. If the

undef_iter exception is enabled, the exception is thrown.

If the insert fails and the out_of_memory exception is enabled in the list being iterated over, the

exception is thrown. The list remains unchanged.

Results: The new element is inserted before the current iterator item. A TRUE value (non-zero) is returned if the

insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append, WCExcept::out_of_memory, WCIterExcept::undef_iter

List Iterators 405

WCValSListIter<Type>,WCValDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The list element which

follows the current item is set to be the new current item. If the previous current item was the last

element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment operator,

operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

406 List Iterators

WCValSListIter<Type>,WCValDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class. The list

element which follows the current item is set to be the new current item. If the previous current item

was the last element in the list, the iterator is positioned after the end of the list.

The operator ++ public member function has the same semantics as the call operator, operator
().

If the iterator was positioned before the first element in the list, the current item will be set to the first

element in the list. If the list is empty, the iterator will be positioned after the end of the list.

If the iterator is not associated with a list or the iterator position before the increment was past the last

element the list, the undef_iter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 407

WCValSListIter<Type>,WCValDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
int operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator to move

that many elements after the current item. If the iterator was positioned before the first element in the

list, the operation will set the current item to be the given element in the list.

If the current item was after the last element in the list previous to the iteration, and the undef_iter
exception is enabled, the exception will be thrown. Attempting to increment the iterator position more

than element after the end of the list, or by less than one element causes the iter_range exception to

be thrown, if enabled.

Results: The operator += public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

408 List Iterators

WCValDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
int operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class. The list

element previous to the current item is set to be the new current item. If the current item was the first

element in the list, the iterator is positioned before the first element in the list. If the list is empty, the

iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to the last

element.

If the iterator is not associated with a list or the iterator position previous to the decrement was before

the first element the list, the undef_iter exception is thrown, if enabled.

Results: The operator -- public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is decremented past the first element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,
WCIterExcept::undef_iter

List Iterators 409

WCValDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
int operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator to move

that many elements before the current item. If the iterator was positioned after the last element in the

list, the operation will set the current item to be the given number of elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and the

undef_iter exception is enabled, the exception will be thrown. Attempting to decrement the iterator

position more than one element before the beginning of the list, or by less than one element causes the

iter_range exception to be thrown, if enabled.

Results: The operator -= public member function returns a non-zero value if the iterator is positioned on a

list item. Zero(0) is returned when the iterator is decremented past the first element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,

WCIterExcept::iter_range, WCIterExcept::undef_iter

410 List Iterators

WCValSListIter<Type>::reset(), WCValDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the iterator before

the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCValSListIter, WCValDListIter, container

List Iterators 411

WCValSListIter<Type>::reset(), WCValDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCValSListIter<Type>::reset(WCValSList<Type> &);
void WCValDListIter<Type>::reset(WCValDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The iterator is

positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCValSListIter, WCValDListIter, container

412 List Iterators

14 Queue Container

Queue containers maintain an ordered collection of data which is retrieved in the order in which the data

was entered into the queue. The queue class is implemented as a templated class, allowing the use of any

data type as the queue data.

A second template parameter specifies the storage class used to implement the queue. The WCValSList,

WCIsvSList and WCPtrSList classes are appropriate storage classes.

Queue Container 413

WCQueue<Type,FType>

Declared: wcqueue.h

The WCQueue<Type,FType> class is a templated class used to create objects which maintain data in

a queue.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type of the elements stored in the queue. The text FType is used to indicate the template

parameter defining the storage class used to maintain the queue.

For example, to create a queue of integers, the WCQueue<int,WCValSList<int> > class can be

used. The WCQueue<int *,WCPtrSList<int> > class will create a queue of pointers to

integers. To create an intrusive queue of objects of type isv_link (derived from the WCSLink class), the

WCQueue< isv_link *,WCIsvSList< isv_link > > class can be used.

The WCExcept class is a base class of the WCQueue<Type,FType> class and provides the

exceptions member function. This member function controls the exceptions which can be thrown

by the WCQueue<Type,FType> object. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Type

Type must provide any constructors and/or operators required by the FType class.

Public Member Functions

The following member functions are declared in the public interface:

WCQueue();
WCQueue(void *(*)(size_t), void (*)(void *, size_t));
~WCQueue();
void clear();
int entries() const;
Type first() const;
Type get();
int insert(const Type &);
int isEmpty() const;
Type last() const;

Sample Program Using a Queue

#include <wcqueue.h>
#include <iostream.h>

main() {
WCQueue<int,WCValSList<int> > queue;

queue.insert(7);
queue.insert(8);
queue.insert(9);
queue.insert(10);

cout << "\nNumber of queue entries: " << queue.entries() << "\n";
cout << "First entry = [" << queue.first() << "]\n";
cout << "Last entry = [" << queue.last() << "]\n";
while(!queue.isEmpty()) {

cout << queue.get() << "\n";
};
cout.flush();

}

414 Queue Container

WCQueue<Type,FType>::WCQueue()

Synopsis: #include <wcqueue.h>
public:
WCQueue();

Semantics: The public WCQueue<Type,FType> constructor creates an empty WCQueue<Type,FType>
object. The FType storage class constructor performs the initialization.

Results: The public WCQueue<Type,FType> constructor creates an initialized WCQueue<Type,FType>
object.

See Also: ~WCQueue<Type,FType>

Queue Container 415

WCQueue<Type,FType>::WCQueue()

Synopsis: #include <wcqueue.h>
public:
WCQueue(void *(*allocator)(size_t),
void (*deallocator)(void *, size_t));

Semantics: The public WCQueue<Type,FType> constructor creates an empty WCQueue<Type,FType>
object. If FType is either the WCValSList or WCPtrSList class, then the allocator function is

registered to perform all memory allocations of the queue elements, and the deallocator function to

perform all freeing of the queue elements’ memory. The allocator and deallocator functions are

ignored if FType is the WCIsvSList class. These functions provide the ability to control how the

allocation and freeing of memory is performed, allowing for more efficient memory handling than the

general purpose global operator new() and operator delete() can provide. Memory

management optimizations may potentially be made through the allocator and deallocator functions,

but are not recommended before managing memory is understood and determined to be worth while.

The allocator function shall return a pointer to allocated memory of size at least the argument, or

zero(0) if the allocation cannot be performed. Initialization of the memory returned is performed by the

WCQueue<Type,FType> class.

The WCQueue<Type,FType> class calls the deallocator function only on memory allocated by the

allocator function. The deallocator shall free the memory pointed to by the first argument which is of

size the second argument. The size passed to the deallocator function is guaranteed to be the same size

passed to the allocator function when the memory was allocated.

The allocator and deallocator functions may assume that for a list object instance, the allocator is

always called with the same first argument (the size of the memory to be allocated). If FType is the

WCValSList<Type> class, then the WCValSListItemSize(Type) macro returns the size of

the elements which are allocated by the allocator function. Similarly, the WCPtrSListItemSize(
Type) macro returns the size of WCPtrSList<Type> elements.

The FType storage class constructor performs the initialization of the queue.

Results: The public WCQueue<Type,FType> constructor creates an initialized WCQueue<Type,FType>
object and registers the allocator and deallocator functions.

See Also: WCQueue<Type,FType>, ~WCQueue<Type,FType>

416 Queue Container

WCQueue<Type,FType>::~WCQueue()

Synopsis: #include <wcqueue.h>
public:
virtual ~WCQueue();

Semantics: The public ~WCQueue<Type,FType> destructor destroys the WCQueue<Type,FType> object.

The FType storage class destructor performs the destruction. The call to the public

~WCQueue<Type,FType> destructor is inserted implicitly by the compiler at the point where the

WCQueue<Type,FType> object goes out of scope.

If the not_empty exception is enabled, the exception is thrown if the queue is not empty of queue

elements.

Results: The WCQueue<Type,FType> object is destroyed.

See Also: WCQueue<Type,FType>, clear, WCExcept::not_empty

Queue Container 417

WCQueue<Type,FType>::clear()

Synopsis: #include <wcqueue.h>
public:
void clear();

Semantics: The clear public member function is used to clear the queue object and set it to the state of the object

just after the initial construction. The queue object is not destroyed and re-created by this operator, so

the object destructor is not invoked. The queue elements are not cleared by the queue class. However,

the class used to maintain the queue, FType, may clear the items as part of the clear function for that

class. If it does not clear the items, any queue items still in the list are lost unless pointed to by some

pointer object in the program code.

Results: The clear public member function resets the queue object to the state of the object immediately after

the initial construction.

See Also: ~WCQueue<Type,FType>, isEmpty

418 Queue Container

WCQueue<Type,FType>::entries()

Synopsis: #include <wcqueue.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of queue elements contained in

the list object.

Results: The number of elements in the queue is returned. Zero(0) is returned if there are no queue elements.

See Also: isEmpty

Queue Container 419

WCQueue<Type,FType>::first()

Synopsis: #include <wcqueue.h>
public:
Type first() const;

Semantics: The first public member function returns a queue element from the beginning of the queue object.

The queue element is not removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If the empty_container exception is

enabled, then it will be thrown. Otherwise, the index_range exception will be thrown, if enabled.

Results: The first queue element is returned. If there are no elements in the queue, the return value is determined

by the find member function of the FType class.

See Also: get, isEmpty, last, WCExcept::empty_container, WCExcept::index_range,
FType::find

420 Queue Container

WCQueue<Type,FType>::get()

Synopsis: #include <wcqueue.h>
public:
Type get();

Semantics: The get public member function returns the queue element which was first inserted into the queue

object. The queue element is also removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If the empty_container exception is

enabled, then it will be thrown. Otherwise, the index_range exception will be thrown, if enabled.

Results: The first element in the queue is removed and returned. If there are no elements in the queue, the return

value is determined by the get member function of the FType class.

See Also: first, insert, isEmpty, WCExcept::empty_container, WCExcept::index_range,
FType::get

Queue Container 421

WCQueue<Type,FType>::insert()

Synopsis: #include <wcqueue.h>
public:
int insert(const Type &);

Semantics: The insert public member function is used to insert the data into the queue. It will be the last

element in the queue, and the last to be retrieved.

If the insert fails, the out_of_memory exception will be thrown, if enabled. The queue will remain

unchanged.

Results: The queue element is inserted at the end of the queue. A TRUE value (non-zero) is returned if the insert

is successful. A FALSE (zero) result is returned if the insert fails.

See Also: get, WCExcept::out_of_memory

422 Queue Container

WCQueue<Type,FType>::isEmpty()

Synopsis: #include <wcqueue.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a queue object has any queue elements

contained in it.

Results: A TRUE value (non-zero) is returned if the queue object does not have any queue elements contained

within it. A FALSE (zero) result is returned if the queue contains at least one element.

See Also: entries

Queue Container 423

WCQueue<Type,FType>::last()

Synopsis: #include <wcqueue.h>
public:
Type last() const;

Semantics: The last public member function returns a queue element from the end of the queue object. The

queue element is not removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If the empty_container exception is

enabled, then it will be thrown. Otherwise, the index_range exception will be thrown, if enabled.

Results: The last queue element is returned. If there are no elements in the queue, the return value is determined

by the find member function of the FType class.

See Also: first, get, isEmpty, WCExcept::empty_container, WCExcept::index_range,
FType::find

424 Queue Container

15 Skip List Containers

This chapter describes skip list containers.

Skip List Containers 425

WCPtrSkipListDict<Key,Value>

Declared: wcskip.h

The WCPtrSkipListDict<Key,Value> class is a templated class used to store objects in a

dictionary. Dictionaries store values with an associated key, which may be of any type. One example

of a dictionary used in everyday life is the phone book. The phone numbers are the data values, and the

customer name is the key. The equality operator of the key’s type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template parameter

defining the type of the indices pointed to by the pointers stored in the dictionary. The text Value is

used to indicate the template parameter defining the type of the data pointed to by the pointers stored in

the dictionary.

Note that pointers to the key values are stored in the dictionary. Destructors are not called on the keys

pointed to. The key values pointed to in the dictionary should not be changed such that the equivalence

to the old value is modified.

The iterator classes for skip lists have the same function and operator interface as the hash iterators

classes. See the chapter on hash iterators for more information.

The WCExcept class is a base class of the WCPtrSkipListDict<Key,Value> class and provides

the exceptions member function. This member function controls the exceptions which can be

thrown by the WCPtrSkipListDict<Key,Value> object. No exceptions are enabled unless they

are set by the exceptions member function.

Requirements of Key

The WCPtrSkipListDict<Key,Value> class requires Key to have:

A well defined equivalence operator with constant parameters

(int operator ==(const Key &) const).

A well defined operator less than with constant parameters

(int operator <(const Key &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCPtrSkipListDict(unsigned = WCSkipListDict_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS);
WCPtrSkipListDict(unsigned = WCSkipListDict_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS, void * (*user_alloc)(size_t size),
void (*user_dealloc)(void *old, size_t size));
WCPtrSkipListDict(const WCPtrSkipListDict &);
virtual ~WCPtrSkipListDict();
void clear();
void clearAndDestroy();
int contains(const Key *) const;
unsigned entries() const;
Value * find(const Key *) const;
Value * findKeyAndValue(const Key *, Key * &) const;
void forAll(void (*user_fn)(Key *, Value *, void *), void *);
int insert(Key *, Value *);
int isEmpty() const;
Value * remove(const Key *);

426 Skip List Containers

WCPtrSkipListDict<Key,Value>

Public Member Operators

The following member operators are declared in the public interface:

Value * & operator [](const Key *);
Value * const & operator [](const Key *) const;
WCPtrSkipListDict & operator =(const WCPtrSkipListDict &);
int operator ==(const WCPtrSkipListDict &) const;

Skip List Containers 427

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListDict(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS);

Semantics: The public WCPtrSkipListDict<Key,Value> constructor creates an

WCPtrSkipListDict<Key,Value> object with no entries. The first optional parameter, which

defaults to the constant WCSKIPLIST_PROB_QUARTER, determines the probability of having a

certain number of pointers in each skip list node. The second optional parameter, which defaults to the

constant WCDEFAULT_SKIPLIST_MAX_PTRS, determines the maximum number of pointers that are

allowed in any skip list node. WCDEFAULT_SKIPLIST_MAX_PTRS is the maximum effective value

of the second parameter. If an allocation failure occurs while creating the skip list, the

out_of_memory exception is thrown if the out_of_memory exception is enabled.

Results: The public WCPtrSkipListDict<Key,Value> constructor creates an initialized

WCPtrSkipListDict<Key,Value> object.

See Also: ~WCPtrSkipListDict<Key,Value>, WCExcept::out_of_memory

428 Skip List Containers

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListDict(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

list dictionary. The semantics of this constructor are the same as the constructor without the memory

management functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a list dictionary. To determine the size of the objects that the memory

management functions will be required to allocate and free, the following macro may be used:
WCPtrSkipListDictItemSize(Key, Value, num_of_pointers)

Results: The public WCPtrSkipListDict<Key,Value> constructor creates an initialized

WCPtrSkipListDict<Key,Value> object.

See Also: ~WCPtrSkipListDict<Key,Value>, WCExcept::out_of_memory

Skip List Containers 429

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListDict(const WCPtrSkipListDict &);

Semantics: The public WCPtrSkipListDict<Key,Value> constructor is the copy constructor for the

WCPtrSkipListDict<Key,Value> class. The new skip list is created with the same probability

and maximum pointers, all values or pointers stored in the list, and the exception trap states. If there is

not enough memory to copy all of the values, then only some will be copied, and the number of entries

will correctly reflect the number copied. If all of the elements cannot be copied, then the

out_of_memory exception is thrown if it is enabled.

Results: The public WCPtrSkipListDict<Key,Value> constructor creates an

WCPtrSkipListDict<Key,Value> object which is a copy of the passed dictionary.

See Also: operator =, WCExcept::out_of_memory

430 Skip List Containers

WCPtrSkipListDict<Key,Value>::~WCPtrSkipListDict()

Synopsis: #include <wcskip.h>
public:
virtual ~WCPtrSkipListDict();

Semantics: The public ~WCPtrSkipListDict<Key,Value> destructor is the destructor for the

WCPtrSkipListDict<Key,Value> class. If the number of dictionary elements is not zero and

the not_empty exception is enabled, the exception is thrown. Otherwise, the dictionary elements are

cleared using the clear member function. The objects which the dictionary elements point to are not

deleted unless the clearAndDestroy member function is explicitly called before the destructor is

called. The call to the public ~WCPtrSkipListDict<Key,Value> destructor is inserted

implicitly by the compiler at the point where the WCPtrSkipListDict<Key,Value> object goes

out of scope.

Results: The public ~WCPtrSkipListDict<Key,Value> destructor destroys an

WCPtrSkipListDict<Key,Value> object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

Skip List Containers 431

WCPtrSkipListDict<Key,Value>::clear()

Synopsis: #include <wcskip.h>
public:
void clear();

Semantics: The clear public member function is used to clear the dictionary so that it has no entries. Objects

pointed to by the dictionary elements are not deleted. The dictionary object is not destroyed and

re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the dictionary to have no elements.

See Also: ~WCPtrSkipListDict<Key,Value>, clearAndDestroy, operator =

432 Skip List Containers

WCPtrSkipListDict<Key,Value>::clearAndDestroy()

Synopsis: #include <wcskip.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the dictionary and delete the objects

pointed to by the dictionary elements. The dictionary object is not destroyed and re-created by this

function, so the dictionary object destructor is not invoked.

Results: The clearAndDestroy public member function clears the dictionary by deleting the objects pointed

to by the dictionary elements.

See Also: clear

Skip List Containers 433

WCPtrSkipListDict<Key,Value>::contains()

Synopsis: #include <wcskip.h>
public:
int contains(const Key *) const;

Semantics: The contains public member function returns non-zero if an element with the specified key is stored

in the dictionary, or zero if there is no equivalent element. Note that equivalence is based on the

equivalence operator of the Key type.

Results: The contains public member function returns a non-zero value if the Key is found in the dictionary.

See Also: find, findKeyAndValue

434 Skip List Containers

WCPtrSkipListDict<Key,Value>::entries()

Synopsis: #include <wcskip.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements stored in the

dictionary.

Results: The entries public member function returns the number of elements in the dictionary.

See Also: isEmpty

Skip List Containers 435

WCPtrSkipListDict<Key,Value>::find()

Synopsis: #include <wcskip.h>
public:
Value * find(const Key *) const;

Semantics: The find public member function is used to find an element with an equivalent key in the dictionary.

If an equivalent element is found, a pointer to the element Value is returned. Zero is returned if the

element is not found. Note that equivalence is based on the equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

436 Skip List Containers

WCPtrSkipListDict<Key,Value>::findKeyAndValue()

Synopsis: #include <wcskip.h>
public:
Value * findKeyAndValue(const Key *, Key * &) const;

Semantics: The findKeyAndValue public member function is used to find an element in the dictionary with an

key equivalent to the first parameter. If an equivalent element is found, a pointer to the element Value
is returned. The reference to a Key passed as the second parameter is assigned the found element’s key.

Zero is returned if the element is not found. Note that equivalence is based on the equivalence operator

of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

Skip List Containers 437

WCPtrSkipListDict<Key,Value>::forAll()

Synopsis: #include <wcskip.h>
public:
void forAll(
void (*user_fn)(Key *, Value *, void *),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for every

key-value pair in the dictionary. The user function has the prototype

void user_func(Key * key, Value * value, void * data);

As the elements are visited, the user function is invoked with the Key and Value components of the

element passed as the first two parameters. The second parameter of the forAll function is passed as

the third parameter to the user function. This value can be used to pass any appropriate data from the

main code to the user function.

Results: The elements in the dictionary are all visited, with the user function being invoked for each one.

See Also: find, findKeyAndValue

438 Skip List Containers

WCPtrSkipListDict<Key,Value>::insert()

Synopsis: #include <wcskip.h>
public:
int insert(Key *, Value *);

Semantics: The insert public member function inserts a key and value into the dictionary. If allocation of the

node to store the key-value pair fails, then the out_of_memory exception is thrown if it is enabled.

If the exception is not enabled, the insert will not be completed.

Results: The insert public member function inserts a key and value into the dictionary. If the insert is

successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =, WCExcept::out_of_memory

Skip List Containers 439

WCPtrSkipListDict<Key,Value>::isEmpty()

Synopsis: #include <wcskip.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the dictionary is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero if the

dictionary is empty.

See Also: entries

440 Skip List Containers

WCPtrSkipListDict<Key,Value>::operator []()

Synopsis: #include <wcskip.h>
public:
Value * & operator[](const Key *);

Semantics: operator [] is the dictionary index operator. A reference to the object stored in the dictionary with

the given Key is returned. If no equivalent element is found, then a new key-value pair is created with

the specified Key value, and initialized with the default constructor. The returned reference can then be

assigned to, so that insertions can be made with the operator. If an allocation error occurs while

inserting a new key-value pair, then the out_of_memory exception is thrown if it is enabled. If the

exception is not enabled, then a reference to address zero will be returned. This will result in a run-time

error on systems which trap address zero references.

Results: The operator [] public member function returns a reference to the element at the given key value.

If the key does not exist, a reference to a created element is returned. The result of the operator may be

assigned to.

See Also: WCExcept::out_of_memory

Skip List Containers 441

WCPtrSkipListDict<Key,Value>::operator []()

Synopsis: #include <wcskip.h>
public:
Value * const & operator[](const Key *) const;

Semantics: operator [] is the dictionary index operator. A constant reference to the object stored in the

dictionary with the given Key is returned. If no equivalent element is found, then the index_range
exception is thrown if it is enabled. If the exception is not enabled, then a reference to address zero will

be returned. This will result in a run-time error on systems which trap address zero references.

Results: The operator [] public member function returns a constant reference to the element at the given

key value. The result of the operator may not be assigned to.

See Also: WCExcept::index_range

442 Skip List Containers

WCPtrSkipListDict<Key,Value>::operator =()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListDict & operator =(const WCPtrSkipListDict &);

Semantics: The operator = public member function is the assignment operator for the

WCPtrSkipListDict<Key,Value> class. The left hand side dictionary is first cleared using the

clear member function, and then the right hand side dictionary is copied. The new skip list is created

with the same probability and maximum pointers, all values or pointers stored in the list, and the

exception trap states. If there is not enough memory to copy all of the values or pointers in the

dictionary, then only some will be copied, and the out_of_memory exception is thrown if it is

enabled. The number of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side dictionary to be a copy of the

right hand side.

See Also: clear, WCExcept::out_of_memory

Skip List Containers 443

WCPtrSkipListDict<Key,Value>::operator ==()

Synopsis: #include <wcskip.h>
public:
int operator ==(const WCPtrSkipListDict &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCPtrSkipListDict<Key,Value> class. Two dictionary objects are equivalent if they are the

same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side dictionary are the same

object. A FALSE (zero) value is returned otherwise.

444 Skip List Containers

WCPtrSkipListDict<Key,Value>::remove()

Synopsis: #include <wcskip.h>
public:
Value * remove(const Key *);

Semantics: The remove public member function is used to remove the specified element from the dictionary. If

an equivalent element is found, the pointer value is returned. Zero is returned if the element is not

found. Note that equivalence is based on the equivalence operator of the Key type.

Results: The element is removed from the dictionary if it found.

Skip List Containers 445

WCPtrSkipList<Type>, WCPtrSkipListSet<Type>

Declared: wcskip.h

WCPtrSkipList<Type> and WCPtrSkipListSet<Type> classes are templated classes used to

store objects in a skip list. A skip list is a probabilistic alternative to balanced trees, and provides a

reasonable performance balance to insertion, search, and deletion. A skip list allows more than one

copy of an element that is equivalent, while the skip list set allows only one copy. The equality operator

of the element’s type is used to locate the value.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type of the data pointed to by the pointers stored in the list.

Note that pointers to the elements are stored in the list. Destructors are not called on the elements

pointed to. The data values pointed to in the list should not be changed such that the equivalence to the

old value is modified.

The iterator classes for skip lists have the same function and operator interface as the hash iterators

classes. See the chapter on hash iterators for more information.

The WCExcept class is a base class of the WCPtrSkipList<Type> and

WCPtrSkipListSet<Type> classes and provides the exceptions member function. This

member function controls the exceptions which can be thrown by the WCPtrSkipList<Type> and

WCPtrSkipListSet<Type> objects. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Type

The WCPtrSkipList<Type> and WCPtrSkipListSet<Type> classes requires Type to have:

A well defined equivalence operator

(int operator ==(const Type &) const).

A well defined less than operator

(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCPtrSkipList(unsigned = WCSKIPLIST_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS);
WCPtrSkipList(unsigned = WCSKIPLIST_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS, void * (*user_alloc)(size_t size),
void (*user_dealloc)(void *old, size_t size));
WCPtrSkipList(const WCPtrSkipList &);
virtual ~WCPtrSkipList();
WCPtrSkipListSet(unsigned = WCSKIPLIST_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS);
WCPtrSkipListSet(unsigned = WCSKIPLIST_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS, void * (*user_alloc)(size_t size),
void (*user_dealloc)(void *old, size_t size));
WCPtrSkipListSet(const WCPtrSkipListSet &);
virtual ~WCPtrSkipListSet();
void clear();
void clearAndDestroy();
int contains(const Type *) const;

446 Skip List Containers

WCPtrSkipList<Type>, WCPtrSkipListSet<Type>

unsigned entries() const;
Type * find(const Type *) const;
void forAll(void (*user_fn)(Type *, void *) , void *);
int insert(Type *);
int isEmpty() const;
Type * remove(const Type *);

The following public member functions are available for the WCPtrSkipList class only:

unsigned occurrencesOf(const Type *) const;
unsigned removeAll(const Type *);

Public Member Operators

The following member operators are declared in the public interface:

WCPtrSkipList & operator =(const WCPtrSkipList &);
int operator ==(const WCPtrSkipList &) const;
WCPtrSkipListSet & operator =(const WCPtrSkipListSet &);
int operator ==(const WCPtrSkipListSet &) const;

Skip List Containers 447

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListSet(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS);

Semantics: The WCPtrSkipListSet<Type> constructor creates a WCPtrSkipListSet object with no

entries. The first optional parameter, which defaults to the constant WCSKIPLIST_PROB_QUARTER,

determines the probability of having a certain number of pointers in each skip list node. The second

optional parameter, which defaults to the constant WCDEFAULT_SKIPLIST_MAX_PTRS, determines

the maximum number of pointers that are allowed in any skip list node.

WCDEFAULT_SKIPLIST_MAX_PTRS is the maximum effective value of the second parameter. If an

allocation failure occurs while creating the skip list, the out_of_memory exception is thrown if the

out_of_memory exception is enabled.

Results: The WCPtrSkipListSet<Type> constructor creates an initialized WCPtrSkipListSet object.

See Also: ~WCPtrSkipList<Type>, WCExcept::out_of_memory

448 Skip List Containers

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListSet(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

list. The semantics of this constructor are the same as the constructor without the memory management

functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a skip list. To determine the size of the objects that the memory management

functions will be required to allocate and free, the following macro may be used:
WCPtrSkipListSetItemSize(Type, num_of_pointers)

Results: The WCPtrSkipListSet<Type> constructor creates an initialized WCPtrSkipListSet object.

See Also: ~WCPtrSkipList<Type>, WCExcept::out_of_memory

Skip List Containers 449

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListSet(const WCPtrSkipListSet &);

Semantics: The WCPtrSkipListSet<Type> constructor is the copy constructor for the

WCPtrSkipListSet class. The new skip list is created with the same probability and maximum

pointers, all values or pointers stored in the list, and the exception trap states. If there is not enough

memory to copy all of the values, then only some will be copied, and the number of entries will

correctly reflect the number copied. If all of the elements cannot be copied, then the

out_of_memory exception is thrown if it is enabled.

Results: The WCPtrSkipListSet<Type> constructor creates a WCPtrSkipListSet object which is a

copy of the passed list.

See Also: operator =, WCExcept::out_of_memory

450 Skip List Containers

WCPtrSkipListSet<Type>::~WCPtrSkipListSet()

Synopsis: #include <wcskip.h>
public:
virtual ~WCPtrSkipListSet();

Semantics: The WCPtrSkipListSet<Type> destructor is the destructor for the WCPtrSkipListSet class.

If the number of elements is not zero and the not_empty exception is enabled, the exception is

thrown. Otherwise, the list elements are cleared using the clear member function. The objects which

the list elements point to are not deleted unless the clearAndDestroy member function is explicitly

called before the destructor is called. The call to the WCPtrSkipListSet<Type> destructor is

inserted implicitly by the compiler at the point where the WCPtrSkipListSet object goes out of

scope.

Results: The call to the WCPtrSkipListSet<Type> destructor destroys a WCPtrSkipListSet object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

Skip List Containers 451

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipList(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS);

Semantics: The WCPtrSkipList<Type> constructor creates a WCPtrSkipList object with no entries. The

first optional parameter, which defaults to the constant WCSKIPLIST_PROB_QUARTER, determines

the probability of having a certain number of pointers in each skip list node. The second optional

parameter, which defaults to the constant WCDEFAULT_SKIPLIST_MAX_PTRS, determines the

maximum number of pointers that are allowed in any skip list node.

WCDEFAULT_SKIPLIST_MAX_PTRS is the maximum effective value of the second parameter. If an

allocation failure occurs while creating the skip list, the out_of_memory exception is thrown if the

out_of_memory exception is enabled.

Results: The WCPtrSkipList<Type> constructor creates an initialized WCPtrSkipList object.

See Also: ~WCPtrSkipList<Type>, WCExcept::out_of_memory

452 Skip List Containers

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipList(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

list. The semantics of this constructor are the same as the constructor without the memory management

functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a skip list. To determine the size of the objects that the memory management

functions will be required to allocate and free, the following macro may be used:
WCPtrSkipListItemSize(Type, num_of_pointers)

Results: The WCPtrSkipList<Type> constructor creates an initialized WCPtrSkipList object.

See Also: ~WCPtrSkipList<Type>, WCExcept::out_of_memory

Skip List Containers 453

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipList(const WCPtrSkipList &);

Semantics: The WCPtrSkipList<Type> constructor is the copy constructor for the WCPtrSkipList class.

The new skip list is created with the same probability and maximum pointers, all values or pointers

stored in the list, and the exception trap states. If there is not enough memory to copy all of the values,

then only some will be copied, and the number of entries will correctly reflect the number copied. If all

of the elements cannot be copied, then the out_of_memory exception is thrown if it is enabled.

Results: The WCPtrSkipList<Type> constructor creates a WCPtrSkipList object which is a copy of the

passed list.

See Also: operator =, WCExcept::out_of_memory

454 Skip List Containers

WCPtrSkipList<Type>::~WCPtrSkipList()

Synopsis: #include <wcskip.h>
public:
virtual ~WCPtrSkipList();

Semantics: The WCPtrSkipList<Type> destructor is the destructor for the WCPtrSkipList class. If the

number of elements is not zero and the not_empty exception is enabled, the exception is thrown.

Otherwise, the list elements are cleared using the clear member function. The objects which the list

elements point to are not deleted unless the clearAndDestroy member function is explicitly called

before the destructor is called. The call to the WCPtrSkipList<Type> destructor is inserted

implicitly by the compiler at the point where the WCPtrSkipList object goes out of scope.

Results: The call to the WCPtrSkipList<Type> destructor destroys a WCPtrSkipList object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

Skip List Containers 455

WCPtrSkipList<Type>::clear(), WCPtrSkipListSet<Type>::clear()

Synopsis: #include <wcskip.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list so that it has no entries. Objects pointed to

by the list elements are not deleted. The list object is not destroyed and re-created by this function, so

the object destructor is not invoked.

Results: The clear public member function clears the list to have no elements.

See Also: ~WCPtrSkipList<Type>, clearAndDestroy, operator =

456 Skip List Containers

WCPtrSkipList<Type>,WCPtrSkipListSet<Type>::clearAndDestroy()

Synopsis: #include <wcskip.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the list and delete the objects

pointed to by the list elements. The list object is not destroyed and re-created by this function, so the

list object destructor is not invoked.

Results: The clearAndDestroy public member function clears the list by deleting the objects pointed to by

the list elements, and then removing the list elements from the list.

See Also: clear

Skip List Containers 457

WCPtrSkipList<Type>::contains(), WCPtrSkipListSet<Type>::contains()

Synopsis: #include <wcskip.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function returns non-zero if the element is stored in the list, or zero if

there is no equivalent element. Note that equivalence is based on the equivalence operator of the

element type.

Results: The contains public member function returns a non-zero value if the element is found in the list.

See Also: find

458 Skip List Containers

WCPtrSkipList<Type>::entries(), WCPtrSkipListSet<Type>::entries()

Synopsis: #include <wcskip.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements stored in the

list.

Results: The entries public member function returns the number of elements in the list.

See Also: isEmpty

Skip List Containers 459

WCPtrSkipList<Type>::find(), WCPtrSkipListSet<Type>::find()

Synopsis: #include <wcskip.h>
public:
Type * find(const Type *) const;

Semantics: The find public member function is used to find an element with an equivalent value in the list. If an

equivalent element is found, a pointer to the element is returned. Zero is returned if the element is not

found. Note that equivalence is based on the equivalence operator of the element type.

Results: The element equivalent to the passed value is located in the list.

460 Skip List Containers

WCPtrSkipList<Type>::forAll(), WCPtrSkipListSet<Type>::forAll()

Synopsis: #include <wcskip.h>
public:
void forAll(
void (*user_fn)(Type *, void *),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for every value in

the list. The user function has the prototype

void user_func(Type * value, void * data);

As the elements are visited, the user function is invoked with the element passed as the first. The

second parameter of the forAll function is passed as the second parameter to the user function. This

value can be used to pass any appropriate data from the main code to the user function.

Results: The elements in the list are all visited, with the user function being invoked for each one.

See Also: find

Skip List Containers 461

WCPtrSkipList<Type>::insert(), WCPtrSkipListSet<Type>::insert()

Synopsis: #include <wcskip.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts a value into the list. If allocation of the node to store the

value fails, then the out_of_memory exception is thrown if it is enabled. If the exception is not

enabled, the insert will not be completed.

With a WCPtrSkipListSet, there must be only one equivalent element in the set. If an element

equivalent to the inserted element is already in the list set, the list set will remain unchanged, and the

not_unique exception is thrown if it is enabled. If the exception is not enabled, the insert will not be

completed.

Results: The insert public member function inserts a value into the list. If the insert is successful, a non-zero

will returned. A zero will be returned if the insert fails.

See Also: operator =, WCExcept::out_of_memory, WCExcept::not_unique

462 Skip List Containers

WCPtrSkipList<Type>::isEmpty(), WCPtrSkipListSet<Type>::isEmpty()

Synopsis: #include <wcskip.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the list is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero if the list

is empty.

See Also: entries

Skip List Containers 463

WCPtrSkipList<Type>::occurrencesOf()

Synopsis: #include <wcskip.h>
public:
unsigned occurrencesOf(const Type *) const;

Semantics: The occurrencesOf public member function is used to return the current number of elements stored

in the list which are equivalent to the passed value. Note that equivalence is based on the equivalence

operator of the element type.

Results: The occurrencesOf public member function returns the number of elements in the list which are

equivalent to the passed value.

See Also: entries, find, isEmpty

464 Skip List Containers

WCPtrSkipList<Type>::operator =(), WCPtrSkipListSet<Type>::operator =()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipList & operator =(const WCPtrSkipList &);
WCPtrSkipListSet & operator =(const WCPtrSkipListSet &);

Semantics: The operator = public member function is the assignment operator for the

WCPtrSkipList<Type> and WCPtrSkipListSet<Type> classes. The left hand side list is first

cleared using the clear member function, and then the right hand side list is copied. The list function,

exception trap states, and all of the list elements are copied. If there is not enough memory to copy all

of the values or pointers in the list, then only some will be copied, and the out_of_memory exception

is thrown if it is enabled. The number of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side list to be a copy of the right hand

side.

See Also: clear, WCExcept::out_of_memory

Skip List Containers 465

WCPtrSkipList<Type>::operator ==(), WCPtrSkipListSet<Type>::operator ==()

Synopsis: #include <wcskip.h>
public:
int operator ==(const WCPtrSkipList &) const;
int operator ==(const WCPtrSkipListSet &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCPtrSkipList<Type> and WCPtrSkipListSet<Type> classes. Two list objects are

equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side list are the same object. A

FALSE (zero) value is returned otherwise.

466 Skip List Containers

WCPtrSkipList<Type>::remove(), WCPtrSkipListSet<Type>::remove()

Synopsis: #include <wcskip.h>
public:
Type * remove(const Type *);

Semantics: The remove public member function is used to remove the specified element from the list. If an

equivalent element is found, the pointer value is returned. Zero is returned if the element is not found.

If the list is a WCPtrSkipList and there is more than one element equivalent to the specified

element, then the last equivalent element added to the WCPtrSkipList is removed. Note that

equivalence is based on the equivalence operator of the element type.

Results: The element is removed from the list.

Skip List Containers 467

WCPtrSkipList<Type>::removeAll()

Synopsis: #include <wcskip.h>
public:
unsigned removeAll(const Type *);

Semantics: The removeAll public member function is used to remove all elements equivalent to the specified

element from the list. Zero is returned if no equivalent elements are found. Note that equivalence is

based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the list.

468 Skip List Containers

WCValSkipListDict<Key,Value>

Declared: wcskip.h

The WCValSkipListDict<Key,Value> class is a templated class used to store objects in a

dictionary. Dictionaries store values with an associated key, which may be of any type. One example

of a dictionary used in everyday life is the phone book. The phone numbers are the data values, and the

customer name is the key. The equality operator of the key’s type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template parameter

defining the type of the indices used to store data in the dictionary. The text Value is used to indicate

the template parameter defining the type of the data stored in the dictionary.

Values are copied into the dictionary, which could be undesirable if the stored objects are complicated

and copying is expensive. Value dictionaries should not be used to store objects of a base class if any

derived types of different sizes would be stored in the dictionary, or if the destructor for a derived class

must be called.

The iterator classes for skip lists have the same function and operator interface as the hash iterators

classes. See the chapter on hash iterators for more information.

The WCExcept class is a base class of the WCValSkipListDict<Key,Value> class and provides

the exceptions member function. This member function controls the exceptions which can be

thrown by the WCValSkipListDict<Key,Value> object. No exceptions are enabled unless they

are set by the exceptions member function.

Requirements of Key and Value

The WCValSkipListDict<Key,Value> class requires Key to have:

A default constructor (Key::Key()).

A well defined copy constructor (Key::Key(const Key &)).

A well defined assignment operator (Key & operator =(const Key &)).

A well defined equivalence operator with constant parameters

(int operator ==(const Key &) const).

A well defined operator less than with constant parameters

(int operator <(const Key &) const).

The WCValSkipListDict<Key,Value> class requires Value to have:

A default constructor (Value::Value()).

A well defined copy constructor (Value::Value(const Value &)).

A well defined assignment operator (Value & operator =(const Value &)).

Public Member Functions

The following member functions are declared in the public interface:

WCValSkipListDict(unsigned = WCSkipListDict_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS);

Skip List Containers 469

WCValSkipListDict<Key,Value>

WCValSkipListDict(unsigned = WCSkipListDict_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS, void * (*user_alloc)(size_t size),
void (*user_dealloc)(void *old, size_t size));
WCValSkipListDict(const WCValSkipListDict &);
virtual ~WCValSkipListDict();
void clear();
int contains(const Key &) const;
unsigned entries() const;
int find(const Key &, Value &) const;
int findKeyAndValue(const Key &, Key &, Value &) const;
void forAll(void (*user_fn)(Key, Value, void *), void *);
int insert(const Key &, const Value &);
int isEmpty() const;
int remove(const Key &);

Public Member Operators

The following member operators are declared in the public interface:

Value & operator [](const Key &);
const Value & operator [](const Key &) const;
WCValSkipListDict & operator =(const WCValSkipListDict &);
int operator ==(const WCValSkipListDict &) const;

470 Skip List Containers

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis: #include <wcskip.h>
public:
WCValSkipListDict(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS);

Semantics: The public WCValSkipListDict<Key,Value> constructor creates an

WCValSkipListDict<Key,Value> object with no entries. The first optional parameter, which

defaults to the constant WCSKIPLIST_PROB_QUARTER, determines the probability of having a

certain number of pointers in each skip list node. The second optional parameter, which defaults to the

constant WCDEFAULT_SKIPLIST_MAX_PTRS, determines the maximum number of pointers that are

allowed in any skip list node. WCDEFAULT_SKIPLIST_MAX_PTRS is the maximum effective value

of the second parameter. If an allocation failure occurs while creating the skip list, the

out_of_memory exception is thrown if the out_of_memory exception is enabled.

Results: The public WCValSkipListDict<Key,Value> constructor creates an initialized

WCValSkipListDict<Key,Value> object.

See Also: ~WCValSkipListDict<Key,Value>, WCExcept::out_of_memory

Skip List Containers 471

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis: #include <wcskip.h>
public:
WCValSkipListDict(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

list dictionary. The semantics of this constructor are the same as the constructor without the memory

management functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a list dictionary. To determine the size of the objects that the memory

management functions will be required to allocate and free, the following macro may be used:
WCValSkipListDictItemSize(Key, Value, num_of_pointers)

Results: The public WCValSkipListDict<Key,Value> constructor creates an initialized

WCValSkipListDict<Key,Value> object.

See Also: ~WCValSkipListDict<Key,Value>, WCExcept::out_of_memory

472 Skip List Containers

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis: #include <wcskip.h>
public:
WCValSkipListDict(const WCValSkipListDict &);

Semantics: The public WCValSkipListDict<Key,Value> constructor is the copy constructor for the

WCValSkipListDict<Key,Value> class. The new skip list is created with the same probability

and maximum pointers, all values or pointers stored in the list, and the exception trap states. If there is

not enough memory to copy all of the values, then only some will be copied, and the number of entries

will correctly reflect the number copied. If all of the elements cannot be copied, then the

out_of_memory exception is thrown if it is enabled.

Results: The public WCValSkipListDict<Key,Value> constructor creates an

WCValSkipListDict<Key,Value> object which is a copy of the passed dictionary.

See Also: operator =, WCExcept::out_of_memory

Skip List Containers 473

WCValSkipListDict<Key,Value>::~WCValSkipListDict()

Synopsis: #include <wcskip.h>
public:
virtual ~WCValSkipListDict();

Semantics: The public ~WCValSkipListDict<Key,Value> destructor is the destructor for the

WCValSkipListDict<Key,Value> class. If the number of dictionary elements is not zero and

the not_empty exception is enabled, the exception is thrown. Otherwise, the dictionary elements are

cleared using the clear member function. The call to the public

~WCValSkipListDict<Key,Value> destructor is inserted implicitly by the compiler at the point

where the WCValSkipListDict<Key,Value> object goes out of scope.

Results: The public ~WCValSkipListDict<Key,Value> destructor destroys an

WCValSkipListDict<Key,Value> object.

See Also: clear, WCExcept::not_empty

474 Skip List Containers

WCValSkipListDict<Key,Value>::clear()

Synopsis: #include <wcskip.h>
public:
void clear();

Semantics: The clear public member function is used to clear the dictionary so that it has no entries. Elements

stored in the dictionary are destroyed using the destructors of Key and of Value. The dictionary

object is not destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the dictionary to have no elements.

See Also: ~WCValSkipListDict<Key,Value>, operator =

Skip List Containers 475

WCValSkipListDict<Key,Value>::contains()

Synopsis: #include <wcskip.h>
public:
int contains(const Key &) const;

Semantics: The contains public member function returns non-zero if an element with the specified key is stored

in the dictionary, or zero if there is no equivalent element. Note that equivalence is based on the

equivalence operator of the Key type.

Results: The contains public member function returns a non-zero value if the Key is found in the dictionary.

See Also: find, findKeyAndValue

476 Skip List Containers

WCValSkipListDict<Key,Value>::entries()

Synopsis: #include <wcskip.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements stored in the

dictionary.

Results: The entries public member function returns the number of elements in the dictionary.

See Also: isEmpty

Skip List Containers 477

WCValSkipListDict<Key,Value>::find()

Synopsis: #include <wcskip.h>
public:
int find(const Key &, Value &) const;

Semantics: The find public member function is used to find an element with an equivalent key in the dictionary.

If an equivalent element is found, a non-zero value is returned. The reference to a Value passed as the

second argument is assigned the found element’s Value. Zero is returned if the element is not found.

Note that equivalence is based on the equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

478 Skip List Containers

WCValSkipListDict<Key,Value>::findKeyAndValue()

Synopsis: #include <wcskip.h>
public:
int findKeyAndValue(const Key &,
Key &, Value &) const;

Semantics: The findKeyAndValue public member function is used to find an element in the dictionary with an

key equivalent to the first parameter. If an equivalent element is found, a non-zero value is returned.

The reference to a Key passed as the second parameter is assigned the found element’s key. The

reference to a Value passed as the third argument is assigned the found element’s Value. Zero is

returned if the element is not found. Note that equivalence is based on the equivalence operator of the

Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

Skip List Containers 479

WCValSkipListDict<Key,Value>::forAll()

Synopsis: #include <wcskip.h>
public:
void forAll(
void (*user_fn)(Key, Value, void *),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for every

key-value pair in the dictionary. The user function has the prototype

void user_func(Key key, Value value, void * data);

As the elements are visited, the user function is invoked with the Key and Value components of the

element passed as the first two parameters. The second parameter of the forAll function is passed as

the third parameter to the user function. This value can be used to pass any appropriate data from the

main code to the user function.

Results: The elements in the dictionary are all visited, with the user function being invoked for each one.

See Also: find, findKeyAndValue

480 Skip List Containers

WCValSkipListDict<Key,Value>::insert()

Synopsis: #include <wcskip.h>
public:
int insert(const Key &, const Value &);

Semantics: The insert public member function inserts a key and value into the dictionary. If allocation of the

node to store the key-value pair fails, then the out_of_memory exception is thrown if it is enabled.

If the exception is not enabled, the insert will not be completed.

Results: The insert public member function inserts a key and value into the dictionary. If the insert is

successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =, WCExcept::out_of_memory

Skip List Containers 481

WCValSkipListDict<Key,Value>::isEmpty()

Synopsis: #include <wcskip.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the dictionary is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero if the

dictionary is empty.

See Also: entries

482 Skip List Containers

WCValSkipListDict<Key,Value>::operator []()

Synopsis: #include <wcskip.h>
public:
Value & operator[](const Key &);

Semantics: operator [] is the dictionary index operator. A reference to the object stored in the dictionary with

the given Key is returned. If no equivalent element is found, then a new key-value pair is created with

the specified Key value, and initialized with the default constructor. The returned reference can then be

assigned to, so that insertions can be made with the operator. If an allocation error occurs while

inserting a new key-value pair, then the out_of_memory exception is thrown if it is enabled. If the

exception is not enabled, then a reference to address zero will be returned. This will result in a run-time

error on systems which trap address zero references.

Results: The operator [] public member function returns a reference to the element at the given key value.

If the key does not exist, a reference to a created element is returned. The result of the operator may be

assigned to.

See Also: WCExcept::out_of_memory

Skip List Containers 483

WCValSkipListDict<Key,Value>::operator []()

Synopsis: #include <wcskip.h>
public:
const Value & operator[](const Key &) const;

Semantics: operator [] is the dictionary index operator. A constant reference to the object stored in the

dictionary with the given Key is returned. If no equivalent element is found, then the index_range
exception is thrown if it is enabled. If the exception is not enabled, then a reference to address zero will

be returned. This will result in a run-time error on systems which trap address zero references.

Results: The operator [] public member function returns a constant reference to the element at the given

key value. The result of the operator may not be assigned to.

See Also: WCExcept::index_range

484 Skip List Containers

WCValSkipListDict<Key,Value>::operator =()

Synopsis: #include <wcskip.h>
public:
WCValSkipListDict & operator =(const WCValSkipListDict &);

Semantics: The operator = public member function is the assignment operator for the

WCValSkipListDict<Key,Value> class. The left hand side dictionary is first cleared using the

clear member function, and then the right hand side dictionary is copied. The new skip list is created

with the same probability and maximum pointers, all values or pointers stored in the list, and the

exception trap states. If there is not enough memory to copy all of the values or pointers in the

dictionary, then only some will be copied, and the out_of_memory exception is thrown if it is

enabled. The number of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side dictionary to be a copy of the

right hand side.

See Also: clear, WCExcept::out_of_memory

Skip List Containers 485

WCValSkipListDict<Key,Value>::operator ==()

Synopsis: #include <wcskip.h>
public:
int operator ==(const WCValSkipListDict &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCValSkipListDict<Key,Value> class. Two dictionary objects are equivalent if they are the

same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side dictionary are the same

object. A FALSE (zero) value is returned otherwise.

486 Skip List Containers

WCValSkipListDict<Key,Value>::remove()

Synopsis: #include <wcskip.h>
public:
int remove(const Key &);

Semantics: The remove public member function is used to remove the specified element from the dictionary. If

an equivalent element is found, a non-zero value is returned. Zero is returned if the element is not

found. Note that equivalence is based on the equivalence operator of the Key type.

Results: The element is removed from the dictionary if it found.

Skip List Containers 487

WCValSkipList<Type>, WCValSkipListSet<Type>

Declared: wcskip.h

WCValSkipList<Type> and WCValSkipListSet<Type> classes are templated classes used to

store objects in a skip list. A skip list is a probabilistic alternative to balanced trees, and provides a

reasonable performance balance to insertion, search, and deletion. A skip list allows more than one

copy of an element that is equivalent, while the skip list set allows only one copy. The equality operator

of the element’s type is used to locate the value.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type of the data to be stored in the list.

Values are copied into the list, which could be undesirable if the stored objects are complicated and

copying is expensive. Value skip lists should not be used to store objects of a base class if any derived

types of different sizes would be stored in the list, or if the destructor for a derived class must be called.

The iterator classes for skip lists have the same function and operator interface as the hash iterators

classes. See the chapter on hash iterators for more information.

The WCExcept class is a base class of the WCValSkipList<Type> and

WCValSkipListSet<Type> classes and provides the exceptions member function. This

member function controls the exceptions which can be thrown by the WCValSkipList<Type> and

WCValSkipListSet<Type> objects. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Type

The WCValSkipList<Type> and WCValSkipListSet<Type> classes requires Type to have:

A default constructor (Type::Type()).

A well defined copy constructor (Type::Type(const Type &)).

A well defined equivalence operator

(int operator ==(const Type &) const).

A well defined less than operator

(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCValSkipList(unsigned = WCSKIPLIST_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS);
WCValSkipList(unsigned = WCSKIPLIST_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS, void * (*user_alloc)(size_t size),
void (*user_dealloc)(void *old, size_t size));
WCValSkipList(const WCValSkipList &);
virtual ~WCValSkipList();
WCValSkipListSet(unsigned = WCSKIPLIST_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS);
WCValSkipListSet(unsigned = WCSKIPLIST_PROB_QUARTER, unsigned =
WCDEFAULT_SKIPLIST_MAX_PTRS, void * (*user_alloc)(size_t size),
void (*user_dealloc)(void *old, size_t size));
WCValSkipListSet(const WCValSkipListSet &);

488 Skip List Containers

WCValSkipList<Type>, WCValSkipListSet<Type>

virtual ~WCValSkipListSet();
void clear();
int contains(const Type &) const;
unsigned entries() const;
int find(const Type &, Type &) const;
void forAll(void (*user_fn)(Type, void *), void *);
int insert(const Type &);
int isEmpty() const;
int remove(const Type &);

The following public member functions are available for the WCValSkipList class only:

unsigned occurrencesOf(const Type &) const;
unsigned removeAll(const Type &);

Public Member Operators

The following member operators are declared in the public interface:

WCValSkipList & operator =(const WCValSkipList &);
int operator ==(const WCValSkipList &) const;
WCValSkipListSet & operator =(const WCValSkipListSet &);
int operator ==(const WCValSkipListSet &) const;

Skip List Containers 489

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis: #include <wcskip.h>
public:
WCValSkipListSet(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS);

Semantics: The WCValSkipListSet<Type> constructor creates a WCValSkipListSet object with no

entries. The first optional parameter, which defaults to the constant WCSKIPLIST_PROB_QUARTER,

determines the probability of having a certain number of pointers in each skip list node. The second

optional parameter, which defaults to the constant WCDEFAULT_SKIPLIST_MAX_PTRS, determines

the maximum number of pointers that are allowed in any skip list node.

WCDEFAULT_SKIPLIST_MAX_PTRS is the maximum effective value of the second parameter. If an

allocation failure occurs while creating the skip list, the out_of_memory exception is thrown if the

out_of_memory exception is enabled.

Results: The WCValSkipListSet<Type> constructor creates an initialized WCValSkipListSet object.

See Also: ~WCValSkipList<Type>, WCExcept::out_of_memory

490 Skip List Containers

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis: #include <wcskip.h>
public:
WCValSkipListSet(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

list. The semantics of this constructor are the same as the constructor without the memory management

functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a skip list. To determine the size of the objects that the memory management

functions will be required to allocate and free, the following macro may be used:
WCValSkipListSetItemSize(Type, num_of_pointers)

Results: The WCValSkipListSet<Type> constructor creates an initialized WCValSkipListSet object.

See Also: ~WCValSkipList<Type>, WCExcept::out_of_memory

Skip List Containers 491

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis: #include <wcskip.h>
public:
WCValSkipListSet(const WCValSkipListSet &);

Semantics: The WCValSkipListSet<Type> constructor is the copy constructor for the

WCValSkipListSet class. The new skip list is created with the same probability and maximum

pointers, all values or pointers stored in the list, and the exception trap states. If there is not enough

memory to copy all of the values, then only some will be copied, and the number of entries will

correctly reflect the number copied. If all of the elements cannot be copied, then the

out_of_memory exception is thrown if it is enabled.

Results: The WCValSkipListSet<Type> constructor creates a WCValSkipListSet object which is a

copy of the passed list.

See Also: operator =, WCExcept::out_of_memory

492 Skip List Containers

WCValSkipListSet<Type>::~WCValSkipListSet()

Synopsis: #include <wcskip.h>
public:
virtual ~WCValSkipListSet();

Semantics: The WCValSkipListSet<Type> destructor is the destructor for the WCValSkipListSet class.

If the number of elements is not zero and the not_empty exception is enabled, the exception is

thrown. Otherwise, the list elements are cleared using the clear member function. The call to the

WCValSkipListSet<Type> destructor is inserted implicitly by the compiler at the point where the

WCValSkipListSet object goes out of scope.

Results: The call to the WCValSkipListSet<Type> destructor destroys a WCValSkipListSet object.

See Also: clear, WCExcept::not_empty

Skip List Containers 493

WCValSkipList<Type>::WCValSkipList()

Synopsis: #include <wcskip.h>
public:
WCValSkipList(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS);

Semantics: The WCValSkipList<Type> constructor creates a WCValSkipList object with no entries. The

first optional parameter, which defaults to the constant WCSKIPLIST_PROB_QUARTER, determines

the probability of having a certain number of pointers in each skip list node. The second optional

parameter, which defaults to the constant WCDEFAULT_SKIPLIST_MAX_PTRS, determines the

maximum number of pointers that are allowed in any skip list node.

WCDEFAULT_SKIPLIST_MAX_PTRS is the maximum effective value of the second parameter. If an

allocation failure occurs while creating the skip list, the out_of_memory exception is thrown if the

out_of_memory exception is enabled.

Results: The WCValSkipList<Type> constructor creates an initialized WCValSkipList object.

See Also: ~WCValSkipList<Type>, WCExcept::out_of_memory

494 Skip List Containers

WCValSkipList<Type>::WCValSkipList()

Synopsis: #include <wcskip.h>
public:
WCValSkipList(unsigned = WCSKIPLIST_PROB_QUARTER,
unsigned = WCDEFAULT_SKIPLIST_MAX_PTRS,
void * (*user_alloc)(size_t),
void (*user_dealloc)(void *, size_t));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and removed from the

list. The semantics of this constructor are the same as the constructor without the memory management

functions.

The allocation function must return a zero if it cannot perform the allocation. The deallocation function

is passed the size as well as the pointer to the data. Your allocation system may take advantage of the

characteristic that the allocation function will always be called with the same size value for any

particular instantiation of a skip list. To determine the size of the objects that the memory management

functions will be required to allocate and free, the following macro may be used:
WCValSkipListItemSize(Type, num_of_pointers)

Results: The WCValSkipList<Type> constructor creates an initialized WCValSkipList object.

See Also: ~WCValSkipList<Type>, WCExcept::out_of_memory

Skip List Containers 495

WCValSkipList<Type>::WCValSkipList()

Synopsis: #include <wcskip.h>
public:
WCValSkipList(const WCValSkipList &);

Semantics: The WCValSkipList<Type> constructor is the copy constructor for the WCValSkipList class.

The new skip list is created with the same probability and maximum pointers, all values or pointers

stored in the list, and the exception trap states. If there is not enough memory to copy all of the values,

then only some will be copied, and the number of entries will correctly reflect the number copied. If all

of the elements cannot be copied, then the out_of_memory exception is thrown if it is enabled.

Results: The WCValSkipList<Type> constructor creates a WCValSkipList object which is a copy of the

passed list.

See Also: operator =, WCExcept::out_of_memory

496 Skip List Containers

WCValSkipList<Type>::~WCValSkipList()

Synopsis: #include <wcskip.h>
public:
virtual ~WCValSkipList();

Semantics: The WCValSkipList<Type> destructor is the destructor for the WCValSkipList class. If the

number of elements is not zero and the not_empty exception is enabled, the exception is thrown.

Otherwise, the list elements are cleared using the clear member function. The call to the

WCValSkipList<Type> destructor is inserted implicitly by the compiler at the point where the

WCValSkipList object goes out of scope.

Results: The call to the WCValSkipList<Type> destructor destroys a WCValSkipList object.

See Also: clear, WCExcept::not_empty

Skip List Containers 497

WCValSkipList<Type>::clear(), WCValSkipListSet<Type>::clear()

Synopsis: #include <wcskip.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list so that it has no entries. Elements stored in

the list are destroyed using the destructors of Type. The list object is not destroyed and re-created by

this function, so the object destructor is not invoked.

Results: The clear public member function clears the list to have no elements.

See Also: ~WCValSkipList<Type>, operator =

498 Skip List Containers

WCValSkipList<Type>::contains(), WCValSkipListSet<Type>::contains()

Synopsis: #include <wcskip.h>
public:
int contains(const Type &) const;

Semantics: The contains public member function returns non-zero if the element is stored in the list, or zero if

there is no equivalent element. Note that equivalence is based on the equivalence operator of the

element type.

Results: The contains public member function returns a non-zero value if the element is found in the list.

See Also: find

Skip List Containers 499

WCValSkipList<Type>::entries(), WCValSkipListSet<Type>::entries()

Synopsis: #include <wcskip.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements stored in the

list.

Results: The entries public member function returns the number of elements in the list.

See Also: isEmpty

500 Skip List Containers

WCValSkipList<Type>::find(), WCValSkipListSet<Type>::find()

Synopsis: #include <wcskip.h>
public:
int find(const Type &, Type &) const;

Semantics: The find public member function is used to find an element with an equivalent value in the list. If an

equivalent element is found, a non-zero value is returned. The reference to the element passed as the

second argument is assigned the found element’s value. Zero is returned if the element is not found.

Note that equivalence is based on the equivalence operator of the element type.

Results: The element equivalent to the passed value is located in the list.

Skip List Containers 501

WCValSkipList<Type>::forAll(), WCValSkipListSet<Type>::forAll()

Synopsis: #include <wcskip.h>
public:
void forAll(
void (*user_fn)(Type, void *),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for every value in

the list. The user function has the prototype

void user_func(Type & value, void * data);

As the elements are visited, the user function is invoked with the element passed as the first. The

second parameter of the forAll function is passed as the second parameter to the user function. This

value can be used to pass any appropriate data from the main code to the user function.

Results: The elements in the list are all visited, with the user function being invoked for each one.

See Also: find

502 Skip List Containers

WCValSkipList<Type>::insert(), WCValSkipListSet<Type>::insert()

Synopsis: #include <wcskip.h>
public:
int insert(const Type &);

Semantics: The insert public member function inserts a value into the list. If allocation of the node to store the

value fails, then the out_of_memory exception is thrown if it is enabled. If the exception is not

enabled, the insert will not be completed.

With a WCValSkipListSet, there must be only one equivalent element in the set. If an element

equivalent to the inserted element is already in the list set, the list set will remain unchanged, and the

not_unique exception is thrown if it is enabled. If the exception is not enabled, the insert will not be

completed.

Results: The insert public member function inserts a value into the list. If the insert is successful, a non-zero

will returned. A zero will be returned if the insert fails.

See Also: operator =, WCExcept::out_of_memory, WCExcept::not_unique

Skip List Containers 503

WCValSkipList<Type>::isEmpty(), WCValSkipListSet<Type>::isEmpty()

Synopsis: #include <wcskip.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the list is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero if the list

is empty.

See Also: entries

504 Skip List Containers

WCValSkipList<Type>::occurrencesOf()

Synopsis: #include <wcskip.h>
public:
unsigned occurrencesOf(const Type &) const;

Semantics: The occurrencesOf public member function is used to return the current number of elements stored

in the list which are equivalent to the passed value. Note that equivalence is based on the equivalence

operator of the element type.

Results: The occurrencesOf public member function returns the number of elements in the list which are

equivalent to the passed value.

See Also: entries, find, isEmpty

Skip List Containers 505

WCValSkipList<Type>::operator =(), WCValSkipListSet<Type>::operator =()

Synopsis: #include <wcskip.h>
public:
WCValSkipList & operator =(const WCValSkipList &);
WCValSkipListSet & operator =(const WCValSkipListSet &);

Semantics: The operator = public member function is the assignment operator for the

WCValSkipList<Type> and WCValSkipListSet<Type> classes. The left hand side list is first

cleared using the clear member function, and then the right hand side list is copied. The list function,

exception trap states, and all of the list elements are copied. If there is not enough memory to copy all

of the values or pointers in the list, then only some will be copied, and the out_of_memory exception

is thrown if it is enabled. The number of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side list to be a copy of the right hand

side.

See Also: clear, WCExcept::out_of_memory

506 Skip List Containers

WCValSkipList<Type>::operator ==(), WCValSkipListSet<Type>::operator ==()

Synopsis: #include <wcskip.h>
public:
int operator ==(const WCValSkipList &) const;
int operator ==(const WCValSkipListSet &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCValSkipList<Type> and WCValSkipListSet<Type> classes. Two list objects are

equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side list are the same object. A

FALSE (zero) value is returned otherwise.

Skip List Containers 507

WCValSkipList<Type>::remove(), WCValSkipListSet<Type>::remove()

Synopsis: #include <wcskip.h>
public:
int remove(const Type &);

Semantics: The remove public member function is used to remove the specified element from the list. If an

equivalent element is found, a non-zero value is returned. Zero is returned if the element is not found.

If the list is a WCValSkipList and there is more than one element equivalent to the specified

element, then the last equivalent element added to the WCValSkipList is removed. Note that

equivalence is based on the equivalence operator of the element type.

Results: The element is removed from the list.

508 Skip List Containers

WCValSkipList<Type>::removeAll()

Synopsis: #include <wcskip.h>
public:
unsigned removeAll(const Type &);

Semantics: The removeAll public member function is used to remove all elements equivalent to the specified

element from the list. Zero is returned if no equivalent elements are found. Note that equivalence is

based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the list.

Skip List Containers 509

WCValSkipList<Type>::removeAll()

510 Skip List Containers

16 Stack Container

Stack containers maintain an ordered collection of data which is retrieved in the reverse order to which the

data was entered into the stack. The stack class is implemented as a templated class, allowing the stacking

of any data type.

A second template parameter specifies the storage class used to implement the stack. The WCValSList,

WCIsvSList and WCPtrSList classes are appropriate storage classes.

Stack Container 511

WCStack<Type,FType>

Declared: wcstack.h

The WCStack<Type,FType> class is a templated class used to create objects which maintain data in

a stack.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type of the elements stored in the stack. The text FType is used to indicate the template

parameter defining the storage class used to maintain the stack.

For example, to create a stack of integers, the WCStack<int,WCValSList<int> > class can be

used. The WCStack<int *,WCPtrSList<int> > class will create a stack of pointers to

integers. To create an intrusive stack of objects of type isv_link (derived from the WCSLink class), the

WCStack< isv_link *,WCIsvSList< isv_link > > class can be used.

The WCExcept class is a base class of the WCStack<Type,FType> class and provides the

exceptions member function. This member function controls the exceptions which can be thrown

by the WCStack<Type,FType> object. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Type

Type must provide any constructors and/or operators required by the FType class.

Public Member Functions

The following member functions are declared in the public interface:

WCStack();
WCStack(void *(*)(size_t), void (*)(void *, size_t));
~WCStack();
void clear();
int entries() const;
int isEmpty() const;
Type pop();
int push(const Type &);
Type top() const;

Sample Program Using a Stack

#include <wcstack.h>
#include <iostream.h>

void main() {
WCStack<int,WCValSList<int> > stack;

stack.push(7);
stack.push(8);
stack.push(9);
stack.push(10);

cout << "\nNumber of stack entries: " << stack.entries() << "\n";
cout << "Top entry = [" << stack.top() << "]\n";
while(!stack.isEmpty()) {

cout << stack.pop() << "\n";
};
cout.flush();

}

512 Stack Container

WCStack<Type,FType>::WCStack()

Synopsis: #include <wcstack.h>
public:
WCStack();

Semantics: The public WCStack<Type,FType> constructor creates an empty WCStack<Type,FType>
object. The FType storage class constructor performs the initialization.

Results: The public WCStack<Type,FType> constructor creates an initialized WCStack<Type,FType>
object.

See Also: ~WCStack<Type,FType>

Stack Container 513

WCStack<Type,FType>::WCStack()

Synopsis: #include <wcstack.h>
public:
WCStack(void *(*allocator)(size_t),
void (*deallocator)(void *, size_t));

Semantics: The public WCStack<Type,FType> constructor creates an empty WCStack<Type,FType>
object. If FType is either the WCValSList or WCPtrSList class, then the allocator function is

registered to perform all memory allocations of the stack elements, and the deallocator function to

perform all freeing of the stack elements’ memory. The allocator and deallocator functions are ignored

if FType is the WCIsvSList class. These functions provide the ability to control how the allocation

and freeing of memory is performed, allowing for more efficient memory handling than the general

purpose global operator new() and operator delete() can provide. Memory management

optimizations may potentially be made through the allocator and deallocator functions, but are not

recommended before managing memory is understood and determined to be worth while.

The allocator function shall return a pointer to allocated memory of size at least the argument, or

zero(0) if the allocation cannot be performed. Initialization of the memory returned is performed by the

WCStack<Type,FType> class.

The WCStack<Type,FType> class calls the deallocator function only on memory allocated by the

allocator function. The deallocator shall free the memory pointed to by the first argument which is of

size the second argument. The size passed to the deallocator function is guaranteed to be the same size

passed to the allocator function when the memory was allocated.

The allocator and deallocator functions may assume that for a list object instance, the allocator is

always called with the same first argument (the size of the memory to be allocated). If FType is the

WCValSList<Type> class, then the WCValSListItemSize(Type) macro returns the size of the

elements which are allocated by the allocator function. Similarly, the WCPtrSListItemSize(
Type) macro returns the size of WCPtrSList<Type> elements.

The FType storage class constructor performs the initialization of the stack.

Results: The public WCStack<Type,FType> constructor creates an initialized WCStack<Type,FType>
object and registers the allocator and deallocator functions.

See Also: WCStack<Type,FType>, ~WCStack<Type,FType>

514 Stack Container

WCStack<Type,FType>::~WCStack()

Synopsis: #include <wcstack.h>
public:
virtual ~WCStack();

Semantics: The public ~WCStack<Type,FType> destructor destroys the WCStack<Type,FType> object.

The FType storage class destructor performs the destruction. The call to the public

~WCStack<Type,FType> destructor is inserted implicitly by the compiler at the point where the

WCStack<Type,FType> object goes out of scope.

If the not_empty exception is enabled, the exception is thrown if the stack is not empty of stack

elements.

Results: The WCStack<Type,FType> object is destroyed.

See Also: WCStack<Type,FType>, clear, WCExcept::not_empty

Stack Container 515

WCStack<Type,FType>::clear()

Synopsis: #include <wcstack.h>
public:
void clear();

Semantics: The clear public member function is used to clear the stack object and set it to the state of the object

just after the initial construction. The stack object is not destroyed and re-created by this operator, so

the object destructor is not invoked. The stack elements are not cleared by the stack class. However,

the class used to maintain the stack, FType, may clear the items as part of the clear member function

for that class. If it does not clear the items, any stack items still in the list are lost unless pointed to by

some pointer object in the program code.

Results: The clear public member function resets the stack object to the state of the object immediately after

the initial construction.

See Also: ~WCStack<Type,FType>, isEmpty

516 Stack Container

WCStack<Type,FType>::entries()

Synopsis: #include <wcstack.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of stack elements contained in

the list object.

Results: The number of elements on the stack is returned. Zero(0) is returned if there are no stack elements.

See Also: isEmpty

Stack Container 517

WCStack<Type,FType>::isEmpty()

Synopsis: #include <wcstack.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a stack object has any stack elements

contained in it.

Results: A TRUE value (non-zero) is returned if the stack object does not have any stack elements contained

within it. A FALSE (zero) result is returned if the stack contains at least one element.

See Also: entries

518 Stack Container

WCStack<Type,FType>::pop()

Synopsis: #include <wcstack.h>
public:
Type pop();

Semantics: The pop public member function returns the top stack element from the stack object. The top stack

element is the last element pushed onto the stack. The stack element is also removed from the stack.

If the stack is empty, one of two exceptions can be thrown. If the empty_container exception is

enabled, then it will be thrown. Otherwise, the index_range exception will be thrown, if enabled.

Results: The top stack element is removed and returned. The return value is determined by the get member

function of the FType class if there are no elements on the stack.

See Also: isEmpty, push, top, WCExcept::empty_container, WCExcept::index_range,
FType::get

Stack Container 519

WCStack<Type,FType>::push()

Synopsis: #include <wcstack.h>
public:
int push(const Type &);

Semantics: The push public member function is used to push the data onto the top of the stack. It will be the first

element on the stack to be popped.

If the push fails, the out_of_memory exception will be thrown, if enabled, and the stack will remain

unchanged.

Results: The stack element is pushed onto the top of the stack. A TRUE value (non-zero) is returned if the push

is successful. A FALSE (zero) result is returned if the push fails.

See Also: pop, WCExcept::out_of_memory

520 Stack Container

WCStack<Type,FType>::top()

Synopsis: #include <wcstack.h>
public:
Type top() const;

Semantics: The top public member function returns the top stack element from the stack object. The top stack

element is the last element pushed onto the stack. The stack element is not removed from the stack.

If the stack is empty, one of two exceptions can be thrown. If the empty_container exception is

enabled, then it will be thrown. Otherwise, the index_range exception will be thrown, if enabled.

Results: The top stack element is returned. The return value is determined by the find member function of the

FType class if there are no elements on the stack.

See Also: isEmpty, pop, WCExcept::empty_container, WCExcept::index_range,
FType::find

Stack Container 521

WCStack<Type,FType>::top()

522 Stack Container

17 Vector Containers

This chapter describes vector containers.

Vector Containers 523

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type>

Declared: wcvector.h

The WCPtrSortedVector<Type> and WCPtrOrderedVector<Type> classes are templated

classes used to store objects in a vector. Ordered and Sorted vectors are powerful arrays which can be

resized and provide an abstract interface to insert, find and remove elements. An ordered vector

maintains the order in which elements are added, and allows more than one copy of an element that is

equivalent. The sorted vector allow only one copy of an equivalent element, and inserts them in a

sorted order. The sorted vector is less efficient when inserting elements, but can provide a faster

retrieval time.

Elements cannot be inserted into these vectors by assigning to a vector index. Vectors automatically

grow when necessary to insert an element if the resize_required exception is not enabled.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type pointed to by the pointers stored in the vector.

Note that lookups are performed on the types pointed to, not just by comparing pointers. Two pointer

elements are equivalent if the values they point to are equivalent. The values pointed to do not need to

be the same object.

The WCPtrOrderedVector class stores elements in the order which they are inserted using the

insert, append, prepend and insertAt member functions. Linear searches are performed to

locate entries, and the less than operator is not required.

The WCPtrSortedVector class stores elements in ascending order. This requires that Type
provides a less than operator. Insertions are more expensive than inserting or appending into an ordered

vector, since entries must be moved to make room for the new element. A binary search is used to

locate elements in a sorted vector, making searches quicker than in the ordered vector.

Care must be taken when using the WCPtrSortedVector class not to change the ordering of the

vector elements. An object pointed to by a vector element must not be changed so that it is not

equivalent to the value when the pointer was inserted into the vector. The index operator and the

member functions find, first, and last all return pointers the elements pointed to by the vector

elements. Lookups assume elements are in sorted order, so you should not use the returned pointers to

change the ordering of the value pointed to.

The WCPtrVector class is also available. It provides a resizable and boundary safe vector similar to

standard arrays.

The WCExcept class is a base class of the WCPtrSortedVector<Type> and

WCPtrOrderedVector<Type> classes and provides the exceptions member function. This

member function controls the exceptions which can be thrown by the WCPtrSortedVector<Type>
and WCPtrOrderedVector<Type> objects. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Type

Both the WCPtrSortedVector<Type> and WCPtrOrderedVector<Type> classes require

Type to have:

A well defined equivalence operator with constant parameters

(int operator ==(const Type &) const).

Additionally the WCPtrSortedVector class requires Type to have:

524 Vector Containers

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type>

A well defined less than operator with constant parameters

(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCPtrOrderedVector(size_t = WCDEFAULT_VECTOR_LENGTH, unsigned =
WCDEFAULT_VECTOR_RESIZE_GROW);
WCPtrOrderedVector(const WCPtrOrderedVector &);
virtual ~WCPtrOrderedVector();
WCPtrSortedVector(size_t = WCDEFAULT_VECTOR_LENGTH, unsigned =
WCDEFAULT_VECTOR_RESIZE_GROW);
WCPtrSortedVector(const WCPtrSortedVector &);
virtual ~WCPtrSortedVector();
void clear();
void clearAndDestroy();
int contains(const Type *) const;
unsigned entries() const;
Type * find(const Type *) const;
Type * first() const;
int index(const Type *) const;
int insert(Type *);
int isEmpty() const;
Type * last() const;
int occurrencesOf(const Type *) const;
Type * remove(const Type *);
unsigned removeAll(const Type *);
Type * removeAt(int);
Type * removeFirst();
Type * removeLast();
int resize(size_t);

The following public member functions are available for the WCPtrOrderedVector class only:

int append(Type *);
int insertAt(int, Type *);
int prepend(Type *);

Public Member Operators

The following member operators are declared in the public interface:

Type * & operator [](int);
Type * const & operator [](int) const;
WCPtrOrderedVector & WCPtrOrderedVector::operator =(const
WCPtrOrderedVector &);
WCPtrSortedVector & WCPtrSortedVector::operator =(const
WCPtrSortedVector &);
int WCPtrOrderedVector::operator ==(const WCPtrOrderedVector &)
const;
int WCPtrSortedVector::operator ==(const WCPtrSortedVector &)
const;

Vector Containers 525

WCPtrOrderedVector<Type>::WCPtrOrderedVector()

Synopsis: #include <wcvector.h>
public:
WCPtrOrderedVector(size_t = WCDEFAULT_VECTOR_LENGTH,
unsigned = WCDEFAULT_VECTOR_RESIZE_GROW);

Semantics: The WCPtrOrderedVector<Type> constructor creates an empty WCPtrOrderedVector object

able to store the number of elements specified in the first optional parameter, which defaults to the

constant WCDEFAULT_VECTOR_LENGTH (currently defined as 10). If the resize_required
exception is not enabled, then the second optional parameter is used to specify the value to increase the

vector size when an element is inserted into a full vector. If zero(0) is specified as the second

parameter, any attempt to insert into a full vector fails. This parameter defaults to the constant

WCDEFAULT_VECTOR_RESIZE_GROW (currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCPtrOrderedVector<Type> constructor creates an empty initialized

WCPtrOrderedVector object.

See Also: WCExcept::resize_required

526 Vector Containers

WCPtrOrderedVector<Type>::WCPtrOrderedVector()

Synopsis: #include <wcvector.h>
public:
WCPtrOrderedVector(const WCPtrOrderedVector &);

Semantics: The WCPtrOrderedVector<Type> constructor is the copy constructor for the

WCPtrOrderedVector class. The new vector is created with the same length and resize value as the

passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out_of_memory exception is

thrown if enabled in the vector being copied.

Results: The WCPtrOrderedVector<Type> creates a WCPtrOrderedVector object which is a copy of

the passed vector.

See Also: operator =, WCExcept::out_of_memory

Vector Containers 527

WCPtrOrderedVector<Type>::~WCPtrOrderedVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCPtrOrderedVector();

Semantics: The WCPtrOrderedVector<Type> destructor is the destructor for the WCPtrOrderedVector
class. If the vector is not length zero and the not_empty exception is enabled, the exception is

thrown. Otherwise, the vector entries are cleared using the clear member function. The objects

which the vector entries point to are not deleted unless the clearAndDestroy member function is

explicitly called before the destructor is called. The call to the WCPtrOrderedVector<Type>
destructor is inserted implicitly by the compiler at the point where the WCPtrOrderedVector object

goes out of scope.

Results: The WCPtrOrderedVector<Type> destructor destroys an WCPtrOrderedVector object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

528 Vector Containers

WCPtrSortedVector<Type>::WCPtrSortedVector()

Synopsis: #include <wcvector.h>
public:
WCPtrSortedVector(size_t = WCDEFAULT_VECTOR_LENGTH,
unsigned = WCDEFAULT_VECTOR_RESIZE_GROW);

Semantics: The WCPtrSortedVector<Type> constructor creates an empty WCPtrSortedVector object

able to store the number of elements specified in the first optional parameter, which defaults to the

constant WCDEFAULT_VECTOR_LENGTH (currently defined as 10). If the resize_required
exception is not enabled, then the second optional parameter is used to specify the value to increase the

vector size when an element is inserted into a full vector. If zero(0) is specified as the second

parameter, any attempt to insert into a full vector fails. This parameter defaults to the constant

WCDEFAULT_VECTOR_RESIZE_GROW (currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCPtrSortedVector<Type> constructor creates an empty initialized

WCPtrSortedVector object.

See Also: WCExcept::resize_required

Vector Containers 529

WCPtrSortedVector<Type>::WCPtrSortedVector()

Synopsis: #include <wcvector.h>
public:
WCPtrSortedVector(const WCPtrSortedVector &);

Semantics: The WCPtrSortedVector<Type> constructor is the copy constructor for the

WCPtrSortedVector class. The new vector is created with the same length and resize value as the

passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out_of_memory exception is

thrown if enabled in the vector being copied.

Results: The WCPtrSortedVector<Type> constructor creates a WCPtrSortedVector object which is a

copy of the passed vector.

See Also: operator =, WCExcept::out_of_memory

530 Vector Containers

WCPtrSortedVector<Type>::~WCPtrSortedVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCPtrSortedVector();

Semantics: The WCPtrSortedVector<Type> destructor is the destructor for the WCPtrSortedVector
class. If the vector is not length zero and the not_empty exception is enabled, the exception is

thrown. Otherwise, the vector entries are cleared using the clear member function. The objects

which the vector entries point to are not deleted unless the clearAndDestroy member function is

explicitly called before the destructor is called. The call to the WCPtrSortedVector<Type>
destructor is inserted implicitly by the compiler at the point where the WCPtrSortedVector object

goes out of scope.

Results: The WCPtrSortedVector<Type> destructor destroys an WCPtrSortedVector object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

Vector Containers 531

WCPtrOrderedVector<Type>::append()

Synopsis: #include <wcvector.h>
public:
int append(Type *);

Semantics: The append public member function appends the passed element to be the last element in the vector.

This member function has the same semantics as the WCPtrOrderedVector::insert member

function.

This function is not provided by the WCPtrSortedVector class, since all elements must be inserted

in sorted order by the insert member function.

Several different results can occur if the vector is not large enough for the new element. If the

resize_required exception is enabled, the exception is thrown. If the exception is not enabled,

the append fails if the amount the vector is to be grown (the second parameter to the constructor) is

zero(0). Otherwise, the vector is automatically grown by the number of elements specified to the

constructor, using the resize member function. If resize fails, the element is not appended to the

vector and the out_of_memory exception is thrown, if enabled.

Results: The append public member function appends an element to the WCPtrOrderedVector object. A

TRUE (non-zero) value is returned if the append is successful. If the append fails, a FALSE (zero)

value is returned.

See Also: insert, insertAt, prepend, WCExcept::out_of_memory,
WCExcept::resize_required

532 Vector Containers

WCPtrSortedVector<Type>::clear(), WCPtrOrderedVector<Type>::clear()

Synopsis: #include <wcvector.h>
public:
void clear();

Semantics: The clear public member function is used to clear the vector so that it contains no entries, and is zero

size. Objects pointed to by the vector elements are not deleted. The vector object is not destroyed and

re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the vector to have zero length and no entries.

See Also: ~WCPtrOrderedVector, clearAndDestroy, operator =

Vector Containers 533

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::clearAndDestroy()

Synopsis: #include <wcvector.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the vector to have zero length and

delete the objects pointed to by the vector elements. The vector object is not destroyed and re-created

by this function, so the vector object destructor is not invoked.

Results: The clearAndDestroy public member function clears the vector by deleting the objects pointed to

by the vector elements and makes the vector zero length.

See Also: clear

534 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::contains()

Synopsis: #include <wcvector.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function is used to determine if a value is contained by a vector. Note

that comparisons are done on the objects pointed to, not the pointers themselves. A linear search is used

by the WCPtrOrderedVector class to find the value. The WCPtrSortedVector class uses a

binary search.

Results: The contains public member function returns a TRUE (non-zero) value if the element is found in the

vector. A FALSE (zero) value is returned if the vector does not contain the element.

See Also: index, find

Vector Containers 535

WCPtrSortedVector<Type>::entries(), WCPtrOrderedVector<Type>::entries()

Synopsis: #include <wcvector.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to find the number of elements which are stored in the

vector.

Results: The entries public member function returns the number of elements in the vector.

See Also: isEmpty

536 Vector Containers

WCPtrSortedVector<Type>::find(), WCPtrOrderedVector<Type>::find()

Synopsis: #include <wcvector.h>
public:
Type * find(const Type *) const;

Semantics: The find public member function is used to find an element equivalent to the element passed. Note

that comparisons are done on the objects pointed to, not the pointers themselves. The

WCPtrOrderedVector class uses a linear search to find the element, and the

WCPtrSortedVector class uses a binary search.

Results: A pointer to the first equivalent element is returned. NULL(0) is returned if the element is not in the

vector.

See Also: contains, first, index, last, occurrencesOf, remove

Vector Containers 537

WCPtrSortedVector<Type>::first(), WCPtrOrderedVector<Type>::first()

Synopsis: #include <wcvector.h>
public:
Type * first() const;

Semantics: The first public member function returns the first element in the vector. The element is not removed

from the vector.

If the vector is empty, one of two exceptions can be thrown. The empty_container exception is

thrown if it is enabled. Otherwise, if the index_range exception is enabled, it is thrown. If neither

exception is enabled, a first element of the vector is added with a NULL value.

Results: The first public member function returns the value of the first element in the vector.

See Also: last, removeFirst, WCExcept::index_range, WCExcept::resize_required

538 Vector Containers

WCPtrSortedVector<Type>::index(), WCPtrOrderedVector<Type>::index()

Synopsis: #include <wcvector.h>
public:
int index(const Type *) const;

Semantics: The index public member function is used find the index of the first element equivalent to the passed

element. Note that comparisons are done on the objects pointed to, not the pointers themselves. A

linear search is used by the WCPtrOrderedVector class to find the element. The

WCPtrSortedVector class uses a binary search.

Results: The index public member function returns the index of the first element equivalent to the parameter.

If the passed value is not contained in the vector, negative one (-1) is returned.

See Also: contains, find, insertAt, operator [], removeAt

Vector Containers 539

WCPtrSortedVector<Type>::insert(), WCPtrOrderedVector<Type>::insert()

Synopsis: #include <wcvector.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts the value into the vector.

The WCPtrOrderedVector::insert function inserts the value as the last element of the vector,

and has the same semantics as the WCPtrOrderedVector::append member function.

A binary search is performed to determine where the value should be inserted for the

WCPtrSortedVector::insert function. Note that comparisons are done on the objects pointed

to, not the pointers themselves. Any elements greater than the inserted value are copied up one index so

that the new element is after all elements with value less than or equal to it.

Several different results can occur if the vector is not large enough for the new element. If the

resize_required exception is enabled, the exception is thrown. If the exception is not enabled,

the insert fails if the amount the vector is to be grown (the second parameter to the constructor) is

zero(0). Otherwise, the vector is automatically grown by the number of elements specified to the

constructor, using the resize member function. If resize fails, the element is not inserted to the

vector and the out_of_memory exception is thrown, if enabled.

Results: The insert public member function inserts an element in to the vector. A TRUE (non-zero) value is

returned if the insert is successful. If the insert fails, a FALSE (zero) value is returned.

See Also: append, insertAt, prepend, WCExcept::out_of_memory,
WCExcept::resize_required

540 Vector Containers

WCPtrOrderedVector<Type>::insertAt()

Synopsis: #include <wcvector.h>
public:
int insertAt(int, Type *);

Semantics: The insertAt public member function inserts the second argument into the vector before the element

at index given by the first argument. If the passed index is equal to the number of entries in the vector,

the new value is appended to the vector as the last element. All vector elements with indexes greater

than or equal to the first parameter are copied up one index.

This function is not provided by the WCPtrSortedVector class, since all elements must be inserted

in sorted order by the insert member function.

If the passed index is negative or greater than the number of entries in the vector and the

index_range exception is enabled, the exception is thrown. If the exception is not enabled, the new

element is inserted as the first element when the index is negative, or as the last element when the index

is too large.

Several different results can occur if the vector is not large enough for the new element. If the

resize_required exception is enabled, the exception is thrown. If the exception is not enabled,

the insert fails if the amount the vector is to be grown (the second parameter to the constructor) is

zero(0). Otherwise, the vector is automatically grown by the number of elements specified to the

constructor, using the resize member function. If resize fails, the element is not inserted into the

vector and the out_of_memory exception is thrown, if enabled.

Results: The insertAt public member function inserts an element into the WCPtrOrderedVector object

before the element at the given index. A TRUE (non-zero) value is returned if the insert is successful.

If the insert fails, a FALSE (zero) value is returned.

See Also: append, insert, prepend, operator [], removeAt, WCExcept::index_range,

WCExcept::out_of_memory, WCExcept::resize_required

Vector Containers 541

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::isEmpty()

Synopsis: #include <wcvector.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a vector object has any entries contained

in it.

Results: A TRUE value (non-zero) is returned if the vector object does not have any vector elements contained

within it. A FALSE (zero) result is returned if the vector contains at least one element.

See Also: entries

542 Vector Containers

WCPtrSortedVector<Type>::last(), WCPtrOrderedVector<Type>::last()

Synopsis: #include <wcvector.h>
public:
Type * last() const;

Semantics: The last public member function returns the last element in the vector. The element is not removed

from the vector.

If the vector is empty, one of two exceptions can be thrown. The empty_container exception is

thrown if it is enabled. Otherwise, if the index_range exception is enabled, it is thrown. If neither

exception is enabled, a first element of the vector is added with a NULL value.

Results: The last public member function returns the value of the last element in the vector.

See Also: first, removeLast, WCExcept::index_range, WCExcept::resize_required

Vector Containers 543

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::occurrencesOf()

Synopsis: #include <wcvector.h>
public:
int occurrencesOf(const Type *) const;

Semantics: The occurrencesOf public member function returns the number of elements contained in the vector

that are equivalent to the passed value. Note that comparisons are done on the objects pointed to, not

the pointers themselves. A linear search is used by the WCPtrOrderedVector class to find the

value. The WCPtrSortedVector class uses a binary search.

Results: The occurrencesOf public member function returns the number of elements equivalent to the

passed value.

See Also: contains, find, index, operator [], removeAll

544 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::operator []()

Synopsis: #include <wcvector.h>
public:
Type * & operator [](int);
Type * const & operator [](int) const;

Semantics: operator [] is the vector index operator. A reference to the object stored in the vector at the given

index is returned. If a constant vector is indexed, a reference to a constant element is returned.

The append, insert, insertAt and prepend member functions are used to insert a new element

into a vector, and the remove, removeAll, removeAt, removeFirst and removeLast
member functions remove elements. The index operator cannot be used to change the number of entries

in the vector. Searches may be performed using the find and index member functions.

If the vector is empty, one of two exceptions can be thrown. The empty_container exception is

thrown if it is enabled. Otherwise, if the index_range exception is enabled, it is thrown. If neither

exception is enabled, a first element of the vector is added with a NULL value. This element is added

so that a reference to a valid vector element can be returned.

If the index value is negative and the index_range exception is enabled, the exception is thrown.

An attempt to index an element with index greater than or equal to the number of entries in the vector

will also cause the index_range exception to be thrown if enabled. If the exception is not enabled,

attempting to index a negative element will index the first element in the vector, and attempting to index

an element after the last entry will index the last element.

Care must be taken when using the WCPtrSortedVector class not to change the ordering of the

vector elements. The result returned by the index operator must not be assigned to or modified in such

a way that it is no longer equivalent (by Type’s equivalence operator) to the value inserted into the

vector. Failure to comply may cause lookups to work incorrectly, since the binary search algorithm

assumes elements are in sorted order.

Results: The operator [] public member function returns a reference to the element at the given index. If

the index is invalid, a reference to the closest valid element is returned. The result of the non-constant

index operator may be assigned to.

See Also: append, find, first, index, insert, insertAt, isEmpty, last, prepend, remove,

removeAt, removeAll, removeFirst, removeLast, WCExcept::empty_container,
WCExcept::index_range

Vector Containers 545

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::operator =()

Synopsis: #include <wcvector.h>
public:
WCPtrOrderedVector & WCPtrOrderedVector::operator =(const
WCPtrOrderedVector &);
WCPtrSortedVector & WCPtrSortedVector::operator =(const
WCPtrSortedVector &);

Semantics: The operator = public member function is the assignment operator for the class. The left hand side

vector is first cleared using the clear member function, and then the right hand side vector is copied.

The left hand side vector is made to have the same length and growth amount as the right hand side (the

growth amount is the second argument passed to the right hand side vector constructor). All of the

vector elements and exception trap states are copied.

If the left hand side vector cannot be fully created, it will have zero length. The out_of_memory
exception is thrown if enabled in the right hand side vector.

Results: The operator = public member function assigns the left hand side vector to be a copy of the right

hand side.

See Also: clear, clearAndDestroy, WCExcept::out_of_memory

546 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::operator ==()

Synopsis: #include <wcvector.h>
public:
int WCPtrOrderedVector::operator ==(const WCPtrOrderedVector &)
const;
int WCPtrSortedVector::operator ==(const WCPtrSortedVector &)
const;

Semantics: The operator == public member function is the equivalence operator for the class. Two vector

objects are equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side vectors are the same

object. A FALSE (zero) value is returned otherwise.

Vector Containers 547

WCPtrOrderedVector<Type>::prepend()

Synopsis: #include <wcvector.h>
public:
int prepend(Type *);

Semantics: The prepend public member function inserts the passed element to be the first element in the vector.

All vector elements contained in the vector are copied up one index.

This function is not provided by the WCPtrSortedVector class, since all elements must be inserted

in sorted order by the insert member function.

Several different results can occur if the vector is not large enough for the new element. If the

resize_required exception is enabled, the exception is thrown. If the exception is not enabled,

the prepend fails if the amount the vector is to be grown (the second parameter to the constructor) is

zero(0). Otherwise, the vector is automatically grown by the number of elements specified to the

constructor, using the resize member function. If resize fails, the element is not inserted to the

vector and the out_of_memory exception is thrown, if enabled.

Results: The prepend public member function prepends an element to the WCPtrOrderedVector object.

A TRUE (non-zero) value is returned if the insert is successful. If the insert fails, a FALSE (zero) value

is returned.

See Also: append, insert, insertAt, WCExcept::out_of_memory,
WCExcept::resize_required

548 Vector Containers

WCPtrSortedVector<Type>::remove(), WCPtrOrderedVector<Type>::remove()

Synopsis: #include <wcvector.h>
public:
Type * remove(const Type *);

Semantics: The remove public member function removes the first element in the vector which is equivalent to the

passed value. Note that comparisons are done on the objects pointed to, not the pointers themselves.

All vector elements stored after the removed elements are copied down one index.

A linear search is used by the WCPtrOrderedVector class to find the element being removed. The

WCPtrSortedVector class uses a binary search.

Results: The remove public member function removes the first element in the vector which is equivalent to the

passed value. The removed pointer is returned. If the vector did not contain an equivalent value,

NULL(0) is returned.

See Also: clear, clearAndDestroy, find, removeAll, removeAt, removeFirst, removeLast

Vector Containers 549

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::removeAll()

Synopsis: #include <wcvector.h>
public:
unsigned removeAll(const Type *);

Semantics: The removeAll public member function removes all elements in the vector which are equivalent to

the passed value. Note that comparisons are done on the objects pointed to, not the pointers themselves.

All vector elements stored after the removed elements are copied down one or more indexes to take the

place of the removed elements.

A linear search is used by the WCPtrOrderedVector class to find the elements being removed. The

WCPtrSortedVector class uses a binary search.

Results: The removeAll public member function removes all elements in the vector which are equivalent to

the passed value. The number of elements removed is returned.

See Also: clear, clearAndDestroy, find, occurrencesOf, remove, removeAt, removeFirst,
removeLast

550 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::removeAt()

Synopsis: #include <wcvector.h>
public:
Type * removeAt(int);

Semantics: The removeAt public member function removes the element at the given index. All vector elements

stored after the removed elements are copied down one index.

If the vector is empty and the empty_container exception is enabled, the exception is thrown.

If an attempt to remove an element with a negative index is made and the index_range exception is

enabled, the exception is thrown. If the exception is not enabled, the first element is removed from the

vector. Attempting to remove an element with index greater or equal to the number of entries in the

vector also causes the index_range exception to be thrown if enabled. The last element in the vector

is removed if the exception is not enabled.

Results: The removeAt public member function removes the element with the given index. If the index is

invalid, the closest element to the given index is removed. The removed pointer is returned. If the

vector was empty, NULL(0) is returned.

See Also: clear, clearAndDestroy, insertAt, operator [], remove, removeAll,

removeFirst, removeLast

Vector Containers 551

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::removeFirst()

Synopsis: #include <wcvector.h>
public:
Type * removeFirst();

Semantics: The removeFirst public member function removes the first element from a vector. All other vector

elements are copied down one index.

If the vector is empty and the empty_container exception is enabled, the exception is thrown.

Results: The removeFirst public member function removes the first element from the vector. The removed

pointer is returned. If the vector was empty, NULL(0) is returned.

See Also: clear, clearAndDestroy, first, remove, removeAt, removeAll, removeLast

552 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::removeLast()

Synopsis: #include <wcvector.h>
public:
Type * removeLast();

Semantics: The removeLast public member function removes the last element from a vector. If the vector is

empty and the empty_container exception is enabled, the exception is thrown.

Results: The removeLast public member function removes the last element from the vector. The removed

pointer is returned. If the vector was empty, NULL(0) is returned.

See Also: clear, clearAndDestroy, last, remove, removeAt, removeAll, removeFirst

Vector Containers 553

WCPtrSortedVector<Type>::resize(), WCPtrOrderedVector<Type>::resize()

Synopsis: #include <wcvector.h>
public:
int resize(size_t new_size);

Semantics: The resize public member function is used to change the vector size to be able to store new_size

elements. If new_size is larger than the previous vector size, all elements are copied into the newly

sized vector, and new elements can be added using the append, insert, insertAt, and prepend
member functions. If the vector is resized to a smaller size, the first new_size elements are copied (all

vector elements if the vector contained new_size or fewer elements). The objects pointed to by the

remaining elements are not deleted.

If the resize cannot be performed and the out_of_memory exception is enabled, the exception is

thrown.

Results: The vector is resized to new_size. A TRUE value (non-zero) is returned if the resize is successful. A

FALSE (zero) result is returned if the resize fails.

See Also: WCExcept::out_of_memory

554 Vector Containers

WCPtrVector<Type>

Declared: wcvector.h

The WCPtrVector<Type> class is a templated class used to store objects in a vector. Vectors are

similar to arrays, but vectors perform bounds checking and can be resized. Elements are inserted into

the vector by assigning to a vector index.

The WCPtrOrderedVector and WCPtrSortedVector classes are also available. They provide a

more abstract view of the vector and additional functionality, including finding and removing elements.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type pointed to by the pointers stored in the vector.

The WCExcept class is a base class of the WCPtrVector<Type> class and provides the

exceptions member function. This member function controls the exceptions which can be thrown

by the WCPtrVector<Type> object. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Type

The WCPtrVector<Type> class requires nothing from Type.

Public Member Functions

The following member functions are declared in the public interface:

WCPtrVector(size_t = 0);
WCPtrVector(size_t, const Type *);
WCPtrVector(const WCPtrVector &);
virtual ~WCPtrVector();
void clear();
void clearAndDestroy();
size_t length() const;
int resize(size_t);

Public Member Operators

The following member operators are declared in the public interface:

Type * & operator [](int);
Type * const & operator [](int) const;
WCPtrVector & operator =(const WCPtrVector &);
int operator ==(const WCPtrVector &) const;

Vector Containers 555

WCPtrVector<Type>::WCPtrVector()

Synopsis: #include <wcvector.h>
public:
WCPtrVector(size_t = 0);

Semantics: The public WCPtrVector<Type> constructor creates a WCPtrVector<Type> object able to store

the number of elements specified in the optional parameter, which defaults to zero. All vector elements

are initialized to NULL(0).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCPtrVector<Type> constructor creates an initialized WCPtrVector<Type> object

with the specified length.

See Also: WCPtrVector<Type>, ~WCPtrVector<Type>

556 Vector Containers

WCPtrVector<Type>::WCPtrVector()

Synopsis: #include <wcvector.h>
public:
WCPtrVector(size_t, const Type *);

Semantics: The public WCPtrVector<Type> constructor creates a WCPtrVector<Type> object able to store

the number of elements specified by the first parameter. All vector elements are initialized to the

pointer value given by the second parameter.

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCPtrVector<Type> constructor creates an initialized WCPtrVector<Type> object

with the specified length and elements set to the given value.

See Also: WCPtrVector<Type>, ~WCPtrVector<Type>

Vector Containers 557

WCPtrVector<Type>::WCPtrVector()

Synopsis: #include <wcvector.h>
public:
WCPtrVector(const WCPtrVector &);

Semantics: The public WCPtrVector<Type> constructor is the copy constructor for the

WCPtrVector<Type> class. The new vector is created with the same length as the given vector. All

of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out_of_memory exception is

thrown if enabled in the vector being copied.

Results: The public WCPtrVector<Type> constructor creates a WCPtrVector<Type> object which is a

copy of the passed vector.

See Also: operator =, WCExcept::out_of_memory

558 Vector Containers

WCPtrVector<Type>::~WCPtrVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCPtrVector();

Semantics: The public ~WCPtrVector<Type> destructor is the destructor for the WCPtrVector<Type> class

. If the vector is not length zero and the not_empty exception is enabled, the exception is thrown.

Otherwise, the vector elements are cleared using the clear member function. The objects which the

vector elements point to are not deleted unless the clearAndDestroy member function is explicitly

called before the destructor is called. The call to the public ~WCPtrVector<Type> destructor is

inserted implicitly by the compiler at the point where the WCPtrVector<Type> object goes out of

scope.

Results: The public ~WCPtrVector<Type> destructor destroys an WCPtrVector<Type> object.

See Also: clear, clearAndDestroy, WCExcept::not_empty

Vector Containers 559

WCPtrVector<Type>::clear()

Synopsis: #include <wcvector.h>
public:
void clear();

Semantics: The clear public member function is used to clear the vector so that it is of zero length. Objects

pointed to by the vector elements are not deleted. The vector object is not destroyed and re-created by

this function, so the object destructor is not invoked.

Results: The clear public member function clears the vector to have zero length and no vector elements.

See Also: ~WCPtrVector<Type>, clearAndDestroy, operator =

560 Vector Containers

WCPtrVector<Type>::clearAndDestroy()

Synopsis: #include <wcvector.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the vector to have zero length and

delete the objects pointed to by the vector elements. The vector object is not destroyed and re-created

by this function, so the vector object destructor is not invoked.

Results: The clearAndDestroy public member function clears the vector by deleting the objects pointed to

by the vector elements and makes the vector zero length.

See Also: clear

Vector Containers 561

WCPtrVector<Type>::length()

Synopsis: #include <wcvector.h>
public:
size_t length() const;

Semantics: The length public member function is used to find the number of elements which can be stored in the

WCPtrVector<Type> object.

Results: The length public member function returns the length of the vector.

See Also: resize

562 Vector Containers

WCPtrVector<Type>::operator []()

Synopsis: #include <wcvector.h>
public:
Type * & operator [](int);
Type * const & operator [](int) const;

Semantics: operator [] is the vector index operator. A reference to the object stored in the vector at the given

index is returned. If a constant vector is indexed, a reference to a constant element is returned. The

index operator of a non-constant vector is the only way to insert an element into the vector.

If an attempt to access an element with index greater than or equal to the length of a non-constant vector

is made and the resize_required exception is enabled, the exception is thrown. If the exception is

not enabled, the vector is automatically resized using the resize member function to have length the

index value plus one. New vector elements are initialized to NULL(0). If the resize failed, and the

out_of_memory exception is enabled, the exception is thrown. If the exception is not enabled and

the resize failed, the last element is indexed (a new element if the vector was zero length). If a negative

value is used to index the non-constant vector and the index_range exception is enabled, the

exception is thrown. If the exception is not enabled and the vector is empty, the resize_required
exception may be thrown.

An attempt to index an empty constant vector may cause one of two exceptions to be thrown. If the

empty_container exception is enabled, it is thrown. Otherwise, the index_range exception is

thrown, if enabled. If neither exception is enabled, a first vector element is added and indexed (so that a

reference to a valid element can be returned).

Indexing with a negative value or a value greater than or equal to the length of a constant vector causes

the index_range exception to be thrown, if enabled.

Results: The operator [] public member function returns a reference to the element at the given index. If

the index is invalid, a reference to the closest valid element is returned. The result of the non-constant

index operator may be assigned to.

See Also: resize, WCExcept::empty_container, WCExcept::index_range,

WCExcept::out_of_memory, WCExcept::resize_required

Vector Containers 563

WCPtrVector<Type>::operator =()

Synopsis: #include <wcvector.h>
public:
WCPtrVector & operator =(const WCPtrVector &);

Semantics: The operator = public member function is the assignment operator for the WCPtrVector<Type>
class. The left hand side vector is first cleared using the clear member function, and then the right

hand side vector is copied. The left hand side vector is made to have the same length as the right hand

side. All of the vector elements and exception trap states are copied.

If the left hand side vector cannot be fully created, it will have zero length. The out_of_memory
exception is thrown if enabled in the right hand side vector.

Results: The operator = public member function assigns the left hand side vector to be a copy of the right

hand side.

See Also: clear, clearAndDestroy, WCExcept::out_of_memory

564 Vector Containers

WCPtrVector<Type>::operator ==()

Synopsis: #include <wcvector.h>
public:
int operator ==(const WCPtrVector &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCPtrVector<Type> class. Two vector objects are equivalent if they are the same object and share

the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side vectors are the same

object. A FALSE (zero) value is returned otherwise.

Vector Containers 565

WCPtrVector<Type>::resize()

Synopsis: #include <wcvector.h>
public:
int resize(size_t new_size);

Semantics: The resize public member function is used to change the vector size to be able to store new_size

elements. If new_size is larger than the previous vector size, all elements will be copied into the newly

sized vector, and new elements are initialized to NULL(0). If the vector is resized to a smaller size, the

first new_size elements are copied. The objects pointed to by the remaining elements are not deleted.

If the resize cannot be performed and the out_of_memory exception is enabled, the exception is

thrown.

Results: The vector is resized to new_size. A TRUE value (non-zero) is returned if the resize is successful. A

FALSE (zero) result is returned if the resize fails.

See Also: WCExcept::out_of_memory

566 Vector Containers

WCValSortedVector<Type>, WCValOrderedVector<Type>

Declared: wcvector.h

The WCValSortedVector<Type> and WCValOrderedVector<Type> classes are templated

classes used to store objects in a vector. Ordered and Sorted vectors are powerful arrays which can be

resized and provide an abstract interface to insert, find and remove elements. An ordered vector

maintains the order in which elements are added, and allows more than one copy of an element that is

equivalent. The sorted vector allow only one copy of an equivalent element, and inserts them in a

sorted order. The sorted vector is less efficient when inserting elements, but can provide a faster

retrieval time.

Elements cannot be inserted into these vectors by assigning to a vector index. Vectors automatically

grow when necessary to insert an element if the resize_required exception is not enabled.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type of the elements stored in the vector.

Values are copied into the vector, which could be undesirable if the stored objects are complicated and

copying is expensive. Value vectors should not be used to store objects of a base class if any derived

types of different sizes would be stored in the vector, or if the destructor for a derived class must be

called.

The WCValOrderedVector class stores elements in the order which they are inserted using the

insert, append, prepend and insertAt member functions. Linear searches are performed to

locate entries, and the less than operator is not required.

The WCValSortedVector class stores elements in ascending order. This requires that Type
provides a less than operator. Insertions are more expensive than inserting or appending into an ordered

vector, since entries must be moved to make room for the new element. A binary search is used to

locate elements in a sorted vector, making searches quicker than in the ordered vector.

Care must be taken when using the WCValSortedVector class not to change the ordering of the

vector elements. The result returned by the index operator must not be assigned to or modified in such

a way that it is no longer equivalent to the value inserted into the vector. Lookups assume elements are

in sorted order.

The WCValVector class is also available. It provides a resizable and boundary safe vector similar to

standard arrays.

The WCExcept class is a base class of the WCValSortedVector<Type> and

WCValOrderedVector<Type> classes and provides the exceptions member function. This

member function controls the exceptions which can be thrown by the WCValSortedVector<Type>
and WCValOrderedVector<Type> objects. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Type

Both the WCValSortedVector<Type> and WCValOrderedVector<Type> classes require

Type to have:

A default constructor (Type::Type()).

A well defined copy constructor (Type::Type(const Type &)).

A well defined assignment operator

Vector Containers 567

WCValSortedVector<Type>, WCValOrderedVector<Type>

(Type & operator =(const Type &)).

The following override of operator new() if Type overrides the global operator new():

void * operator new(size_t, void *ptr) { return(ptr); }

A well defined equivalence operator with constant parameters

(int operator ==(const Type &) const).

Additionally the WCValSortedVector class requires Type to have:

A well defined less than operator with constant parameters

(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCValOrderedVector(size_t = WCDEFAULT_VECTOR_LENGTH, unsigned =
WCDEFAULT_VECTOR_RESIZE_GROW);
WCValOrderedVector(const WCValOrderedVector &);
virtual ~WCValOrderedVector();
WCValSortedVector(size_t = WCDEFAULT_VECTOR_LENGTH, unsigned =
WCDEFAULT_VECTOR_RESIZE_GROW);
WCValSortedVector(const WCValSortedVector &);
virtual ~WCValSortedVector();
void clear();
int contains(const Type &) const;
unsigned entries() const;
int find(const Type &, Type &) const;
Type first() const;
int index(const Type &) const;
int insert(const Type &);
int isEmpty() const;
Type last() const;
int occurrencesOf(const Type &) const;
int remove(const Type &);
unsigned removeAll(const Type &);
int removeAt(int);
int removeFirst();
int removeLast();
int resize(size_t);

The following public member functions are available for the WCValOrderedVector class only:

int append(const Type &);
int insertAt(int, const Type &);
int prepend(const Type &);

Public Member Operators

The following member operators are declared in the public interface:

Type & operator [](int);
const Type & operator [](int) const;
WCValOrderedVector & WCValOrderedVector::operator =(const
WCValOrderedVector &);

568 Vector Containers

WCValSortedVector<Type>, WCValOrderedVector<Type>

WCValSortedVector & WCValSortedVector::operator =(const
WCValSortedVector &);
int WCValOrderedVector::operator ==(const WCValOrderedVector &)
const;
int WCValSortedVector::operator ==(const WCValSortedVector &)
const;

Vector Containers 569

WCValOrderedVector<Type>::WCValOrderedVector()

Synopsis: #include <wcvector.h>
public:
WCValOrderedVector(size_t = WCDEFAULT_VECTOR_LENGTH,
unsigned = WCDEFAULT_VECTOR_RESIZE_GROW);

Semantics: The WCValOrderedVector<Type> constructor creates an empty WCValOrderedVector object

able to store the number of elements specified in the first optional parameter, which defaults to the

constant WCDEFAULT_VECTOR_LENGTH (currently defined as 10). If the resize_required
exception is not enabled, then the second optional parameter is used to specify the value to increase the

vector size when an element is inserted into a full vector. If zero(0) is specified as the second

parameter, any attempt to insert into a full vector fails. This parameter defaults to the constant

WCDEFAULT_VECTOR_RESIZE_GROW (currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCValOrderedVector<Type> constructor creates an empty initialized

WCValOrderedVector object.

See Also: WCExcept::resize_required

570 Vector Containers

WCValOrderedVector<Type>::WCValOrderedVector()

Synopsis: #include <wcvector.h>
public:
WCValOrderedVector(const WCValOrderedVector &);

Semantics: The WCValOrderedVector<Type> constructor is the copy constructor for the

WCValOrderedVector class. The new vector is created with the same length and resize value as the

passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out_of_memory exception is

thrown if enabled in the vector being copied.

Results: The WCValOrderedVector<Type> creates a WCValOrderedVector object which is a copy of

the passed vector.

See Also: operator =, WCExcept::out_of_memory

Vector Containers 571

WCValOrderedVector<Type>::~WCValOrderedVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCValOrderedVector();

Semantics: The WCValOrderedVector<Type> destructor is the destructor for the WCValOrderedVector
class. If the vector is not length zero and the not_empty exception is enabled, the exception is

thrown. Otherwise, the vector entries are cleared using the clear member function. The call to the

WCValOrderedVector<Type> destructor is inserted implicitly by the compiler at the point where

the WCValOrderedVector object goes out of scope.

Results: The WCValOrderedVector<Type> destructor destroys an WCValOrderedVector object.

See Also: clear, WCExcept::not_empty

572 Vector Containers

WCValSortedVector<Type>::WCValSortedVector()

Synopsis: #include <wcvector.h>
public:
WCValSortedVector(size_t = WCDEFAULT_VECTOR_LENGTH,
unsigned = WCDEFAULT_VECTOR_RESIZE_GROW);

Semantics: The WCValSortedVector<Type> constructor creates an empty WCValSortedVector object

able to store the number of elements specified in the first optional parameter, which defaults to the

constant WCDEFAULT_VECTOR_LENGTH (currently defined as 10). If the resize_required
exception is not enabled, then the second optional parameter is used to specify the value to increase the

vector size when an element is inserted into a full vector. If zero(0) is specified as the second

parameter, any attempt to insert into a full vector fails. This parameter defaults to the constant

WCDEFAULT_VECTOR_RESIZE_GROW (currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCValSortedVector<Type> constructor creates an empty initialized

WCValSortedVector object.

See Also: WCExcept::resize_required

Vector Containers 573

WCValSortedVector<Type>::WCValSortedVector()

Synopsis: #include <wcvector.h>
public:
WCValSortedVector(const WCValSortedVector &);

Semantics: The WCValSortedVector<Type> constructor is the copy constructor for the

WCValSortedVector class. The new vector is created with the same length and resize value as the

passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out_of_memory exception is

thrown if enabled in the vector being copied.

Results: The WCValSortedVector<Type> constructor creates a WCValSortedVector object which is a

copy of the passed vector.

See Also: operator =, WCExcept::out_of_memory

574 Vector Containers

WCValSortedVector<Type>::~WCValSortedVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCValSortedVector();

Semantics: The WCValSortedVector<Type> destructor is the destructor for the WCValSortedVector
class. If the vector is not length zero and the not_empty exception is enabled, the exception is

thrown. Otherwise, the vector entries are cleared using the clear member function. The call to the

WCValSortedVector<Type> destructor is inserted implicitly by the compiler at the point where

the WCValSortedVector object goes out of scope.

Results: The WCValSortedVector<Type> destructor destroys an WCValSortedVector object.

See Also: clear, WCExcept::not_empty

Vector Containers 575

WCValOrderedVector<Type>::append()

Synopsis: #include <wcvector.h>
public:
int append(const Type &);

Semantics: The append public member function appends the passed element to be the last element in the vector.

The data stored in the vector is a copy of the data passed as a parameter. This member function has the

same semantics as the WCValOrderedVector::insert member function.

This function is not provided by the WCValSortedVector class, since all elements must be inserted

in sorted order by the insert member function.

Several different results can occur if the vector is not large enough for the new element. If the

resize_required exception is enabled, the exception is thrown. If the exception is not enabled,

the append fails if the amount the vector is to be grown (the second parameter to the constructor) is

zero(0). Otherwise, the vector is automatically grown by the number of elements specified to the

constructor, using the resize member function. If resize fails, the element is not appended to the

vector and the out_of_memory exception is thrown, if enabled.

Results: The append public member function appends an element to the WCValOrderedVector object. A

TRUE (non-zero) value is returned if the append is successful. If the append fails, a FALSE (zero)

value is returned.

See Also: insert, insertAt, prepend, WCExcept::out_of_memory,
WCExcept::resize_required

576 Vector Containers

WCValSortedVector<Type>::clear(), WCValOrderedVector<Type>::clear()

Synopsis: #include <wcvector.h>
public:
void clear();

Semantics: The clear public member function is used to clear the vector so that it contains no entries, and is zero

size. Elements stored in the vector are destroyed using Type’s destructor. The vector object is not

destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the vector to have zero length and no entries.

See Also: ~WCValOrderedVector, operator =

Vector Containers 577

WCValSortedVector<Type>,WCValOrderedVector<Type>::contains()

Synopsis: #include <wcvector.h>
public:
int contains(const Type &) const;

Semantics: The contains public member function is used to determine if a value is contained by a vector. A

linear search is used by the WCValOrderedVector class to find the value. The

WCValSortedVector class uses a binary search.

Results: The contains public member function returns a TRUE (non-zero) value if the element is found in the

vector. A FALSE (zero) value is returned if the vector does not contain the element.

See Also: index, find

578 Vector Containers

WCValSortedVector<Type>::entries(), WCValOrderedVector<Type>::entries()

Synopsis: #include <wcvector.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to find the number of elements which are stored in the

vector.

Results: The entries public member function returns the number of elements in the vector.

See Also: isEmpty

Vector Containers 579

WCValSortedVector<Type>::find(), WCValOrderedVector<Type>::find()

Synopsis: #include <wcvector.h>
public:
int find(const Type &, Type &) const;

Semantics: The find public member function is used to find an element equivalent to the first argument. The

WCValOrderedVector class uses a linear search to find the element, and the

WCValSortedVector class uses a binary search.

Results: If an equivalent element is found, a TRUE (non-zero) value is returned, and the second parameter is

assigned the first equivalent value. A FALSE (zero) value is returned and the second parameter is

unchanged if the element is not in the vector.

See Also: contains, first, index, last, occurrencesOf, remove

580 Vector Containers

WCValSortedVector<Type>::first(), WCValOrderedVector<Type>::first()

Synopsis: #include <wcvector.h>
public:
Type first() const;

Semantics: The first public member function returns the first element in the vector. The element is not removed

from the vector.

If the vector is empty, one of two exceptions can be thrown. The empty_container exception is

thrown if it is enabled. Otherwise, if the index_range exception is enabled, it is thrown. If neither

exception is enabled, a first element of the vector is added with a default value.

Results: The first public member function returns the value of the first element in the vector.

See Also: last, removeFirst, WCExcept::index_range, WCExcept::resize_required

Vector Containers 581

WCValSortedVector<Type>::index(), WCValOrderedVector<Type>::index()

Synopsis: #include <wcvector.h>
public:
int index(const Type &) const;

Semantics: The index public member function is used find the index of the first element equivalent to the passed

element. A linear search is used by the WCValOrderedVector class to find the element. The

WCValSortedVector class uses a binary search.

Results: The index public member function returns the index of the first element equivalent to the parameter.

If the passed value is not contained in the vector, negative one (-1) is returned.

See Also: contains, find, insertAt, operator [], removeAt

582 Vector Containers

WCValSortedVector<Type>::insert(), WCValOrderedVector<Type>::insert()

Synopsis: #include <wcvector.h>
public:
int insert(const Type &);

Semantics: The insert public member function inserts the value into the vector. The data stored in the vector is a

copy of the data passed as a parameter.

The WCValOrderedVector::insert function inserts the value as the last element of the vector,

and has the same semantics as the WCValOrderedVector::append member function.

A binary search is performed to determine where the value should be inserted for the

WCValSortedVector::insert function. Any elements greater than the inserted value are copied

up one index (using Type’s assignment operator), so that the new element is after all elements with

value less than or equal to it.

Several different results can occur if the vector is not large enough for the new element. If the

resize_required exception is enabled, the exception is thrown. If the exception is not enabled,

the insert fails if the amount the vector is to be grown (the second parameter to the constructor) is

zero(0). Otherwise, the vector is automatically grown by the number of elements specified to the

constructor, using the resize member function. If resize fails, the element is not inserted to the

vector and the out_of_memory exception is thrown, if enabled.

Results: The insert public member function inserts an element in to the vector. A TRUE (non-zero) value is

returned if the insert is successful. If the insert fails, a FALSE (zero) value is returned.

See Also: append, insertAt, prepend, WCExcept::out_of_memory,
WCExcept::resize_required

Vector Containers 583

WCValOrderedVector<Type>::insertAt()

Synopsis: #include <wcvector.h>
public:
int insertAt(int, const Type &);

Semantics: The insertAt public member function inserts the second argument into the vector before the element

at index given by the first argument. If the passed index is equal to the number of entries in the vector,

the new value is appended to the vector as the last element. The data stored in the vector is a copy of

the data passed as a parameter. All vector elements with indexes greater than or equal to the first

parameter are copied (using Type’s assignment operator) up one index.

This function is not provided by the WCValSortedVector class, since all elements must be inserted

in sorted order by the insert member function.

If the passed index is negative or greater than the number of entries in the vector and the

index_range exception is enabled, the exception is thrown. If the exception is not enabled, the new

element is inserted as the first element when the index is negative, or as the last element when the index

is too large.

Several different results can occur if the vector is not large enough for the new element. If the

resize_required exception is enabled, the exception is thrown. If the exception is not enabled,

the insert fails if the amount the vector is to be grown (the second parameter to the constructor) is

zero(0). Otherwise, the vector is automatically grown by the number of elements specified to the

constructor, using the resize member function. If resize fails, the element is not inserted into the

vector and the out_of_memory exception is thrown, if enabled.

Results: The insertAt public member function inserts an element into the WCValOrderedVector object

before the element at the given index. A TRUE (non-zero) value is returned if the insert is successful.

If the insert fails, a FALSE (zero) value is returned.

See Also: append, insert, prepend, operator [], removeAt, WCExcept::index_range,

WCExcept::out_of_memory, WCExcept::resize_required

584 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::isEmpty()

Synopsis: #include <wcvector.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a vector object has any entries contained

in it.

Results: A TRUE value (non-zero) is returned if the vector object does not have any vector elements contained

within it. A FALSE (zero) result is returned if the vector contains at least one element.

See Also: entries

Vector Containers 585

WCValSortedVector<Type>::last(), WCValOrderedVector<Type>::last()

Synopsis: #include <wcvector.h>
public:
Type last() const;

Semantics: The last public member function returns the last element in the vector. The element is not removed

from the vector.

If the vector is empty, one of two exceptions can be thrown. The empty_container exception is

thrown if it is enabled. Otherwise, if the index_range exception is enabled, it is thrown. If neither

exception is enabled, a first element of the vector is added with a default value.

Results: The last public member function returns the value of the last element in the vector.

See Also: first, removeLast, WCExcept::index_range, WCExcept::resize_required

586 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::occurrencesOf()

Synopsis: #include <wcvector.h>
public:
int occurrencesOf(const Type &) const;

Semantics: The occurrencesOf public member function returns the number of elements contained in the vector

that are equivalent to the passed value. A linear search is used by the WCValOrderedVector class

to find the value. The WCValSortedVector class uses a binary search.

Results: The occurrencesOf public member function returns the number of elements equivalent to the

passed value.

See Also: contains, find, index, operator [], removeAll

Vector Containers 587

WCValSortedVector<Type>,WCValOrderedVector<Type>::operator []()

Synopsis: #include <wcvector.h>
public:
Type & operator [](int);
const Type & operator [](int) const;

Semantics: operator [] is the vector index operator. A reference to the object stored in the vector at the given

index is returned. If a constant vector is indexed, a reference to a constant element is returned.

The append, insert, insertAt and prepend member functions are used to insert a new element

into a vector, and the remove, removeAll, removeAt, removeFirst and removeLast
member functions remove elements. The index operator cannot be used to change the number of entries

in the vector. Searches may be performed using the find and index member functions.

If the vector is empty, one of two exceptions can be thrown. The empty_container exception is

thrown if it is enabled. Otherwise, if the index_range exception is enabled, it is thrown. If neither

exception is enabled, a first element of the vector is added with a default value. This element is added

so that a reference to a valid vector element can be returned.

If the index value is negative and the index_range exception is enabled, the exception is thrown.

An attempt to index an element with index greater than or equal to the number of entries in the vector

will also cause the index_range exception to be thrown if enabled. If the exception is not enabled,

attempting to index a negative element will index the first element in the vector, and attempting to index

an element after the last entry will index the last element.

Care must be taken when using the WCValSortedVector class not to change the ordering of the

vector elements. The result returned by the index operator must not be assigned to or modified in such

a way that it is no longer equivalent (by Type’s equivalence operator) to the value inserted into the

vector. Failure to comply may cause lookups to work incorrectly, since the binary search algorithm

assumes elements are in sorted order.

Results: The operator [] public member function returns a reference to the element at the given index. If

the index is invalid, a reference to the closest valid element is returned. The result of the non-constant

index operator may be assigned to.

See Also: append, find, first, index, insert, insertAt, isEmpty, last, prepend, remove,

removeAt, removeAll, removeFirst, removeLast, WCExcept::empty_container,
WCExcept::index_range

588 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::operator =()

Synopsis: #include <wcvector.h>
public:
WCValOrderedVector & WCValOrderedVector::operator =(const
WCValOrderedVector &);
WCValSortedVector & WCValSortedVector::operator =(const
WCValSortedVector &);

Semantics: The operator = public member function is the assignment operator for the class. The left hand side

vector is first cleared using the clear member function, and then the right hand side vector is copied.

The left hand side vector is made to have the same length and growth amount as the right hand side (the

growth amount is the second argument passed to the right hand side vector constructor). All of the

vector elements and exception trap states are copied.

If the left hand side vector cannot be fully created, it will have zero length. The out_of_memory
exception is thrown if enabled in the right hand side vector.

Results: The operator = public member function assigns the left hand side vector to be a copy of the right

hand side.

See Also: clear, WCExcept::out_of_memory

Vector Containers 589

WCValSortedVector<Type>,WCValOrderedVector<Type>::operator ==()

Synopsis: #include <wcvector.h>
public:
int WCValOrderedVector::operator ==(const WCValOrderedVector &)
const;
int WCValSortedVector::operator ==(const WCValSortedVector &)
const;

Semantics: The operator == public member function is the equivalence operator for the class. Two vector

objects are equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side vectors are the same

object. A FALSE (zero) value is returned otherwise.

590 Vector Containers

WCValOrderedVector<Type>::prepend()

Synopsis: #include <wcvector.h>
public:
int prepend(const Type &);

Semantics: The prepend public member function inserts the passed element to be the first element in the vector.

The data stored in the vector is a copy of the data passed as a parameter. All vector elements contained

in the vector are copied (using Type’s assignment operator) up one index.

This function is not provided by the WCValSortedVector class, since all elements must be inserted

in sorted order by the insert member function.

Several different results can occur if the vector is not large enough for the new element. If the

resize_required exception is enabled, the exception is thrown. If the exception is not enabled,

the prepend fails if the amount the vector is to be grown (the second parameter to the constructor) is

zero(0). Otherwise, the vector is automatically grown by the number of elements specified to the

constructor, using the resize member function. If resize fails, the element is not inserted to the

vector and the out_of_memory exception is thrown, if enabled.

Results: The prepend public member function prepends an element to the WCValOrderedVector object.

A TRUE (non-zero) value is returned if the insert is successful. If the insert fails, a FALSE (zero) value

is returned.

See Also: append, insert, insertAt, WCExcept::out_of_memory,
WCExcept::resize_required

Vector Containers 591

WCValSortedVector<Type>::remove(), WCValOrderedVector<Type>::remove()

Synopsis: #include <wcvector.h>
public:
int remove(const Type &);

Semantics: The remove public member function removes the first element in the vector which is equivalent to the

passed value. All vector elements stored after the removed elements are copied (using Type’s
assignment operator) down one index.

A linear search is used by the WCValOrderedVector class to find the element being removed. The

WCValSortedVector class uses a binary search.

Results: The remove public member function removes the first element in the vector which is equivalent to the

passed value. A TRUE (non-zero) value is returned if an equivalent element was contained in the

vector and removed. If the vector did not contain an equivalent value, a FALSE (zero) value is

returned.

See Also: clear, find, removeAll, removeAt, removeFirst, removeLast

592 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::removeAll()

Synopsis: #include <wcvector.h>
public:
unsigned removeAll(const Type &);

Semantics: The removeAll public member function removes all elements in the vector which are equivalent to

the passed value. All vector elements stored after the removed elements are copied (using Type’s
assignment operator) down one or more indexes to take the place of the removed elements.

A linear search is used by the WCValOrderedVector class to find the elements being removed. The

WCValSortedVector class uses a binary search.

Results: The removeAll public member function removes all elements in the vector which are equivalent to

the passed value. The number of elements removed is returned.

See Also: clear, find, occurrencesOf, remove, removeAt, removeFirst, removeLast

Vector Containers 593

WCValSortedVector<Type>,WCValOrderedVector<Type>::removeAt()

Synopsis: #include <wcvector.h>
public:
int removeAt(int);

Semantics: The removeAt public member function removes the element at the given index. All vector elements

stored after the removed elements are copied (using Type’s assignment operator) down one index.

If the vector is empty and the empty_container exception is enabled, the exception is thrown.

If an attempt to remove an element with a negative index is made and the index_range exception is

enabled, the exception is thrown. If the exception is not enabled, the first element is removed from the

vector. Attempting to remove an element with index greater or equal to the number of entries in the

vector also causes the index_range exception to be thrown if enabled. The last element in the vector

is removed if the exception is not enabled.

Results: The removeAt public member function removes the element with the given index. If the index is

invalid, the closest element to the given index is removed. A TRUE (non-zero) value is returned if an

element was removed. If the vector was empty, FALSE (zero) value is returned.

See Also: clear, insertAt, operator [], remove, removeAll, removeFirst, removeLast

594 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::removeFirst()

Synopsis: #include <wcvector.h>
public:
int removeFirst();

Semantics: The removeFirst public member function removes the first element from a vector. All other vector

elements are copied (using Type’s assignment operator) down one index.

If the vector is empty and the empty_container exception is enabled, the exception is thrown.

Results: The removeFirst public member function removes the first element from the vector. A TRUE

(non-zero) value is returned if an element was removed. If the vector was empty, FALSE (zero) value

is returned.

See Also: clear, first, remove, removeAt, removeAll, removeLast

Vector Containers 595

WCValSortedVector<Type>,WCValOrderedVector<Type>::removeLast()

Synopsis: #include <wcvector.h>
public:
int removeLast();

Semantics: The removeLast public member function removes the last element from a vector. If the vector is

empty and the empty_container exception is enabled, the exception is thrown.

Results: The removeLast public member function removes the last element from the vector. A TRUE

(non-zero) value is returned if an element was removed. If the vector was empty, FALSE (zero) value

is returned.

See Also: clear, last, remove, removeAt, removeAll, removeFirst

596 Vector Containers

WCValSortedVector<Type>::resize(), WCValOrderedVector<Type>::resize()

Synopsis: #include <wcvector.h>
public:
int resize(size_t new_size);

Semantics: The resize public member function is used to change the vector size to be able to store new_size

elements. If new_size is larger than the previous vector size, all elements are copied (using Type’s
copy constructor) into the newly sized vector, and new elements can be added using the append,

insert, insertAt, and prepend member functions. If the vector is resized to a smaller size, the

first new_size elements are copied (all vector elements if the vector contained new_size or fewer

elements). The remaining elements are destroyed using Type’s destructor.

If the resize cannot be performed and the out_of_memory exception is enabled, the exception is

thrown.

Results: The vector is resized to new_size. A TRUE value (non-zero) is returned if the resize is successful. A

FALSE (zero) result is returned if the resize fails.

See Also: WCExcept::out_of_memory

Vector Containers 597

WCValVector<Type>

Declared: wcvector.h

The WCValVector<Type> class is a templated class used to store objects in a vector. Vectors are

similar to arrays, but vectors perform bounds checking and can be resized. Elements are inserted into

the vector by assigning to a vector index.

The WCValOrderedVector and WCValSortedVector classes are also available. They provide a

more abstract view of the vector and additional functionality, including finding and removing elements.

Values are copied into the vector, which could be undesirable if the stored objects are complicated and

copying is expensive. Value vectors should not be used to store objects of a base class if any derived

types of different sizes would be stored in the vector, or if the destructor for a derived class must be

called.

In the description of each member function, the text Type is used to indicate the template parameter

defining the type of the elements stored in the vector.

The WCExcept class is a base class of the WCValVector<Type> class and provides the

exceptions member function. This member function controls the exceptions which can be thrown

by the WCValVector<Type> object. No exceptions are enabled unless they are set by the

exceptions member function.

Requirements of Type

The WCValVector<Type> class requires Type to have:

A default constructor (Type::Type()).

A well defined copy constructor (Type::Type(const Type &)).

The following override of operator new() only if Type overrides the global operator new():

void * operator new(size_t, void *ptr) { return(ptr); }

Public Member Functions

The following member functions are declared in the public interface:

WCValVector(size_t = 0);
WCValVector(size_t, const Type &);
WCValVector(const WCValVector &);
virtual ~WCValVector();
void clear();
size_t length() const;
int resize(size_t);

Public Member Operators

The following member operators are declared in the public interface:

Type & operator [](int);
const Type & operator [](int) const;
WCValVector & operator =(const WCValVector &);
int operator ==(const WCValVector &) const;

598 Vector Containers

WCValVector<Type>::WCValVector()

Synopsis: #include <wcvector.h>
public:
WCValVector(size_t = 0);

Semantics: The public WCValVector<Type> constructor creates a WCValVector<Type> object able to store

the number of elements specified in the optional parameter, which defaults to zero. All vector elements

are initialized with Type’s default constructor.

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCValVector<Type> constructor creates an initialized WCValVector<Type> object

with the specified length.

See Also: WCValVector<Type>, ~WCValVector<Type>

Vector Containers 599

WCValVector<Type>::WCValVector()

Synopsis: #include <wcvector.h>
public:
WCValVector(size_t, const Type &);

Semantics: The public WCValVector<Type> constructor creates a WCValVector<Type> object able to store

the number of elements specified by the first parameter. All vector elements are initialized to the value

of the second parameter using Type’s copy constructor.

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCValVector<Type> constructor creates an initialized WCValVector<Type> object

with the specified length and elements set to the given value.

See Also: WCValVector<Type>, ~WCValVector<Type>

600 Vector Containers

WCValVector<Type>::WCValVector()

Synopsis: #include <wcvector.h>
public:
WCValVector(const WCValVector &);

Semantics: The public WCValVector<Type> constructor is the copy constructor for the

WCValVector<Type> class. The new vector is created with the same length as the given vector. All

of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out_of_memory exception is

thrown if enabled in the vector being copied.

Results: The public WCValVector<Type> constructor creates a WCValVector<Type> object which is a

copy of the passed vector.

See Also: operator =, WCExcept::out_of_memory

Vector Containers 601

WCValVector<Type>::~WCValVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCValVector();

Semantics: The public ~WCValVector<Type> destructor is the destructor for the WCValVector<Type> class

. If the vector is not length zero and the not_empty exception is enabled, the exception is thrown.

Otherwise, the vector elements are cleared using the clear member function. The call to the public

~WCValVector<Type> destructor is inserted implicitly by the compiler at the point where the

WCValVector<Type> object goes out of scope.

Results: The public ~WCValVector<Type> destructor destroys an WCValVector<Type> object.

See Also: clear, WCExcept::not_empty

602 Vector Containers

WCValVector<Type>::clear()

Synopsis: #include <wcvector.h>
public:
void clear();

Semantics: The clear public member function is used to clear the vector so that it is of zero length. Elements

stored in the vector are destroyed using Type’s destructor. The vector object is not destroyed and

re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the vector to have zero length and no vector elements.

See Also: ~WCValVector<Type>, operator =

Vector Containers 603

WCValVector<Type>::length()

Synopsis: #include <wcvector.h>
public:
size_t length() const;

Semantics: The length public member function is used to find the number of elements which can be stored in the

WCValVector<Type> object.

Results: The length public member function returns the length of the vector.

See Also: resize

604 Vector Containers

WCValVector<Type>::operator []()

Synopsis: #include <wcvector.h>
public:
Type & operator [](int);
const Type & operator [](int) const;

Semantics: operator [] is the vector index operator. A reference to the object stored in the vector at the given

index is returned. If a constant vector is indexed, a reference to a constant element is returned. The

index operator of a non-constant vector is the only way to insert an element into the vector.

If an attempt to access an element with index greater than or equal to the length of a non-constant vector

is made and the resize_required exception is enabled, the exception is thrown. If the exception is

not enabled, the vector is automatically resized using the resize member function to have length the

index value plus one. New vector elements are initialized using Type’s default constructor. If the

resize failed, and the out_of_memory exception is enabled, the exception is thrown. If the exception

is not enabled and the resize failed, the last element is indexed (a new element if the vector was zero

length). If a negative value is used to index the non-constant vector and the index_range exception

is enabled, the exception is thrown. If the exception is not enabled and the vector is empty, the

resize_required exception may be thrown.

An attempt to index an empty constant vector may cause one of two exceptions to be thrown. If the

empty_container exception is enabled, it is thrown. Otherwise, the index_range exception is

thrown, if enabled. If neither exception is enabled, a first vector element is added and indexed (so that a

reference to a valid element can be returned).

Indexing with a negative value or a value greater than or equal to the length of a constant vector causes

the index_range exception to be thrown, if enabled.

Results: The operator [] public member function returns a reference to the element at the given index. If

the index is invalid, a reference to the closest valid element is returned. The result of the non-constant

index operator may be assigned to.

See Also: resize, WCExcept::empty_container, WCExcept::index_range,

WCExcept::out_of_memory, WCExcept::resize_required

Vector Containers 605

WCValVector<Type>::operator =()

Synopsis: #include <wcvector.h>
public:
WCValVector & operator =(const WCValVector &);

Semantics: The operator = public member function is the assignment operator for the WCValVector<Type>
class. The left hand side vector is first cleared using the clear member function, and then the right

hand side vector is copied. The left hand side vector is made to have the same length as the right hand

side. All of the vector elements and exception trap states are copied.

If the left hand side vector cannot be fully created, it will have zero length. The out_of_memory
exception is thrown if enabled in the right hand side vector.

Results: The operator = public member function assigns the left hand side vector to be a copy of the right

hand side.

See Also: clear, WCExcept::out_of_memory

606 Vector Containers

WCValVector<Type>::operator ==()

Synopsis: #include <wcvector.h>
public:
int operator ==(const WCValVector &) const;

Semantics: The operator == public member function is the equivalence operator for the

WCValVector<Type> class. Two vector objects are equivalent if they are the same object and share

the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side vectors are the same

object. A FALSE (zero) value is returned otherwise.

Vector Containers 607

WCValVector<Type>::resize()

Synopsis: #include <wcvector.h>
public:
int resize(size_t new_size);

Semantics: The resize public member function is used to change the vector size to be able to store new_size

elements. If new_size is larger than the previous vector size, all elements will be copied (using

Type’s copy constructor) into the newly sized vector, and new elements are initialized with Type’s
default constructor. If the vector is resized to a smaller size, the first new_size elements are copied. The

remaining elements are destroyed using Type’s destructor.

If the resize cannot be performed and the out_of_memory exception is enabled, the exception is

thrown.

Results: The vector is resized to new_size. A TRUE value (non-zero) is returned if the resize is successful. A

FALSE (zero) result is returned if the resize fails.

See Also: WCExcept::out_of_memory

608 Vector Containers

18 Input/Output Classes

The input/output stream classes provide program access to the file system. In addition, various options for

formatting of output and reading of input are provided.

Input/Output Classes 609

filebuf

Declared: fstream.h

Derived from: streambuf

The filebuf class is derived from the streambuf class, and provides additional functionality

required to communicate with external files. Seek operations are supported when the underlying file

supports seeking. Both input and output operations may be performed using a filebuf object, again

when the underlying file supports read/write access.

filebuf objects are buffered by default, so the reserve area is allocated automatically unless one is

specified when the filebuf object is created. The get area and put area pointers operate as if they

were tied together. There is only one current position in a filebuf object.

The filebuf class allows only the get area or the put area, but not both, to be active at a time. This

follows from the capability of files opened for both reading and writing to have operations of each type

performed at arbitrary locations in the file. When writing is occurring, the characters are buffered in the

put area. If a seek or read operation is done, the put area must be flushed before the next operation in

order to ensure that the characters are written to the proper location in the file. Similarly, if reading is

occurring, characters are buffered in the get area. If a write operation is done, the get area must be

flushed and synchronized before the write operation in order to ensure the write occurs at the proper

location in the file. If a seek operation is done, the get area does not have to be synchronized, but is

discarded. When the get area is empty and a read is done, the underflow virtual member function

reads more characters and fills the get area again. When the put area is full and a write is done, the

overflow virtual member function writes the characters and makes the put area empty again.

C++ programmers who wish to use files without deriving new objects do not need to explicitly create or

use a filebuf object.

Public Data Members

The following data member is declared in the public interface. Its value is the default file protection

that is used when creating new files. It is primarily referenced as a default argument in member

functions.

static int const openprot;

Public Member Functions

The following member functions are declared in the public interface:

filebuf();
filebuf(filedesc);
filebuf(filedesc, char *, int);
~filebuf();
int is_open() const;
filedesc fd() const;
filebuf *attach(filedesc);
filebuf *open(char const *,
ios::openmode,
int = filebuf::openprot);
filebuf *close();
virtual int pbackfail(int);
virtual int overflow(int = EOF);
virtual int underflow();
virtual streambuf *setbuf(char *, int);

610 Input/Output Classes

filebuf

virtual streampos seekoff(streamoff,
ios::seekdir,
ios::openmode);
virtual int sync();

See Also: fstreambase, streambuf

Input/Output Classes 611

filebuf::attach()

Synopsis: #include <fstream.h>
public:
filebuf *filebuf::attach(filedesc hdl);

Semantics: The attach public member function connects an existing filebuf object to an open file via the

file’s descriptor or handle specified by hdl. If the filebuf object is already connected to a file, the

attach public member function fails. Otherwise, the attach public member function extracts

information from the file system to determine the capabilities of the file and hence the filebuf object

.

Results: The attach public member function returns a pointer to the filebuf object on success, otherwise

NULL is returned.

See Also: filebuf, fd, open

612 Input/Output Classes

filebuf::close()

Synopsis: #include <fstream.h>
public:
filebuf *filebuf::close();

Semantics: The close public member function disconnects the filebuf object from a connected file and closes

the file. Any buffered output is flushed before the file is closed.

Results: The close public member function returns a pointer to the filebuf object on success, otherwise

NULL is returned.

See Also: filebuf, fd, is_open

Input/Output Classes 613

filebuf::fd()

Synopsis: #include <fstream.h>
public:
filedesc filebuf::fd() const;

Semantics: The fd public member function queries the state of the filebuf object file handle.

Results: The fd public member function returns the file descriptor or handle of the file to which the filebuf
object is currently connected. If the filebuf object is not currently connected to a file, EOF is

returned.

See Also: filebuf::attach, is_open

614 Input/Output Classes

filebuf::filebuf()

Synopsis: #include <fstream.h>
public:
filebuf::filebuf();

Semantics: This form of the public filebuf constructor creates a filebuf object that is not currently connected

to any file. A call to the fd member function for this created filebuf object returns EOF, unless a

file is connected using the attach member function.

Results: The public filebuf constructor produces a filebuf object that is not currently connected to any

file.

See Also: ~filebuf, attach, open

Input/Output Classes 615

filebuf::filebuf()

Synopsis: #include <fstream.h>
public:
filebuf::filebuf(filedesc hdl);

Semantics: This form of the public filebuf constructor creates a filebuf object that is connected to an open

file. The file is specified via the hdl parameter, which is a file descriptor or handle.

This form of the public filebuf constructor is similar to using the default constructor, and calling the

attach member function. A call to the fd member function for this created filebuf object returns

hdl.

Results: The public filebuf constructor produces a filebuf object that is connected to hdl.

See Also: ~filebuf, attach, open

616 Input/Output Classes

filebuf::filebuf()

Synopsis: #include <fstream.h>
public:
filebuf::filebuf(filedesc hdl, char *buf, int len);

Semantics: This form of the public filebuf constructor creates a filebuf object that is connected to an open

file and that uses the buffer specified by buf and len. The file is specified via the hdl parameter, which

is a file descriptor or handle. If buf is NULL and/or len is less than or equal to zero, the filebuf
object is unbuffered, so that reading and/or writing take place one character at a time.

This form of the public filebuf constructor is similar to using the default constructor, and calling the

attach and setbuf member functions.

Results: The public filebuf constructor constructor produces a filebuf object that is connected to hdl.

See Also: ~filebuf, attach, open, setbuf

Input/Output Classes 617

filebuf::~filebuf()

Synopsis: #include <fstream.h>
public:
filebuf::~filebuf();

Semantics: The public ~filebuf destructor closes the file if it was explicitly opened using the open member

function. Otherwise, the destructor takes no explicit action. The streambuf destructor is called to

destroy that portion of the filebuf object. The call to the public ~filebuf destructor is inserted

implicitly by the compiler at the point where the filebuf object goes out of scope.

Results: The filebuf object is destroyed.

See Also: ~filebuf, close

618 Input/Output Classes

filebuf::is_open()

Synopsis: #include <fstream.h>
public:
int filebuf::is_open();

Semantics: The is_open public member function queries the filebuf object state.

Results: The is_open public member function returns a non-zero value if the filebuf object is currently

connected to a file. Otherwise, zero is returned.

See Also: filebuf::attach, close, fd, open

Input/Output Classes 619

filebuf::open()

Synopsis: #include <fstream.h>
public:
filebuf *filebuf::open(const char *name,
ios::openmode mode,
int prot = filebuf::openprot);

Semantics: The open public member function is used to connect the filebuf object to a file specified by the

name parameter. The file is opened using the specified mode. For details about the mode parameter,

see the description of ios::openmode. The prot parameter specifies the file protection attributes to

use when creating a file.

Results: The open public member function returns a pointer to the filebuf object on success, otherwise

NULL is returned.

See Also: filebuf, close, is_open, openprot

620 Input/Output Classes

filebuf::openprot

Synopsis: #include <fstream.h>
public:
static int const filebuf::openprot;

Semantics: The openprot public member data is used to specify the default file protection to be used when

creating new files. This value is used as the default if no user specified value is provided.

The default value is octal 0644. This is generally interpreted as follows:

• Owner: read/write

• Group: read

• World: read

Note that not all operating systems support all bits.

See Also: filebuf, open

Input/Output Classes 621

filebuf::overflow()

Synopsis: #include <fstream.h>
public:
virtual int filebuf::overflow(int ch = EOF);

Semantics: The overflow public virtual member function provides the output communication to the file to which

the filebuf object is connected. Member functions in the streambuf class call the overflow
public virtual member function for the derived class when the put area is full.

The overflow public virtual member function performs the following steps:

1. If no buffer is present, a buffer is allocated with the streambuf::allocate member

function, which may call the doallocate virtual member function. The put area is then

set up. If, after calling streambuf::allocate, no buffer is present, the filebuf
object is unbuffered and ch (if not EOF) is written directly to the file without buffering, and

no further action is taken.

2. If the get area is present, it is flushed with a call to the sync virtual member function. Note

that the get area won’t be present if a buffer was set up in step 1.

3. If ch is not EOF, it is added to the put area, if possible.

4. Any characters in the put area are written to the file.

5. The put area pointers are updated to reflect the new state of the put area. If the write did not

complete, the unwritten portion of the put area is still present. If the put area was full before

the write, ch (if not EOF) is placed at the start of the put area. Otherwise, the put area is

empty.

Results: The overflow public virtual member function returns __NOT_EOF on success, otherwise EOF is

returned.

See Also: streambuf::overflow
filebuf::underflow

622 Input/Output Classes

filebuf::pbackfail()

Synopsis: #include <fstream.h>
public:
virtual int filebuf::pbackfail(int ch);

Semantics: The pbackfail public virtual member function handles an attempt to put back a character when there

is no room at the beginning of the get area. The pbackfail public virtual member function first calls

the sync virtual member function to flush the put area and then it attempts to seek backwards over ch

in the associated file.

Results: The pbackfail public virtual member function returns ch on success, otherwise EOF is returned.

See Also: streambuf::pbackfail

Input/Output Classes 623

filebuf::seekoff()

Synopsis: #include <fstream.h>
public:
virtual streampos filebuf::seekoff(streamoff offset,
ios::seekdir dir,
ios::openmode mode);

Semantics: The seekoff public virtual member function is used to position the filebuf object (and hence the

file) to a particular offset so that subsequent input or output operations commence from that point. The

offset is specified by the offset and dir parameters.

Since the get area and put area pointers are tied together for the filebuf object, the mode parameter

is ignored.

Before the actual seek occurs, the get area and put area of the filebuf object are flushed via the

sync virtual member function. Then, the new position in the file is calculated and the seek takes place.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in conjunction

with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.

ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).

ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate sign, the

seekoff public virtual member function fails.

Results: The seekoff public virtual member function returns the new position in the file on success, otherwise

EOF is returned.

See Also: streambuf::seekoff

624 Input/Output Classes

filebuf::setbuf()

Synopsis: #include <fstream.h>
public:
virtual streambuf *filebuf::setbuf(char *buf, int len);

Semantics: The setbuf public virtual member function is used to offer a buffer, specified by buf and len to the

filebuf object. If the buf parameter is NULL or the len is less than or equal to zero, the request is to

make the filebuf object unbuffered.

If the filebuf object is already connected to a file and has a buffer, the offer is rejected. In other

words, a call to the setbuf public virtual member function after the filebuf object has started to be

used usually fails because the filebuf object has set up a buffer.

If the request is to make the filebuf object unbuffered, the offer succeeds.

If the buf is too small (less than five characters), the offer is rejected. Five characters are required to

support the default putback area.

Otherwise, the buf is acceptable and the offer succeeds.

If the offer succeeds, the streambuf::setb member function is called to set up the pointers to the

buffer. The streambuf::setb member function releases the old buffer (if present), depending on

how that buffer was allocated.

Calls to the setbuf public virtual member function are usually made by a class derived from the

fstream class, not directly by a user program.

Results: The setbuf public virtual member function returns a pointer to the filebuf object on success,

otherwise NULL is returned.

See Also: streambuf::setbuf

Input/Output Classes 625

filebuf::sync()

Synopsis: #include <fstream.h>
public:
virtual int filebuf::sync();

Semantics: The sync public virtual member function synchronizes the filebuf object with the external file or

device. If the put area contains characters it is flushed. This leaves the file positioned after the last

written character. If the get area contains buffered (unread) characters, file is backed up to be

positioned after the last read character.

Note that the get area and put area never both contain characters.

Results: The sync public virtual member function returns __NOT_EOF on success, otherwise EOF is returned.

See Also: streambuf::sync

626 Input/Output Classes

filebuf::underflow()

Synopsis: #include <fstream.h>
public:
virtual int filebuf::underflow();

Semantics: The underflow public virtual member function provides the input communication from the file to

which the filebuf object is connected. Member functions in the streambuf class call the

underflow public virtual member function for the derived class when the get area is empty.

The underflow public virtual member function performs the following steps:

1. If no reserve area is present, a buffer is allocated with the streambuf::allocate
member function, which may call the doallocate virtual member function. If, after

calling allocate, no reserve area is present, the filebuf object is unbuffered and a

one-character reserve area (plus putback area) is set up to do unbuffered input. This buffer is

embedded in the filebuf object. The get area is set up as empty.

2. If the put area is present, it is flushed using the sync virtual member function.

3. The unused part of the get area is used to read characters from the file connected to the

filebuf object. The get area pointers are then set up to reflect the new get area.

Results: The underflow public virtual member function returns the first unread character of the get area, on

success, otherwise EOF is returned. Note that the get pointer is not advanced on success.

See Also: streambuf::underflow
filebuf::overflow

Input/Output Classes 627

fstream

Declared: fstream.h

Derived from: fstreambase, iostream

The fstream class is used to access files for reading and writing. The file can be opened and closed,

and read, write and seek operations can be performed.

The fstream class provides very little of its own functionality. It is derived from both the

fstreambase and iostream classes. The fstream constructors, destructor and member function

provide simplified access to the appropriate equivalents in the base classes.

Of the available I/O stream classes, creating an fstream object is the preferred method of accessing a

file for both input and output.

Public Member Functions

The following public member functions are declared:

fstream();
fstream(char const *,
ios::openmode = ios::in|ios::out,
int = filebuf::openprot);
fstream(filedesc);
fstream(filedesc, char *, int);
~fstream();
void open(char const *,
ios::openmode = ios::in|ios::out,
int = filebuf::openprot);

See Also: fstreambase, ifstream, iostream, ofstream

628 Input/Output Classes

fstream::fstream()

Synopsis: #include <fstream.h>
public:
fstream::fstream();

Semantics: This form of the public fstream constructor creates an fstream object that is not connected to a

file. The open or attach member functions should be used to connect the fstream object to a file.

Results: The public fstream constructor produces an fstream object that is not connected to a file.

See Also: ~fstream, open, fstreambase::attach

Input/Output Classes 629

fstream::fstream()

Synopsis: #include <fstream.h>
public:
fstream::fstream(const char *name,
ios::openmode mode = ios::in|ios::out,
int prot = filebuf::openprot);

Semantics: This form of the public fstream constructor creates an fstream object that is connected to the file

specified by the name parameter, using the specified mode and prot parameters. The connection is

made via the C library open function.

Results: The public fstream constructor produces an fstream object that is connected to the file specified

by name. If the open fails, ios::failbit and ios::badbit are set in the error state in the

inherited ios object.

See Also: ~fstream, open, openmode, openprot

630 Input/Output Classes

fstream::fstream()

Synopsis: #include <fstream.h>
public:
fstream::fstream(filedesc hdl);

Semantics: This form of the public fstream constructor creates an fstream object that is attached to the file

specified by the hdl parameter.

Results: The public fstream constructor produces an fstream object that is attached to hdl. If the attach

fails, ios::failbit and ios::badbit are set in the error state in the inherited ios object.

See Also: ~fstream, fstreambase::attach, fstreambase::fd

Input/Output Classes 631

fstream::fstream()

Synopsis: #include <fstream.h>
public:
fstream::fstream(filedesc hdl, char *buf, int len);

Semantics: This form of the public fstream constructor creates an fstream object that is connected to the file

specified by the hdl parameter. The buffer specified by the buf and len parameters is offered to the

associated filebuf object via the setbuf member function. If the buf parameter is NULL or the len

is less than or equal to zero, the filebuf is unbuffered, so that each read or write operation reads or

writes a single character at a time.

Results: The public fstream constructor produces an fstream object that is attached to hdl. If the

connection to hdl fails, ios::failbit and ios::badbit are set in the error state in the inherited

ios object. If the setbuf fails, ios::failbit is set in the error state in the inherited ios object.

See Also: ~fstream, filebuf::setbuf, fstreambase::attach

632 Input/Output Classes

fstream::~fstream()

Synopsis: #include <fstream.h>
public:
fstream::~fstream();

Semantics: The public ~fstream destructor does not do anything explicit. The call to the public ~fstream
destructor is inserted implicitly by the compiler at the point where the fstream object goes out of

scope.

Results: The public ~fstream destructor destroys the fstream object.

See Also: fstream

Input/Output Classes 633

fstream::open()

Synopsis: #include <fstream.h>
public:
void fstream::open(const char *name,
ios::openmode mode = ios::in|ios::out,
int prot = filebuf::openprot);

Semantics: The open public member function connects the fstream object to the file specified by the name

parameter, using the specified mode and prot parameters. The mode parameter is optional and usually

is not specified unless additional bits (such as ios::binary or ios::text) are to be specified.

The connection is made via the C library open function.

Results: If the open fails, ios::failbit is set in the error state in the inherited ios object.

See Also: fstreambase::attach, fstreambase::close, fstreambase::fd,
fstreambase::is_open
fstream::openmode, openprot

634 Input/Output Classes

fstreambase

Declared: fstream.h

Derived from: ios

Derived by: ifstream, ofstream, fstream

The fstreambase class is a base class that provides common functionality for the three file-based

classes, ifstream, ofstream and fstream. The fstreambase class is derived from the ios
class, providing the stream state information, plus it provides member functions for opening and closing

files. The actual file manipulation work is performed by the filebuf class.

It is not intended that fstreambase objects be created. Instead, the user should create an

ifstream, ofstream or fstream object.

Protected Member Functions

The following member functions are declared in the protected interface:

fstreambase();
fstreambase(char const *,
ios::openmode,
int = filebuf::openprot);
fstreambase(filedesc);
fstreambase(filedesc, char *, int);
~fstreambase();

Public Member Functions

The following member functions are declared in the public interface:

void attach(filedesc);
void close();
filedesc fd() const;
int is_open() const;
void open(char const *,
ios::openmode,
int = filebuf::openprot);
filebuf *rdbuf() const;
void setbuf(char *, int);

See Also: filebuf, fstream, ifstream, ofstream

Input/Output Classes 635

fstreambase::attach()

Synopsis: #include <fstream.h>
public:
void fstreambase::attach(filedesc hdl);

Semantics: The attach public member function connects the fstreambase object to the file specified by the

hdl parameter.

Results: If the attach public member function fails, ios::failbit bit is set in the error state in the

inherited ios object. The error state in the inherited ios object is cleared on success.

See Also: fstreambase::fd, is_open, open

636 Input/Output Classes

fstreambase::close()

Synopsis: #include <fstream.h>
public:
void fstreambase::close();

Semantics: The close public member function disconnects the fstreambase object from the file with which it

is associated. If the fstreambase object is not associated with a file, the close public member

function fails.

Results: If the close public member function fails, ios::failbit is set in the error state in the inherited

ios object.

See Also: fstreambase::fd, is_open, open

Input/Output Classes 637

fstreambase::fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::fstreambase();

Semantics: The protected fstreambase constructor creates an fstreambase object that is initialized, but not

connected to anything. The open or attach member function should be used to connect the

fstreambase object to a file.

Results: The protected fstreambase constructor produces an fstreambase object.

See Also: ~fstreambase, attach, open

638 Input/Output Classes

fstreambase::fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::fstreambase(char const *name,
ios::openmode mode,
int prot = filebuf::openprot);

Semantics: This protected fstreambase constructor creates an fstreambase object that is initialized and

connected to the file indicated by name using the specified mode and prot. The fstreambase object

is connected to the specified file via the open C library function.

Results: The protected fstreambase constructor produces an fstreambase object. If the call to open for

the file fails, ios::failbit and ios::badbit are set in the error state in the inherited ios object

.

See Also: ~fstreambase, open, openmode, openprot

Input/Output Classes 639

fstreambase::fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::fstreambase(filedesc hdl);

Semantics: This protected fstreambase constructor creates an fstreambase object that is initialized and

connected to the open file specified by the hdl parameter.

Results: The protected fstreambase constructor produces an fstreambase object. If the attach to the file

fails, ios::failbit and ios::badbit are set in the error state in the inherited ios object.

See Also: ~fstreambase, attach

640 Input/Output Classes

fstreambase::fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::fstreambase(filedesc hdl, char *buf, int len);

Semantics: This protected fstreambase constructor creates an fstreambase object that is initialized and

connected to the open file specified by the hdl parameter. The buffer, specified by the buf and len

parameters, is offered via the setbuf virtual member function to be used as the reserve area for the

filebuf associated with the fstreambase object.

Results: The protected fstreambase constructor produces an fstreambase object. If the attach to the file

fails, ios::failbit and ios::badbit are set in the error state in the inherited ios object.

See Also: ~fstreambase, attach, setbuf

Input/Output Classes 641

fstreambase::~fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::~fstreambase();

Semantics: The protected ~fstreambase destructor does not do anything explicit. The filebuf object

associated with the fstreambase object is embedded within the fstreambase object, so the

filebuf destructor is called. The ios destructor is called for that portion of the fstreambase
object. The call to the protected ~fstreambase destructor is inserted implicitly by the compiler at

the point where the fstreambase object goes out of scope.

Results: The fstreambase object is destroyed.

See Also: fstreambase, close

642 Input/Output Classes

fstreambase::is_open()

Synopsis: #include <fstream.h>
public:
int fstreambase::is_open() const;

Semantics: The is_open public member function queries the current state of the file associated with the

fstreambase object. Calling the is_open public member function is equivalent to calling the fd
member function and testing for EOF.

Results: The is_open public member function returns a non-zero value if the fstreambase object is

currently connected to a file, otherwise zero is returned.

See Also: fstreambase::attach, fd, open

Input/Output Classes 643

fstreambase::fd()

Synopsis: #include <fstream.h>
public:
filedesc fstreambase::fd() const;

Semantics: The fd public member function returns the file descriptor for the file to which the fstreambase
object is connected.

Results: The fd public member function returns the file descriptor for the file to which the fstreambase
object is connected. If the fstreambase object is not currently connected to a file, EOF is returned.

See Also: fstreambase::attach, is_open, open

644 Input/Output Classes

fstreambase::open()

Synopsis: #include <fstream.h>
public:
void fstreambase::open(const char *name,
ios::openmode mode,
int prot = filebuf::openprot);

Semantics: The open public member function connects the fstreambase object to the file specified by name,

using the specified mode and prot. The connection is made via the C library open function.

Results: If the open fails, ios::failbit is set in the error state in the inherited ios object. The error state in

the inherited ios object is cleared on success.

See Also: fstreambase::attach, close, fd, is_open, openmode, openprot

Input/Output Classes 645

fstreambase::rdbuf()

Synopsis: #include <fstream.h>
public:
filebuf *fstreambase::rdbuf() const;

Semantics: The rdbuf public member function returns the address of the filebuf object currently associated

with the fstreambase object.

Results: The rdbuf public member function returns a pointer to the filebuf object currently associated with

the fstreambase object If there is no associated filebuf, NULL is returned.

See Also: ios::rdbuf

646 Input/Output Classes

fstreambase::setbuf()

Synopsis: #include <fstream.h>
public:
void fstreambase::setbuf(char *buf, int len);

Semantics: The setbuf public member function offers the specified buffer to the filebuf object associated

with the fstreambase object. The filebuf may or may not reject the offer, depending upon its

state.

Results: If the offer is rejected, ios::failbit is set in the error state in the inherited ios object.

See Also: filebuf::setbuf

Input/Output Classes 647

ifstream

Declared: fstream.h

Derived from: fstreambase, istream

The ifstream class is used to access existing files for reading. Such files can be opened and closed,

and read and seek operations can be performed.

The ifstream class provides very little of its own functionality. Derived from both the

fstreambase and istream classes, its constructors, destructor and member functions provide

simplified access to the appropriate equivalents in those base classes.

Of the available I/O stream classes, creating an ifstream object is the preferred method of accessing

a file for input only operations.

Public Member Functions

The following public member functions are declared:

ifstream();
ifstream(char const *,
ios::openmode = ios::in,
int = filebuf::openprot);
ifstream(filedesc);
ifstream(filedesc, char *, int);
~ifstream();
void open(char const *,
ios::openmode = ios::in,
int = filebuf::openprot);

See Also: fstream, fstreambase, istream, ofstream

648 Input/Output Classes

ifstream::ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::ifstream();

Semantics: This form of the public ifstream constructor creates an ifstream object that is not connected to a

file. The open or attach member functions should be used to connect the ifstream object to a

file.

Results: The public ifstream constructor produces an ifstream object that is not connected to a file.

See Also: ~ifstream, open, fstreambase::attach

Input/Output Classes 649

ifstream::ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::ifstream(const char *name,
ios::openmode mode = ios::in,
int prot = filebuf::openprot);

Semantics: This form of the public ifstream constructor creates an ifstream object that is connected to the

file specified by the name parameter, using the specified mode and prot parameters. The connection is

made via the C library open function.

Results: The public ifstream constructor produces an ifstream object that is connected to the file

specified by name. If the open fails, ios::failbit and ios::badbit are set in the error state in

the inherited ios object.

See Also: ~ifstream, open, openmode, openprot, fstreambase::attach, fstreambase::fd,
fstreambase::is_open

650 Input/Output Classes

ifstream::ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::ifstream(filedesc hdl);

Semantics: This form of the public ifstream constructor creates an ifstream object that is attached to the file

specified by the hdl parameter.

Results: The public ifstream constructor produces an ifstream object that is attached to hdl. If the attach

fails, ios::failbit and ios::badbit are set in the error state in the inherited ios object.

See Also: fstreambase::attach
~ifstream, open

Input/Output Classes 651

ifstream::ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::ifstream(filedesc hdl, char *buf, int len);

Semantics: This form of the public ifstream constructor creates an ifstream object that is connected to the

file specified by the hdl parameter. The buffer specified by the buf and len parameters is offered to the

associated filebuf object via the setbuf member function. If the buf parameter is NULL or the len

is less than or equal to zero, the filebuf is unbuffered, so that each read or write operation reads or

writes a single character at a time.

Results: The public ifstream constructor produces an ifstream object that is attached to hdl. If the

connection to hdl fails, ios::failbit and ios::badbit are set in the error state in the inherited

ios object. If the setbuf fails, ios::failbit is set in the error state in the inherited ios object.

See Also: fstreambase::attach, fstreambase::setbuf
~ifstream, open

652 Input/Output Classes

ifstream::~ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::~ifstream();

Semantics: The public ~ifstream destructor does not do anything explicit. The call to the public ~ifstream
destructor is inserted implicitly by the compiler at the point where the ifstream object goes out of

scope.

Results: The public ~ifstream destructor destroys the ifstream object.

See Also: ifstream

Input/Output Classes 653

ifstream::open()

Synopsis: #include <fstream.h>
public:
void ifstream::open(const char *name,
ios::openmode mode = ios::in,
int prot = filebuf::openprot);

Semantics: The open public member function connects the ifstream object to the file specified by the name

parameter, using the specified mode and prot parameters. The mode parameter is optional and usually

is not specified unless additional bits (such as ios::binary or ios::text) are to be specified.

The connection is made via the C library open function.

Results: If the open fails, ios::failbit is set in the error state in the inherited ios object.

See Also: fstreambase::attach, fstreambase::close, fstreambase::fd,
fstreambase::is_open
ifstream::openmode, openprot

654 Input/Output Classes

ios

Declared: iostream.h

Derived by: istream, ostream

The ios class is used to group together common functionality needed for other derived stream classes.

It is not intended that objects of type ios be created.

This class maintains state information about the stream. (the ios name can be thought of as a

short-form for I/O State). Error flags, formatting flags, and values and the connection to the buffers

used for the input and output are all maintained by the ios class. No information about the buffer itself

is stored in an ios object, merely the pointer to the buffer information.

Protected Member Functions

The following member functions are declared in the protected interface:

ios();
void init(streambuf *);
void setstate(ios::iostate);

Public Enumerations

The following enumeration typedefs are declared in the public interface:

typedef int iostate;
typedef long fmtflags;
typedef int openmode;
typedef int seekdir;

Public Member Functions

The following member functions are declared in the public interface:

ios(streambuf *);
virtual ~ios();
ostream *tie() const;
ostream *tie(ostream *);
streambuf *rdbuf() const;
ios::iostate rdstate() const;
ios::iostate clear(ios::iostate = 0);
int good() const;
int bad() const;
int fail() const;
int eof() const;
ios::iostate exceptions(ios::iostate);
ios::iostate exceptions() const;
ios::fmtflags setf(ios::fmtflags, ios::fmtflags);
ios::fmtflags setf(ios::fmtflags);
ios::fmtflags unsetf(ios::fmtflags);
ios::fmtflags flags(ios::fmtflags);
ios::fmtflags flags() const;
char fill(char);
char fill() const;
int precision(int);
int precision() const;
int width(int);
int width() const;

Input/Output Classes 655

ios

long &iword(int);
void *&pword(int);
static void sync_with_stdio();
static ios::fmtflags bitalloc();
static int xalloc();

Public Member Operators

The following member operators are declared in the public interface:

operator void *() const;
int operator !() const;

See Also: iostream, istream, ostream, streambuf

656 Input/Output Classes

ios::bad()

Synopsis: #include <iostream.h>
public:
int ios::bad() const;

Semantics: The bad public member function queries the state of the ios object.

Results: The bad public member function returns a non-zero value if ios::badbit is set in the error state in

the inherited ios object, otherwise zero is returned.

See Also: ios::clear, eof, fail, good, iostate, operator !, operator void *, rdstate,
setstate

Input/Output Classes 657

ios::bitalloc()

Synopsis: #include <iostream.h>
public:
static ios::fmtflags ios::bitalloc();

Semantics: The bitalloc public static member function is used to allocate a new ios::fmtflags bit for use

by user derived classes.

Because the bitalloc public static member function manipulates static member data, its behavior

is not tied to any one object but affects the entire class of objects. The value that is returned by the

bitalloc public static member function is valid for all objects of all classes derived from the ios
class. No subsequent call to the bitalloc public static member function will return the same value as

a previous call.

The bit value allocated may be used with the member functions that query and affect

ios::fmtflags. In particular, the bit can be set with the setf or flags member functions or the

setiosflags manipulator, and reset with the unsetf or flags member functions or the

resetiosflags manipulator.

There are two constants defined in <iostream.h> which indicate the number of bits available when

a program starts. _LAST_FORMAT_FLAG indicates the last bit used by the built-in format flags

described by ios::fmtflags. _LAST_FLAG_BIT indicates the last bit that is available for the

bitalloc public static member function to allocate. The difference between the bit positions

indicates how many bits are available.

Results: The bitalloc public static member function returns the next available ios::fmtflags bit for use

by user derived classes. If no more bits are available, zero is returned.

See Also: ios::fmtflags

658 Input/Output Classes

ios::clear()

Synopsis: #include <iostream.h>
public:
iostate ios::clear(ios::iostate flags = 0);

Semantics: The clear public member function is used to change the current value of ios::iostate in the

ios object. ios::iostate is cleared, all bits specified in flags are set.

Results: The clear public member function returns the previous value of ios::iostate.

See Also: ios::bad, eof, fail, good, iostate, operator !, operator void *, rdstate,
setstate

Input/Output Classes 659

ios::eof()

Synopsis: #include <iostream.h>
public:
int ios::eof() const;

Semantics: The eof public member function queries the state of the ios object.

Results: The eof public member function returns a non-zero value if ios::eofbit is set in the error state in

the inherited ios object, otherwise zero is returned.

See Also: ios::bad, clear, fail, good, iostate, rdstate, setstate

660 Input/Output Classes

ios::exceptions()

Synopsis: #include <iostream.h>
public:
ios::iostate ios::exceptions() const;
ios::iostate ios::exceptions(int enable);

Semantics: The exceptions public member function queries and/or sets the bits that control which exceptions

are enabled. ios::iostate within the ios object is used to enable and disable exceptions.

When a condition arises that sets a bit in ios::iostate, a check is made to see if the same bit is also

set in the exception bits. If so, an exception is thrown. Otherwise, no exception is thrown.

The first form of the exceptions public member function looks up the current setting of the

exception bits. The bit values are those described by ios::iostate.

The second form of the exceptions public member function sets the exceptions bits to those

specified in the enable parameter, and returns the current settings.

Results: The exceptions public member function returns the previous setting of the exception bits.

See Also: ios::clear, iostate, rdstate, setstate

Input/Output Classes 661

ios::fail()

Synopsis: #include <iostream.h>
public:
int ios::fail() const;

Semantics: The fail public member function queries the state of the ios object.

Results: The fail public member function returns a non-zero value if ios::failbit or ios::badbit is

set in the error state in the inherited ios object, otherwise zero is returned.

See Also: ios::bad, clear, eof, good, iostate, operator !, operator void *, rdstate,
setstate

662 Input/Output Classes

ios::fill()

Synopsis: #include <iostream.h>
public:
char ios::fill() const;
char ios::fill(char fillchar);

Semantics: The fill public member function queries and/or sets the fill character used when the size of a

formatted object is smaller than the format width specified.

The first form of the fill public member function looks up the current value of the fill character.

The second form of the fill public member function sets the fill character to fillchar.

By default, the fill character is a space.

Results: The fill public member function returns the previous value of the fill character.

See Also: ios::fmtflags, manipulator setfill

Input/Output Classes 663

ios::flags()

Synopsis: #include <iostream.h>
public:
ios::fmtflags ios::flags() const;
ios::fmtflags ios::flags(ios::fmtflags setbits);

Semantics: The flags public member function is used to query and/or set the value of ios::fmtflags in the

ios object.

The first form of the flags public member function looks up the current ios::fmtflags value.

The second form of the flags public member function sets ios::fmtflags to the value specified

in the setbits parameter.

Note that the setf public member function only turns bits on, while the flags public member

function turns some bits on and some bits off.

Results: The flags public member function returns the previous ios::fmtflags value.

See Also: ios::fmtflags, setf, unsetf, manipulator dec, manipulator hex, manipulator oct,

manipulator resetiosflags, manipulator setbase, manipulator setiosflags

664 Input/Output Classes

ios::fmtflags

Synopsis: #include <iostream.h>
public:
enum fmt_flags {
skipws = 0x0001, // skip whitespace
left = 0x0002, // align field to left edge
right = 0x0004, // align field to right edge
internal = 0x0008, // sign at left, value at right
dec = 0x0010, // decimal conversion for integers
oct = 0x0020, // octal conversion for integers
hex = 0x0040, // hexadecimal conversion for integers
showbase = 0x0080, // show dec/octal/hex base on output
showpoint = 0x0100, // show decimal and digits on output
uppercase = 0x0200, // use uppercase for format characters
showpos = 0x0400, // use + for output positive numbers
scientific = 0x0800, // use scientific notation for output
fixed = 0x1000, // use floating notation for output
unitbuf = 0x2000, // flush stream after output
stdio = 0x4000, // flush stdout/stderr after output

basefield = dec | oct | hex,
adjustfield= left | right | internal,
floatfield = scientific | fixed
};
typedef long fmtflags;

Semantics: The type ios::fmt_flags is a set of bits representing methods of formatting objects written to the

stream and interpreting objects read from the stream. The ios::fmtflags member typedef

represents the same set of bits, but uses a long to represent the values, thereby avoiding problems

made possible by the compiler’s ability to use smaller types for enumerations. All uses of these bits

should use the ios::fmtflags member typedef.

The bit values defined by the ios::fmtflags member typedef are set and read by the member

functions setf, unsetf and flags, as well as the manipulators setiosflags and

resetiosflags.

Because one field is used to store all of these bits, there are three special values used to mask various

groups of bits. These values are named ios::basefield, ios::adjustfield and

ios::floatfield, and are discussed with the bits that they are used to mask.

ios::skipws controls whether or not whitespace characters are automatically skipped when using an

operator >> extractor. If ios::skipws is on, any use of the operator >> extractor skips

whitespace characters before inputting the next item. Otherwise, skipping of whitespace characters

must be handled by the program.

ios::left, ios::right and ios::internal control the alignment of items written using an

operator << inserter. These bits are usually used in conjunction with the format width and fill

character.

ios::adjustfield can be used to mask the alignment bits returned by the setf, unsetf and

flags member functions, and for setting new values to ensure that no other bits are accidentally

affected.

When the item to be written is smaller than the format width specified, fill characters are written to

occupy the additional space. If ios::left is in effect, the item is written in the left portion of the

available space, and fill characters are written in the right portion. If ios::right is in effect, the

item is written in the right portion of the available space, and fill characters are written in the left

Input/Output Classes 665

ios::fmtflags

portion. If ios::internal is in effect, any sign character or base indicator is written in the left

portion, the digits are written in the right portion, and fill characters are written in between.

If no alignment is specified, ios::right is assumed.

If the item to be written is as big as or bigger than the format width specified, no fill characters are

written and the alignment is ignored.

ios::dec, ios::oct and ios::hex control the base used to format integers being written to the

stream, and also control the interpretation of integers being read from the stream.

ios::basefield can be used to mask the base bits returned by the member functions setf,

unsetf and flags, and for setting new values to ensure that no other bits are accidentally affected.

When an integer is being read from the stream, these bits control the base used for the interpretation of

the digits. If none of these bits is set, a number that starts with 0x or 0X is interpreted as hexadecimal

(digits 0123456789, plus the letters abcdef or ABCDEF), a number that starts with 0 (zero) is

interpreted as octal (digits 01234567), otherwise the number is interpreted as decimal (digits

0123456789). If one of the bits is set, then the prefix is not necessary and the number is interpreted

according to the bit.

When any one of the integer types is being written to the stream, it can be written in decimal, octal or

hexadecimal. If none of these bits is set, ios::dec is assumed.

If ios::dec is set (or assumed), the integer is written in decimal (digits 0123456789). No prefix is

included.

If ios::oct is set, the integer is written in octal (digits 01234567). No sign character is written, as

the number is treated as an unsigned quantity upon conversion to octal.

If ios::hex is set, the integer is written in hexadecimal (digits 0123456789, plus the letters

abcdef or ABCDEF, depending on the setting of ios::uppercase). No sign character is written,

as the number is treated as an unsigned quantity upon conversion to hexadecimal.

ios::showbase controls whether or not integers written to the stream in octal or hexadecimal form

have a prefix that indicates the base of the number. If the bit is set, decimal numbers are written

without a prefix, octal numbers are written with the prefix 0 (zero) and hexadecimal numbers are

written with the prefix 0x or 0X depending on the setting of ios::uppercase. If the

ios::showbase is not set, no prefixes are written.

ios::showpoint is used to control whether or not the decimal point and trailing zeroes are trimmed

when floating-point numbers are written to the stream. If the bit is set, no trimming is done, causing the

number to appear with the specified format precision. If the bit is not set, any trailing zeroes after the

decimal point are trimmed, and if not followed by any digits, the decimal point is removed as well.

ios::uppercase is used to force to upper-case all letters used in formatting numbers, including the

letter-digits abcdef, the x hexadecimal prefix, and the e used for the exponents in floating-point

numbers.

ios::showpos controls whether or not a + is added to the front of positive integers being written to

the stream. If the bit is set, the number is positive and the number is being written in decimal, a + is

written before the first digit.

666 Input/Output Classes

ios::fmtflags

ios::scientific and ios::fixed controls the form used for writing floating-point numbers to

the stream. Floating-point numbers can be written in scientific notation (also called exponential

notation) or in fixed-point notation.

ios::floatfield can be used to mask the floating-format bits returned by the member functions

setf, unsetf and flags, and for setting new values to ensure that no other bits are accidentally

affected.

If ios::scientific is set, the floating-point number is written with a leading - sign (for negative

numbers), a digit, a decimal point, more digits, an e (or E if ios::uppercase is set), a + or - sign,

and two or three digits representing the exponent. The digit before the decimal is not zero unless the

number is zero. The total number of digits before and after the decimal is equal to the specified format

precision. If ios::showpoint is not set, trimming of the decimal and digits following the decimal

may occur.

If ios::fixed is set, the floating-point number is written with a - sign (for negative numbers), at

least one digit, the decimal point, and as many digits following the decimal as specified by the format

precision. If ios::showpoint is not set, trimming of the decimal and digits following the decimal

may occur.

If neither ios::scientific nor ios::fixed is specified, the floating-point number is formatted

using scientific notation provided one or both of the following conditions are met:

• the exponent is less than -4, or,

• the exponent is greater than the format precision.

Otherwise, fixed-point notation is used.

ios::unitbuf controls whether or not the stream is flushed after each item is written. If the bit is

set, every item that is written to the stream is followed by a flush operation, which ensures that the I/O

stream buffer associated with the stream is kept empty, immediately transferring the data to its final

destination.

ios::stdio controls whether or not the stream is synchronized after each item is written. If the bit is

set, every item that is written to the stream causes the stream to be synchronized, which means any input

or output buffers are flushed so that an I/O operation performed using C (not C++) I/O behaves in an

understandable way. If the output buffer was not flushed, writing using C++ and then C I/O functions

could cause the output from the C functions to appear before the output from the C++ functions, since

the characters might be sitting in the C++ output buffer. Similarly, after the C output operations are

done, a call should be made to the C library fflush function on the appropriate stream before

resuming C++ output operations.

See Also: ios::flags, setf, unsetf, manipulator dec, manipulator hex, manipulator oct, manipulator

resetiosflags, manipulator setbase, manipulator setiosflags

Input/Output Classes 667

ios::good()

Synopsis: #include <iostream.h>
public:
int ios::good() const;

Semantics: The good public member function queries the state of the ios object.

Results: The good public member function returns a non-zero value if none of ios::iostate is clear,

otherwise zero is returned.

See Also: ios::bad, clear, eof, fail, iostate, rdstate, setstate

668 Input/Output Classes

ios::init()

Synopsis: #include <iostream.h>
protected:
void ios::init(streambuf *sb);

Semantics: The init public protected member function is used by derived classes to explicitly initialize the ios
portion of the derived object, and to associate a streambuf with the ios object. The init public

protected member function performs the following steps:

1. The default fill character is set to a space.

2. The format precision is set to six.

3. The streambuf pointer (returned by the rdbuf member function) is set to sb.

4. The remaining fields of the ios object are initialized to zero.

Results: If sb is NULL the ios::badbit is set in the error state in the inherited ios object.

See Also: ios, rdbuf

Input/Output Classes 669

ios::ios()

Synopsis: #include <iostream.h>
protected:
ios::ios();

Semantics: This form of the protected ios constructor creates a default ios object that is initialized, but does not

have an associated streambuf. Initialization of an ios object is handled by the init protected

member function.

Results: This protected ios constructor creates an ios object and sets ios::badbit in the error state in the

inherited ios object.

See Also: ~ios, init

670 Input/Output Classes

ios::ios()

Synopsis: #include <iostream.h>
public:
ios::ios(streambuf *sb);

Semantics: This form of the public ios constructor creates an ios object that is initialized and has an associated

streambuf. Initialization of an ios object is handled by the init protected member function.

Once the init protected member function is completed, the ios object’s streambuf pointer is set

to sb. If sb is not NULL, ios::badbit is cleared from the error state in the inherited ios object.

Results: This public ios constructor creates an ios object and, if sb is NULL, sets ios::badbit in the error

state in the inherited ios object.

See Also: ~ios, init

Input/Output Classes 671

ios::~ios()

Synopsis: #include <iostream.h>
public:
virtual ios::~ios();

Semantics: The public virtual ~ios destructor destroys an ios object. The call to the public virtual ~ios
destructor is inserted implicitly by the compiler at the point where the ios object goes out of scope.

Results: The ios object is destroyed.

See Also: ios

672 Input/Output Classes

ios::iostate

Synopsis: #include <iostream.h>
public:
enum io_state {
goodbit = 0x00, // no errors
badbit = 0x01, // operation failed, may not proceed
failbit = 0x02, // operation failed, may proceed
eofbit = 0x04 // end of file encountered
};
typedef int iostate;

Semantics: The type ios::io_state is a set of bits representing the current state of the stream. The

ios::iostate member typedef represents the same set of bits, but uses an int to represent the

values, thereby avoiding problems made possible by the compiler’s ability to use smaller types for

enumerations. All uses of these bits should use the ios::iostate member typedef.

The bit values defined by the ios::iostate member typedef can be read and set by the member

functions rdstate and clear, and can be used to control exception handling with the member

function exceptions.

ios::badbit represents the state where the stream is no longer usable because of some error

condition.

ios::failbit represents the state where the previous operation on the stream failed, but the stream

is still usable. Subsequent operations on the stream are possible, but the state must be cleared using the

clear member function.

ios::eofbit represents the state where the end-of-file condition has been encountered. The stream

may still be used, but the state must be cleared using the clear member function.

Even though ios::goodbit is not a bit value (because its value is zero, which has no bits on), it is

provided for completeness.

See Also: ios::bad, clear, eof, fail, good, operator !, operator void *, rdstate,
setstate

Input/Output Classes 673

ios::iword()

Synopsis: #include <iostream.h>
public:
long &ios::iword(int index);

Semantics: The iword public member function creates a reference to a long int, which may be used to store

and retrieve any suitable integer value. The index parameter specifies which long int is to be

referenced and must be obtained from a call to the xalloc static member function.

Note that the iword and pword public member functions return references to the same storage with a

different type. Therefore, each index obtained from the xalloc static member function can be used

only for an integer or a pointer, not both.

Since the iword public member function returns a reference and the ios class cannot predict how

many such items will be required by a program, it should be assumed that each call to the xalloc
static member function invalidates all previous references returned by the iword public member

function. Therefore, the iword public member function should be called each time the reference is

needed.

Results: The iword public member function returns a reference to a long int.

See Also: ios::pword, xalloc

674 Input/Output Classes

ios::openmode

Synopsis: #include <iostream.h>
public:
enum open_mode {
in = 0x0001, // open for input
out = 0x0002, // open for output
atend = 0x0004, // seek to end after opening
append = 0x0008, // open for output, append to the end
truncate = 0x0010, // discard contents after opening
nocreate = 0x0020, // open only an existing file
noreplace = 0x0040, // open only a new file
text = 0x0080, // open as text file
binary = 0x0100, // open as binary file

app = append, // synonym
ate = atend, // synonym
trunc = truncate // synonym
};
typedef int openmode;

Semantics: The type ios::open_mode is a set of bits representing ways of opening a stream. The

ios::openmode member typedef represents the same set of bits, but uses an int to represent the

values, thereby avoiding problems made possible by the compiler’s ability to use smaller types for

enumerations. All uses of these bits should use the ios::openmode member typedef.

The bit values defined by ios::openmode member typedef can be specified in the constructors for

stream objects, as well as in various member functions.

ios::in is specified in a stream for which input operations may be performed. ios::out is

specified in a stream for which output operations may be performed. A stream for which only

ios::in is specified is referred to as an input stream. A stream for which only ios::out is

specified is referred to as an output stream. A stream where both ios::in and ios::out are

specified is referred to as an input/output stream.

ios::atend and ios::ate are equivalent, and either one is specified for streams that are to be

positioned to the end before the first operation takes place. ios:ate is provided for historical

purposes and compatibility with other implementations of I/O streams. Note that this bit positions the

stream to the end exactly once, when the stream is opened.

ios::append and ios::app are equivalent, and either one is specified for streams that are to be

positioned to the end before any and all output operations take place. ios::app is provided for

historical purposes and compatibility with other implementations of I/O streams. Note that this bit

causes the stream to be positioned to the end before each output operation, while ios::atend causes

the stream to be positioned to the end only when first opened.

ios::truncate and ios::trunc are equivalent, and either one is specified for streams that are to

be truncated to zero length before the first operation takes place. ios::trunc is provided for

historical purposes and compatibility with other implementations of I/O streams.

ios::nocreate is specified if the file must exist before it is opened. If the file does not exist, an

error occurs.

ios::noreplace is specified if the file must not exist before it is opened. That is, the file must be a

new file. If the file exists, an error occurs.

Input/Output Classes 675

ios::openmode

ios::text is specified if the file is to be treated as a text file. A text file is divided into records, and

each record is terminated by a new-line character, usually represented as ’\n’. The new-line character

is translated into a form that is compatible with the underlying file system’s concept of text files. This

conversion happens automatically whenever the new-line is written to the file, and the inverse

conversion (to the new-line character) happens automatically whenever the end of a record is read from

the file system.

ios::binary is specified if the file is to be treated as a binary file. Binary files are streams of

characters. No character has a special meaning. No grouping of characters into records is apparent to

the program, although the underlying file system may cause such a grouping to occur.

The following default behaviors are defined:

If ios::out is specified and none of ios::in, ios::append or ios::atend are specified,

ios::truncate is assumed.

If ios::append is specified, ios::out is assumed.

If ios::truncate is specified, ios::out is assumed.

If neither ios::text nor ios::binary is specified, ios::text is assumed.

676 Input/Output Classes

ios::operator !()

Synopsis: #include <iostream.h>
public:
int ios::operator !() const;

Semantics: The operator ! public member function tests the error state in the inherited ios object of the ios
object.

Results: The operator ! public member function returns a non-zero value if either of ios::failbit or

ios::badbit bits are set in the error state in the inherited ios object, otherwise zero is returned.

See Also: ios::bad, clear, fail, good, iostate, operator void *, rdstate, setstate

Input/Output Classes 677

ios::operator void *()

Synopsis: #include <iostream.h>
public:
ios::operator void *() const;

Semantics: The operator void * public member function converts the ios object into a pointer to void.

The actual pointer value returned is meaningless and intended only for comparison with NULL to

determine the error state in the inherited ios object of the ios object.

Results: The operator void * public member function returns a NULL pointer if either of

ios::failbit or ios::badbit bits are set in the error state in the inherited ios object,

otherwise a non- NULL pointer is returned.

See Also: ios::bad, clear, fail, good, iostate, operator !, rdstate, setstate

678 Input/Output Classes

ios::precision()

Synopsis: #include <iostream.h>
public:
int ios::precision() const;
int ios::precision(int prec);

Semantics: The precision public member function is used to query and/or set the format precision. The format

precision is used to control the number of digits of precision used when formatting floating-point

numbers. For scientific notation, the format precision describes the total number of digits before and

after the decimal point, but not including the exponent. For fixed-point notation, the format precision

describes the number of digits after the decimal point.

The first form of the precision public member function looks up the current format precision.

The second form of the precision public member function sets the format precision to prec.

By default, the format precision is six. If prec is specified to be less than zero, the format precision is

set to six. Otherwise, the specified format precision is used. For scientific notation, a format precision

of zero is treated as a precision of one.

Results: The precision public member function returns the previous format precision setting.

See Also: ios::fmtflags, manipulator setprec

Input/Output Classes 679

ios::pword()

Synopsis: #include <iostream.h>
public:
void * &ios::pword(int index);

Semantics: The pword public member function creates a reference to a void pointer, which may be used to store

and retrieve any suitable pointer value. The index parameter specifies which void pointer is to be

referenced and must be obtained from a call to the xalloc static member function.

Note that the iword and pword public member functions return references to the same storage with a

different type. Therefore, each index obtained from the xalloc static member function can be used

only for an integer or a pointer, not both.

Since the pword public member function returns a reference and the ios class cannot predict how

many such items will be required by a program, it should be assumed that each call to the xalloc
static member function invalidates all previous references returned by the pword public member

function. Therefore, the pword public member function should be called each time the reference is

needed.

Results: The pword public member function returns a reference to a void pointer.

See Also: ios::iword, xalloc

680 Input/Output Classes

ios::rdbuf()

Synopsis: #include <iostream.h>
public:
streambuf *ios::rdbuf() const;

Semantics: The rdbuf public member function looks up the pointer to the streambuf object which maintains

the buffer associated with the ios object.

Results: The rdbuf public member function returns the pointer to the streambuf object associated with the

ios object. If there is no associated streambuf object, NULL is returned.

Input/Output Classes 681

ios::rdstate()

Synopsis: #include <iostream.h>
public:
iostate ios::rdstate() const;

Semantics: The rdstate public member function is used to query the current value of ios::iostate in the

ios object without modifying it.

Results: The rdstate public member function returns the current value of ios::iostate.

See Also: ios::bad, clear, eof, fail, good, iostate, operator !, operator void *,
setstate

682 Input/Output Classes

ios::seekdir

Synopsis: #include <iostream.h>
public:
enum seek_dir {
beg, // seek from beginning
cur, // seek from current position
end // seek from end
};
typedef int seekdir;

Semantics: The type ios::seek_dir is a set of bits representing different methods of seeking within a stream.

The ios::seekdir member typedef represents the same set of bits, but uses an int to represent the

values, thereby avoiding problems made possible by the compiler’s ability to use smaller types for

enumerations. All uses of these bits should use the ios::seekdir member typedef.

The bit values defined by ios::seekdir member typedef are used by the member functions seekg
and seekp, as well the seekoff and seekpos member functions in classes derived from the

streambuf class.

ios::beg causes the seek offset to be interpreted as an offset from the beginning of the stream. The

offset is specified as a positive value.

ios::cur causes the seek offset to be interpreted as an offset from the current position of the stream.

If the offset is a negative value, the seek is towards the start of the stream. Otherwise, the seek is

towards the end of the stream.

ios::end causes the seek offset to be interpreted as an offset from the end of the stream. The offset

is specified as a negative value.

Input/Output Classes 683

ios::setf()

Synopsis: #include <iostream.h>
public:
ios::fmtflags ios::setf(ios::fmtflags onbits);
ios::fmtflags ios::setf(ios::fmtflags setbits,
ios::fmtflags mask);

Semantics: The setf public member function is used to set bits in ios::fmtflags in the ios object.

The first form is used to turn on the bits that are on in the onbits parameter. (onbits is or’ed into

ios::fmtflags).

The second form is used to turn off the bits specified in the mask parameter and turn on the bits

specified in the setbits parameter. This form is particularly useful for setting the bits described by the

ios::basefield, ios::adjustfield and ios::floatfield values, where only one bit

should be on at a time.

Results: Both forms of the setf public member function return the previous ios::fmtflags value.

See Also: ios::fmtflags, setf, unsetf, manipulator dec, manipulator hex, manipulator oct,

manipulator setbase, manipulator setiosflags, manipulator resetiosflags

684 Input/Output Classes

ios::setstate()

Synopsis: #include <iostream.h>
protected:
void ios::setstate(int or_bits);

Semantics: The setstate protected member function is provided as a convenience for classes derived from the

ios class. It turns on the error state in the inherited ios object bits that are set in the or_bits

parameter, and leaves the other error state in the inherited ios object bits unchanged.

Results: The setstate protected member function sets the bits specified by or_bits in the error state in the

inherited ios object.

See Also: ios::bad, clear, eof, fail, good, iostate, operator !, operator void *,
rdstate

Input/Output Classes 685

ios::sync_with_stdio()

Synopsis: #include <iostream.h>
public:
static void ios::sync_with_stdio();

Semantics: The sync_with_stdio public static member function is obsolete. It is provided for compatibility.

Results: The sync_with_stdio public static member function has no return value.

686 Input/Output Classes

ios::tie()

Synopsis: #include <iostream.h>
public:
ostream *ios::tie() const;
ostream *ios::tie(ostream *ostrm);

Semantics: The tie public member function is used to query and/or set up a connection between the ios object

and another stream. The connection causes the output stream specified by ostrm to be flushed whenever

the ios object is about to read characters from a device or is about to write characters to an output

buffer or device.

The first form of the tie public member function is used to query the current tie.

The second form of the tie public member function is used to set the tied stream to ostrm.

Normally, the predefined streams cin and cerr set up ties to cout so that any input from the

terminal flushes any buffered output, and any writes to cerr flush cout before the characters are

written. cout does not set up a tie to cerr because cerr has the flag ios::unitbuf set, so it

flushes itself after every write operation.

Results: Both forms of the tie public member function return the previous tie value.

See Also: ios::fmtflags

Input/Output Classes 687

ios::unsetf()

Synopsis: #include <iostream.h>
public:
ios::fmtflags ios::unsetf(ios::fmtflags offbits);

Semantics: The unsetf public member function is used to turn off bits in ios::fmtflags that are set in the

offbits parameter. All other bits in ios::fmtflags are unchanged.

Results: The unsetf public member function returns the old ios::fmtflags value.

See Also: ios::fmtflags, setf, unsetf, manipulator dec, manipulator hex, manipulator oct,

manipulator setbase, manipulator setiosflags, manipulator resetiosflags

688 Input/Output Classes

ios::width()

Synopsis: #include <iostream.h>
public:
int ios::width() const;
int ios::width(int wid);

Semantics: The width public member function is used to query and/or set the format width used to format the next

item. A format width of zero indicates that the item is to be written using exactly the number of

positions required. Other values indicate that the item must occupy at least that many positions. If the

formatted item is larger than the specified format width, the format width is ignored and the item is

formatted using the required number of positions.

The first form of the width public member function is used to query the format width that is to be used

for the next item.

The second form of the width public member function is used to set the format width to wid for the

next item to be formatted.

After an item has been formatted, the format width is reset to zero. Therefore, any non-zero format

width must be set before each item that is to be formatted.

Results: The width public member function returns the previous format width.

See Also: ios::fmtflags, manipulator setw, manipulator setwidth

Input/Output Classes 689

ios::xalloc()

Synopsis: #include <iostream.h>
public:
static int ios::xalloc();

Semantics: The xalloc public static member function returns an index into an array of items that the program

may use for any purpose. Each item can be either a long int or a pointer to void. The index can

be used with the iword and pword member functions.

Because the xalloc public static member function manipulates static member data, its behavior is

not tied to any one object but affects the entire class of objects. The value that is returned by the

xalloc public static member function is valid for all objects of all classes derived from the ios class.

No subsequent call to the xalloc public static member function will return the same value as a

previous call.

Results: The xalloc public static member function returns an index for use with the iword and pword
member functions.

See Also: ios::iword, pword

690 Input/Output Classes

iostream

Declared: iostream.h

Derived from: istream, ostream

Derived by: fstream, strstream

The iostream class supports reading and writing of characters from and to the standard input/output

devices, usually the keyboard and screen. The iostream class provides formatted conversion of

characters to and from other types (e.g. integers and floating-point numbers). The associated

streambuf class provides the methods for communicating with the actual device, while the

iostream class provides the interpretation of the characters.

Generally, an iostream object won’t be created by a program, since there is no mechanism at this

level to "open" a device. No instance of an iostream object is created by default, since it is usually

not possible to perform both input and output on the standard input/output devices. The iostream
class is provided as a base class for other derived classes that can provide both input and output

capabilities through the same object. The fstream and strstream classes are examples of classes

derived from the iostream class.

Protected Member Functions

The following protected member functions are declared:

iostream();

Public Member Functions

The following public member functions are declared:

iostream(ios const &);
iostream(streambuf *);
virtual ~iostream();

Public Member Operators

The following public member operators are declared:

iostream & operator =(streambuf *);
iostream & operator =(ios const &);

See Also: ios, istream, ostream

Input/Output Classes 691

iostream::iostream()

Synopsis: #include <iostream.h>
protected:
iostream::iostream();

Semantics: This form of the protected iostream constructor creates an iostream object without an attached

streambuf object.

This form of the protected iostream constructor is only used implicitly by the compiler when it

generates a constructor for a derived class.

Results: The protected iostream constructor produces an initialized iostream object. ios::badbit is

set in the error state in the inherited ios object.

See Also: ~iostream

692 Input/Output Classes

iostream::iostream()

Synopsis: #include <iostream.h>
public:
iostream::iostream(ios const &strm);

Semantics: This form of the public iostream constructor creates an iostream object associated with the

streambuf object currently associated with the strm parameter. The iostream object is initialized

and will use the strm streambuf object for subsequent operations. strm will continue to use the

streambuf object.

Results: The public iostream constructor produces an initialized iostream object. If there is no

streambuf object currently associated with the strm parameter, ios::badbit is set in the error

state in the inherited ios object.

See Also: ~iostream

Input/Output Classes 693

iostream::iostream()

Synopsis: #include <iostream.h>
public:
iostream::iostream(streambuf *sb);

Semantics: This form of the public iostream constructor creates an iostream object with an attached

streambuf object.

Since a user program usually will not create an iostream object, this form of the public iostream
constructor is unlikely to be explicitly used, except in the member initializer list for the constructor of a

derived class. The sb parameter is a pointer to a streambuf object, which should be connected to the

source and sink of characters for the stream.

Results: The public iostream constructor produces an initialized iostream object. If the sb parameter is

NULL, ios::badbit is set in the error state in the inherited ios object.

See Also: ~iostream

694 Input/Output Classes

iostream::~iostream()

Synopsis: #include <iostream.h>
public:
virtual iostream::~iostream();

Semantics: The public ~iostream destructor does not do anything explicit. The ios destructor is called for that

portion of the iostream object. The call to the public ~iostream destructor is inserted implicitly

by the compiler at the point where the iostream object goes out of scope.

Results: The iostream object is destroyed.

See Also: iostream

Input/Output Classes 695

iostream::operator =()

Synopsis: #include <iostream.h>
public:
iostream &iostream::operator =(streambuf *sb);

Semantics: This form of the operator = public member function initializes the target iostream object and

sets up an association between the iostream object and the streambuf object specified by the sb

parameter.

Results: The operator = public member function returns a reference to the iostream object that is the

target of the assignment. If the sb parameter is NULL, ios::badbit is set in the error state in the

inherited ios object.

696 Input/Output Classes

iostream::operator =()

Synopsis: #include <iostream.h>
public:
iostream &iostream::operator =(const ios &strm);

Semantics: This form of the operator = public member function initializes the iostream object and sets up

an association between the iostream object and the streambuf object currently associated with the

strm parameter.

Results: The operator = public member function returns a reference to the iostream object that is the

target of the assignment. If there is no streambuf object currently associated with the strm

parameter, ios::badbit is set in the error state in the inherited ios object.

Input/Output Classes 697

istream

Declared: iostream.h

Derived from: ios

Derived by: iostream, ifstream, istrstream

The istream class supports reading characters from a class derived from streambuf, and provides

formatted conversion of characters into other types (such as integers and floating-point numbers). The

streambuf class provides the methods for communicating with the external device (keyboard, disk),

while the istream class provides the interpretation of the resulting characters.

Generally, an istream object won’t be explicitly created by a program, since there is no mechanism at

this level to open a device. The only default istream object in a program is cin, which reads from

standard input (usually the keyboard).

The istream class supports two basic concepts of input: formatted and unformatted. The overloaded

operator >> member functions are called extractors and they provide the support for formatted

input. The rest of the member functions deal with unformatted input, managing the state of the ios
object and providing a friendlier interface to the associated streambuf object.

Protected Member Functions

The following protected member functions are declared:

istream();
eatwhite();

Public Member Functions

The following public member functions are declared:

istream(istream const &);
istream(streambuf *);
virtual ~istream();
int ipfx(int = 0);
void isfx();
int get();
istream &get(char *, int, char = ’\n’);
istream &get(signed char *, int, char = ’\n’);
istream &get(unsigned char *, int, char = ’\n’);
istream &get(char &);
istream &get(signed char &);
istream &get(unsigned char &);
istream &get(streambuf &, char = ’\n’);
istream &getline(char *, int, char = ’\n’);
istream &getline(signed char *, int, char = ’\n’);
istream &getline(unsigned char *, int, char = ’\n’);
istream &ignore(int = 1, int = EOF);
istream &read(char *, int);
istream &read(signed char *, int);
istream &read(unsigned char *, int);
istream &seekg(streampos);
istream &seekg(streamoff, ios::seekdir);
istream &putback(char);
streampos tellg();
int gcount() const;

698 Input/Output Classes

istream

int peek();
int sync();

Public Member Operators

The following public member operators are declared:

istream &operator =(streambuf *);
istream &operator =(istream const &);
istream &operator >>(char *);
istream &operator >>(signed char *);
istream &operator >>(unsigned char *);
istream &operator >>(char &);
istream &operator >>(signed char &);
istream &operator >>(unsigned char &);
istream &operator >>(signed short &);
istream &operator >>(unsigned short &);
istream &operator >>(signed int &);
istream &operator >>(unsigned int &);
istream &operator >>(signed long &);
istream &operator >>(unsigned long &);
istream &operator >>(float &);
istream &operator >>(double &);
istream &operator >>(long double &);
istream &operator >>(streambuf &);
istream &operator >>(istream &(*)(istream &));
istream &operator >>(ios &(*)(ios &));

See Also: ios, iostream, ostream

Input/Output Classes 699

istream::eatwhite()

Synopsis: #include <iostream.h>
protected:
void istream::eatwhite();

Semantics: The eatwhite protected member function extracts and discards whitespace characters from the

istream object, until a non-whitespace character is found. The non-whitespace character is not

extracted.

Results: The eatwhite protected member function sets ios::eofbit in the error state in the inherited ios
object if end-of-file is encountered as the first character while extracting whitespace characters.

See Also: istream::ignore, ios::fmtflags

700 Input/Output Classes

istream::gcount()

Synopsis: #include <iostream.h>
public:
int istream::gcount() const;

Semantics: The gcount public member function determines the number of characters extracted by the last

unformatted input member function.

Results: The gcount public member function returns the number of characters extracted by the last

unformatted input member function.

See Also: istream::get, getline, read

Input/Output Classes 701

istream::get()

Synopsis: #include <iostream.h>
public:
int istream::get();

Semantics: This form of the get public member function performs an unformatted read of a single character from

the istream object.

Results: This form of the get public member function returns the character read from the istream object. If

the istream object is positioned at end-of-file before the read, EOF is returned and ios::eofbit
bit is set in the error state in the inherited ios object. ios::failbit bit is not set by this form of

the get public member function.

See Also: istream::putback

702 Input/Output Classes

istream::get()

Synopsis: #include <iostream.h>
public:
istream &istream::get(char &ch);
istream &istream::get(signed char &ch);
istream &istream::get(unsigned char &ch);

Semantics: These forms of the get public member function perform an unformatted read of a single character from

the istream object and store the character in the ch parameter.

Results: These forms of the get public member function return a reference to the istream object.

ios::eofbit is set in the error state in the inherited ios object if the istream object is positioned

at end-of-file before the attempt to read the character. ios::failbit is set in the error state in the

inherited ios object if no character is read.

See Also: istream::read, operator >>

Input/Output Classes 703

istream::get()

Synopsis: #include <iostream.h>
public:
istream &istream::get(char *buf, int len,
char delim = ’\n’);
istream &istream::get(signed char *buf, int len,
char delim = ’\n’);
istream &istream::get(unsigned char *buf, int len,
char delim = ’\n’);

Semantics: These forms of the get public member function perform an unformatted read of at most len -1

characters from the istream object and store them starting at the memory location specified by the

buf parameter. If the character specified by the delim parameter is encountered in the istream object

before len -1 characters have been read, the read terminates without extracting the delimiting character.

After the read terminates, whether or not an error occurred, a null character is stored in buf following

the last character read from the istream object.

If the delim parameter is not specified, the new-line character is assumed.

Results: These forms of the get public member function return a reference to the istream object. If

end-of-file is encountered as the first character, ios::eofbit is set in the error state in the inherited

ios object. If no characters are stored into buf, ios::failbit is set in the error state in the

inherited ios object.

See Also: istream::getline, read, operator >>

704 Input/Output Classes

istream::get()

Synopsis: #include <iostream.h>
public:
istream &istream::get(streambuf &sb, char delim = ’\n’);

Semantics: This form of the get public member function performs an unformatted read of characters from the

istream object and transfers them to the streambuf object specified in the sb parameter. The

transfer stops if end-of-file is encountered, the delimiting character specified in the delim parameter is

found, or if the store into the sb parameter fails. If the delim character is found, it is not extracted from

the istream object and is not transferred to the sb object.

If the delim parameter is not specified, the new-line character is assumed.

Results: The get public member function returns a reference to the istream object. ios::failbit is set

in the error state in the inherited ios object if the store into the streambuf object fails.

See Also: istream::getline, read, operator >>

Input/Output Classes 705

istream::getline()

Synopsis: #include <iostream.h>
public:
istream &istream::getline(char *buf, int len,
char delim = ’\n’);
istream &istream::getline(signed char *buf, int len,
char delim = ’\n’);
istream &istream::getline(unsigned char *buf, int len,
char delim = ’\n’);

Semantics: The getline public member function performs an unformatted read of at most len -1 characters from

the istream object and stores them starting at the memory location specified by the buf parameter. If

the delimiting character, specified by the delim parameter, is encountered in the istream object before

len -1 characters have been read, the read terminates after extracting the delim character.

If len -1 characters have been read and the next character is the delim character, it is not extracted.

After the read terminates, whether or not an error occurred, a null character is stored in the buffer

following the last character read from the istream object.

If the delim parameter is not specified, the new-line character is assumed.

Results: The getline public member function returns a reference to the istream object. If end-of-file is

encountered as the first character, ios::eofbit is set in the error state in the inherited ios object.

If end-of-file is encountered before len characters are transferred or the delim character is reached,

ios::failbit is set in the error state in the inherited ios object.

See Also: istream::get, read, operator >>

706 Input/Output Classes

istream::ignore()

Synopsis: #include <iostream.h>
public:
istream &istream::ignore(int num = 1, int delim = EOF);

Semantics: The ignore public member function extracts and discards up to num characters from the istream
object. If the num parameter is not specified, the ignore public member function extracts and

discards one character. If the delim parameter is not EOF and it is encountered before num characters

have been extracted, the extraction ceases after discarding the delimiting character. The extraction

stops if end-of-file is encountered.

If the num parameter is specified as a negative number, no limit is imposed on the number of characters

extracted and discarded. The operation continues until the delimiting character is found and discarded,

or until end-of-file. This behavior is a WATCOM extension.

Results: The ignore public member function returns a reference to the istream object. If end-of-file is

encountered as the first character, ios::eofbit is set in the error state in the inherited ios object.

See Also: istream::eatwhite

Input/Output Classes 707

istream::ipfx()

Synopsis: #include <iostream.h>
public:
int istream::ipfx(int noskipws = 0);

Semantics: The ipfx public member function is a prefix function executed before each of the formatted and

unformatted read operations. If any bits are set in ios::iostate, the ipfx public member function

immediately returns 0, indicating that the prefix function failed. Failure in the prefix function causes

the input operation to fail.

If the noskipws parameter is 0 or unspecified and the ios::skipws bit is on in ios::fmtflags,

whitespace characters are discarded and the istream object is positioned so that the next character

read is the first character after the discarded whitespace. Otherwise, no whitespace skipping takes

place.

The formatted input functions that read specific types of objects (such as integers and floating-point

numbers) call the ipfx public member function with the noskipws parameter set to zero, allowing

leading whitespaces to be discarded if the ios::skipws bit is on in ios::fmtflags. The

unformatted input functions that read characters without interpretation call the ipfx public member

function with a the noskipws parameter set to 1 so that no whitespace characters are discarded.

If the istream object is tied to an output stream, the output stream is flushed.

Results: If the istream object is not in an error state in the inherited ios object when the above processing is

completed, the ipfx public member function returns a non-zero value to indicate success. Otherwise,

zero is returned to indicate failure.

See Also: istream::isfx

708 Input/Output Classes

istream::isfx()

Synopsis: #include <iostream.h>
public:
void istream::isfx();

Semantics: The isfx public member function is a suffix function executed just before the end of each of the

formatted and unformatted read operations.

As currently implemented, the isfx public member function does not do anything.

See Also: istream::ipfx

Input/Output Classes 709

istream::istream()

Synopsis: #include <iostream.h>
protected:
istream::istream();

Semantics: This form of the protected istream constructor creates an istream object without an associated

streambuf object.

This form of the protected istream constructor is only used implicitly by the compiler when it

generates a constructor for a derived class.

Results: This form of the protected istream constructor creates an initialized istream object.

ios::badbit is set in the error state in the inherited ios object.

See Also: ~istream

710 Input/Output Classes

istream::istream()

Synopsis: #include <iostream.h>
public:
istream::istream(istream const &istrm);

Semantics: This form of the public istream constructor creates an istream object associated with the

streambuf object currently associated with the istrm parameter. The istream object is initialized

and will use the istrm streambuf object for subsequent operations. istrm will continue to use the

streambuf object.

Results: This form of the public istream constructor creates an initialized istream object. If there is no

streambuf object currently associated with the istrm parameter, ios::badbit is set in the error

state in the inherited ios object.

See Also: ~istream

Input/Output Classes 711

istream::istream()

Synopsis: #include <iostream.h>
public:
istream::istream(streambuf *sb);

Semantics: This form of the public istream constructor creates an istream object with an associated

streambuf object specified by the sb parameter.

This function is likely to be used for the creation of an istream object that is associated with the same

streambuf object as another istream object.

Results: This form of the public istream constructor creates an initialized istream object. If the sb

parameter is NULL, ios::badbit is set in the error state in the inherited ios object.

See Also: ~istream

712 Input/Output Classes

istream::~istream()

Synopsis: #include <iostream.h>
public:
virtual istream::~istream();

Semantics: The public virtual ~istream destructor does not do anything explicit. The ios destructor is called

for that portion of the istream object. The call to the public virtual ~istream destructor is inserted

implicitly by the compiler at the point where the istream object goes out of scope.

Results: The istream object is destroyed.

See Also: istream

Input/Output Classes 713

istream::operator =()

Synopsis: #include <iostream.h>
public:
istream &istream::operator =(streambuf *sb);

Semantics: This form of the operator = public member function is used to associate a streambuf object,

specified by the sb parameter, with an existing istream object. The istream object is initialized

and will use the specified streambuf object for subsequent operations.

Results: This form of the operator = public member function returns a reference to the istream object that

is the target of the assignment. If the sb parameter is NULL, ios::badbit is set in the error state in

the inherited ios object.

714 Input/Output Classes

istream::operator =()

Synopsis: #include <iostream.h>
public:
istream &istream::operator =(istream const &istrm);

Semantics: This form of the operator = public member function is used to associate the istream object with

the streambuf object currently associated with the istrm parameter. The istream object is

initialized and will use the istrm’s streambuf object for subsequent operations. The istrm object will

continue to use the streambuf object.

Results: This form of the operator = public member function returns a reference to the istream object that

is the target of the assignment. If there is no streambuf object currently associated with the istrm

parameter, ios::badbit is set in the error state in the inherited ios object.

Input/Output Classes 715

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(char *buf);
istream &istream::operator >>(signed char *buf);
istream &istream::operator >>(unsigned char *buf);

Semantics: These forms of the operator >> public member function perform a formatted read of characters

from the istream object and place them in the buffer specified by the buf parameter. Characters are

read until a whitespace character is found or the maximum size has been read. If a whitespace character

is found, it is not transferred to the buffer and remains in the istream object.

If a non-zero format width has been specified, it is interpreted as the maximum number of characters

that may be placed in buf. No more than format width-1 characters are read from the istream object

and transferred to buf. If format width is zero, characters are transferred until a whitespace character is

found.

Since these forms of the operator >> public member function use format width, it is reset to zero

after each use. It must be set before each input operation that requires a non-zero format width.

A null character is added following the last transferred character, even if the transfer fails because of an

error.

Results: These forms of the operator >> public member function return a reference to the istream object

so that further extraction operations may be specified in the same statement. If no characters are

transferred to buf, ios::failbit is set in the error state in the inherited ios object. If the first

character read yielded end-of-file, ios::eofbit is set in the error state in the inherited ios object.

See Also: istream::get, getline, read

716 Input/Output Classes

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(char &ch);
istream &istream::operator >>(signed char &ch);
istream &istream::operator >>(unsigned char &ch);

Semantics: These forms of the operator >> public member function perform a formatted read of a single

character from the istream object and place it in the ch parameter.

Results: These forms of the operator >> public member function return a reference to the istream object

so that further extraction operations may be specified in the same statement. If the character read

yielded end-of-file, ios::eofbit is set in the error state in the inherited ios object.

See Also: istream::get

Input/Output Classes 717

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(signed int &num);
istream &istream::operator >>(unsigned int &num);
istream &istream::operator >>(signed long &num);
istream &istream::operator >>(unsigned long &num);
istream &istream::operator >>(signed short &num);
istream &istream::operator >>(unsigned short &num);

Semantics: These forms the operator >> public member function perform a formatted read of an integral value

from the istream object and place it in the num parameter.

The number may be preceded by a + or - sign.

If ios::dec is the only bit set in the ios::basefield bits of ios::fmtflags, the number is

interpreted as a decimal (base 10) integer, composed of the digits 0123456789.

If ios::oct is the only bit set in the ios::basefield bits of ios::fmtflags, the number is

interpreted as an octal (base 8) integer, composed of the digits 01234567.

If ios::hex is the only bit set in the ios::basefield bits of ios::fmtflags, the number is

interpreted as a hexadecimal (base 16) integer, composed of the digits 0123456789 and the letters

abcdef or ABCDEF.

If no bits are set in the ios::basefield bits of ios::fmtflags, the operator looks for a prefix

to determine the base of the number. If the first two characters are 0x or 0X, the number is interpreted

as a hexadecimal number. If the first character is a 0 (and the second is not an x or X), the number is

interpreted as an octal integer. Otherwise, no prefix is expected and the number is interpreted as a

decimal integer.

If more than one bit is set in the ios::basefield bits of ios::fmtflags, the number is

interpreted as a decimal integer.

Results: These forms of the operator >> public member function return a reference to the istream object

so that further extraction operations may be specified in the same statement. If end-of-file is

encountered as the first character, ios::eofbit is set in the error state in the inherited ios object.

If an overflow occurs while converting to the required integer type, the ios::failbit is set in the

error state in the inherited ios object.

See Also: ios::fmtflags

718 Input/Output Classes

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(float &num);
istream &istream::operator >>(double &num);
istream &istream::operator >>(long double &num);

Semantics: These forms of the operator >> public member function perform a formatted read of a

floating-point value from the istream object and place it in the num parameter.

The floating-point value may be specified in any form that is acceptable to the C++ compiler.

Results: These forms of the operator >> public member function return a reference to the istream object

so that further extraction operations may be specified in the same statement. If end-of-file is

encountered as the first character, ios::eofbit is set in the error state in the inherited ios object.

If an overflow occurs while converting to the required type, the ios::failbit is set in the error

state in the inherited ios object.

Input/Output Classes 719

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(streambuf &sb);

Semantics: This form of the operator >> public member function transfers all the characters from the

istream object into the sb parameter. Reading continues until end-of-file is encountered.

Results: This form of the operator >> public member function return a reference to the istream object so

that further extraction operations may be specified in the same statement.

720 Input/Output Classes

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(istream &(*fn)(istream &));
istream &istream::operator >>(ios &(*fn)(ios &));

Semantics: These forms of the operator >> public member function are used to implement the

non-parameterized manipulators for the istream class. The function specified by the fn parameter is

called with the istream object as its parameter.

Results: These forms of the operator >> public member function return a reference to the istream object

so that further extraction operations may be specified in the same statement.

Input/Output Classes 721

istream::peek()

Synopsis: #include <iostream.h>
public:
int istream::peek();

Semantics: The peek public member function looks up the next character to be extracted from the istream
object, without extracting the character.

Results: The peek public member function returns the next character to be extracted from the istream object.

If the istream object is positioned at end-of-file, EOF is returned.

See Also: istream::get

722 Input/Output Classes

istream::putback()

Synopsis: #include <iostream.h>
public:
istream &istream::putback(char ch);

Semantics: The putback public member function attempts to put the extracted character specified by the ch

parameter back into the istream object. The ch character must be the same as the character before

the current position of the istream object, usually the last character extracted from the stream. If it is

not the same character, the result of the next character extraction is undefined.

The number of characters that can be put back is defined by the istream object, but is usually at least

4. Depending on the status of the buffers used for input, it may be possible to put back more than 4

characters.

Results: The putback public member function returns a reference to the istream object. If the putback
public member function is unable to put back the ch parameter, ios::failbit is set in the error state

in the inherited ios object.

See Also: istream::get

Input/Output Classes 723

istream::read()

Synopsis: #include <iostream.h>
public:
istream &istream::read(char *buf, int len);
istream &istream::read(signed char *buf, int len);
istream &istream::read(unsigned char *buf, int len);

Semantics: The read public member function performs an unformatted read of at most len characters from the

istream object and stores them in the memory locations starting at buf. If end-of-file is encountered

before len characters have been transferred, the transfer stops and ios::failbit is set in the error

state in the inherited ios object.

The number of characters extracted can be determined with the gcount member function.

Results: The read public member function returns a reference to the istream object. If end-of-file is

encountered as the first character, ios::eofbit is set in the error state in the inherited ios object.

If end-of-file is encountered before len characters are transferred, ios::failbit is set in the error

state in the inherited ios object.

See Also: istream::gcount, get, getline

724 Input/Output Classes

istream::seekg()

Synopsis: #include <iostream.h>
public:
istream &istream::seekg(streampos pos);

Semantics: The seekg public member function positions the istream object to the position specified by the pos

parameter so that the next input operation commences from that position.

Results: The seekg public member function returns a reference to the istream object. If the seek operation

fails, ios::failbit is set in the error state in the inherited ios object.

See Also: istream::tellg, ostream::tellp, ostream::seekp

Input/Output Classes 725

istream::seekg()

Synopsis: #include <iostream.h>
public:
istream &istream::seekg(streamoff offset, ios::seekdir dir);

Semantics: The seekg public member function positions the istream object to the specified position so that the

next input operation commences from that position.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in conjunction

with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.

ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).

ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate sign, the

seekg public member function fails.

Results: The seekg public member function returns a reference to the istream object. If the seek operation

fails, ios::failbit is set in the error state in the inherited ios object.

See Also: ostream::tellp, ostream::seekp
istream::tellg

726 Input/Output Classes

istream::sync()

Synopsis: #include <iostream.h>
public:
int istream::sync();

Semantics: The sync public member function synchronizes the input buffer and the istream object with

whatever source of characters is being used. The sync public member function uses the streambuf
class’s sync virtual member function to carry out the synchronization. The specific behavior is

dependent on what type of streambuf derived object is associated with the istream object.

Results: The sync public member function returns __NOT_EOF on success, otherwise EOF is returned.

Input/Output Classes 727

istream::tellg()

Synopsis: #include <iostream.h>
public:
streampos istream::tellg();

Semantics: The tellg public member function determines the position in the istream object of the next

character available for reading. The first character in an istream object is at offset zero.

Results: The tellg public member function returns the position of the next character available for reading.

See Also: ostream::tellp, ostream::seekp
istream::seekg

728 Input/Output Classes

istrstream

Declared: strstrea.h

Derived from: strstreambase, istream

The istrstream class is used to create and read from string stream objects.

The istrstream class provides little of its own functionality. Derived from the strstreambase
and istream classes, its constructors and destructor provide simplified access to the appropriate

equivalents in those base classes.

Of the available I/O stream classes, creating an istrstream object is the preferred method of

performing read operations from a string stream.

Public Member Functions

The following member functions are declared in the public interface:

istrstream(char *);
istrstream(signed char *);
istrstream(unsigned char *);
istrstream(char *, int);
istrstream(signed char *, int);
istrstream(unsigned char *, int);
~istrstream();

See Also: istream, ostrstream, strstream, strstreambase

Input/Output Classes 729

istrstream::istrstream()

Synopsis: #include <strstrea.h>
public:
istrstream::istrstream(char *str);
istrstream::istrstream(signed char *str);
istrstream::istrstream(unsigned char *str);

Semantics: This form of the public istrstream constructor creates an istrstream object consisting of the

null terminated C string specified by the str parameter. The inherited istream member functions can

be used to read from the istrstream object.

Results: This form of the public istrstream constructor creates an initialized istrstream object.

See Also: ~istrstream

730 Input/Output Classes

istrstream::istrstream()

Synopsis: #include <strstrea.h>
public:
istrstream::istrstream(char *str, int len);
istrstream::istrstream(signed char *str, int len);
istrstream::istrstream(unsigned char *str, int len);

Semantics: This form of the public istrstream constructor creates an istrstream object consisting of the

characters starting at str and ending at str + len - 1. The inherited istream member functions can be

used to read from the istrstream object.

Results: This form of the public istrstream constructor creates an initialized istrstream object.

See Also: ~istrstream

Input/Output Classes 731

istrstream::~istrstream()

Synopsis: #include <strstrea.h>
public:
istrstream::~istrstream();

Semantics: The public ~istrstream destructor does not do anything explicit. The call to the public

~istrstream destructor is inserted implicitly by the compiler at the point where the istrstream
object goes out of scope.

Results: The istrstream object is destroyed.

See Also: istrstream

732 Input/Output Classes

Manipulators

Declared: iostream.h and iomanip.h

Manipulators are designed to be inserted into or extracted from a stream. Manipulators come in two

forms, non-parameterized and parameterized. The non-parameterized manipulators are simpler and are

declared in <iostream.h>. The parameterized manipulators require more complexity and are

declared in <iomanip.h>.

<iomanip.h> defines two macros SMANIP_define and SMANIP_make to implement

parameterized manipulators. The workings of the SMANIP_define and SMANIP_make macros are

disclosed in the header file and are not discussed here.

Non-parameterized Manipulators

The following non-parameterized manipulators are declared in <iostream.h>:

ios &dec(ios &);
ios &hex(ios &);
ios &oct(ios &);
istream &ws(istream &);
ostream &endl(ostream &);
ostream &ends(ostream &);
ostream &flush(ostream &);

Parameterized Manipulators

The following parameterized manipulators are declared in <iomanip.h>:

SMANIP_define(long) resetiosflags(long);
SMANIP_define(int) setbase(int);
SMANIP_define(int) setfill(int);
SMANIP_define(long) setiosflags(long);
SMANIP_define(int) setprecision(int);
SMANIP_define(int) setw(int);
SMANIP_define(int) setwidth(int);

Input/Output Classes 733

manipulator dec()

Synopsis: #include <iostream.h>
ios &dec(ios &strm);

Semantics: The dec manipulator sets the ios::basefield bits for decimal formatting in ios::fmtflags in

the strm ios object.

See Also: ios::fmtflags

734 Input/Output Classes

manipulator endl()

Synopsis: #include <iostream.h>
ostream &endl(ostream &ostrm);

Semantics: The endl manipulator writes a new-line character to the stream specified by the ostrm parameter and

performs a flush.

See Also: ostream::flush

Input/Output Classes 735

manipulator ends()

Synopsis: #include <iostream.h>
ostream &ends(ostream &ostrm);

Semantics: The ends manipulator writes a null character to the stream specified by the ostrm parameter.

736 Input/Output Classes

manipulator flush()

Synopsis: #include <iostream.h>
ostream &flush(ostream &ostrm);

Semantics: The flush manipulator flushes the stream specified by the ostrm parameter. The flush is performed in

the same manner as the flush member function.

See Also: ostream::flush

Input/Output Classes 737

manipulator hex()

Synopsis: #include <iostream.h>
ios &hex(ios &strm);

Semantics: The hex manipulator sets the ios::basefield bits for hexadecimal formatting in

ios::fmtflags in the strm ios object.

See Also: ios::fmtflags

738 Input/Output Classes

manipulator oct()

Synopsis: #include <iostream.h>
ios &oct(ios &strm);

Semantics: The oct manipulator sets the ios::basefield bits for octal formatting in ios::fmtflags in

the strm ios object.

See Also: ios::fmtflags

Input/Output Classes 739

manipulator resetiosflags()

Synopsis: #include <iomanip.h>
SMANIP_define(long) resetiosflags(long flags)

Semantics: The resetiosflags manipulator turns off the bits in ios::fmtflags that correspond to the bits

that are on in the flags parameter. No other bits are affected.

See Also: ios::flags, ios::fmtflags, ios::setf, ios::unsetf

740 Input/Output Classes

manipulator setbase()

Synopsis: #include <iomanip.h>
SMANIP_define(int) setbase(int base);

Semantics: The setbase manipulator sets the ios::basefield bits in ios::fmtflags to the value

specified by the base parameter within the stream that the setbase manipulator is operating upon.

See Also: ios::fmtflags

Input/Output Classes 741

manipulator setfill()

Synopsis: #include <iomanip.h>
SMANIP_define(int) setfill(int fill)

Semantics: The setfill manipulator sets the fill character to the value specified by the fill parameter within the

stream that the setfill manipulator is operating upon.

See Also: ios::fill

742 Input/Output Classes

manipulator setiosflags()

Synopsis: #include <iomanip.h>
SMANIP_define(long) setiosflags(long flags);

Semantics: The setiosflags manipulator turns on the bits in ios::fmtflags that correspond to the bits that

are on in the flags parameter. No other bits are affected.

See Also: ios::flags, ios::fmtflags, ios::setf, ios::unsetf

Input/Output Classes 743

manipulator setprecision()

Synopsis: #include <iomanip.h>
SMANIP_define(int) setprecision(int prec);

Semantics: The setprecision manipulator sets the format precision to the value specified by the prec

parameter within the stream that the setprecision manipulator is operating upon.

See Also: ios::precision

744 Input/Output Classes

manipulator setw()

Synopsis: #include <iomanip.h>
SMANIP_define(int) setw(int wid);

Semantics: The setw manipulator sets the format width to the value specified by the wid parameter within the

stream that the setw manipulator is operating upon.

See Also: ios::width, manipulator setwidth

Input/Output Classes 745

manipulator setwidth()

Synopsis: #include <iomanip.h>
SMANIP_define(int) setwidth(int wid);

Semantics: The setwidth manipulator sets the format width to the value specified by the wid parameter within

the stream that the setwidth manipulator is operating upon.

This function is a WATCOM extension.

See Also: ios::width, manipulator setw

746 Input/Output Classes

manipulator ws()

Synopsis: #include <iostream.h>
istream &ws(istream &istrm);

Semantics: The ws manipulator extracts and discards whitespace characters from the istrm parameter, leaving the

stream positioned at the next non-whitespace character.

The ws manipulator is needed particularly when the ios::skipws bit is not set in

ios::fmtflags in the istrm object. In this case, whitespace characters must be explicitly removed

from the stream, since the formatted input operations will not automatically remove them.

See Also: istream::eatwhite, istream::ignore

Input/Output Classes 747

ofstream

Declared: fstream.h

Derived from: fstreambase, ostream

The ofstream class is used to create new files or access existing files for writing. The file can be

opened and closed, and write and seek operations can be performed.

The ofstream class provides very little of its own functionality. Derived from both the

fstreambase and ostream classes, its constructors, destructor and member function provide

simplified access to the appropriate equivalents in those base classes.

Of the available I/O stream classes, creating an ofstream object is the preferred method of accessing

a file for output operations.

Public Member Functions

The following public member functions are declared:

ofstream();
ofstream(char const *,
ios::openmode = ios::out,
int = filebuf::openprot);
ofstream(filedesc);
ofstream(filedesc, char *, int);
~ofstream();
void open(char const *,
ios::openmode = ios::out,
int = filebuf::openprot);

See Also: fstream, fstreambase, ifstream, ostream

748 Input/Output Classes

ofstream::ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::ofstream();

Semantics: This form of the public ofstream constructor creates an ofstream object that is not connected to a

file. The open or attach member functions should be used to connect the ofstream object to a

file.

Results: The public ofstream constructor produces an ofstream object that is not connected to a file.

See Also: ~ofstream

Input/Output Classes 749

ofstream::ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::ofstream(const char *name,
ios::openmode mode = ios::out,
int prot = filebuf::openprot);

Semantics: This form of the public ofstream constructor creates an ofstream object that is connected to the

file specified by the name parameter, using the specified mode and prot parameters. The connection is

made via the C library open function.

Results: The public ofstream constructor produces an ofstream object that is connected to the file

specified by name. If the open fails, ios::failbit and ios::badbit are set in the error state in

the inherited ios object.

See Also: ~ofstream, open, fstreambase::close, openmode, openprot

750 Input/Output Classes

ofstream::ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::ofstream(filedesc hdl);

Semantics: This form of the public ofstream constructor creates an ofstream object that is attached to the file

specified by the hdl parameter.

Results: The public ofstream constructor produces an ofstream object that is attached to hdl. If the attach

fails, ios::failbit and ios::badbit are set in the error state in the inherited ios object.

See Also: ~ofstream, fstreambase::attach, fstreambase::fd

Input/Output Classes 751

ofstream::ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::ofstream(filedesc hdl, char *buf, int len);

Semantics: This form of the public ofstream constructor creates an ofstream object that is connected to the

file specified by the hdl parameter. The buffer specified by the buf and len parameters is offered to the

associated filebuf object via the setbuf member function. If the buf parameter is NULL or the len

is less than or equal to zero, the filebuf is unbuffered, so that each read or write operation reads or

writes a single character at a time.

Results: The public ofstream constructor produces an ofstream object that is attached to hdl. If the

connection to hdl fails, ios::failbit and ios::badbit are set in the error state in the inherited

ios object. If the setbuf fails, ios::failbit is set in the error state in the inherited ios object.

See Also: ~ofstream, fstreambase::attach, fstreambase::fd, fstreambase::setbuf

752 Input/Output Classes

ofstream::~ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::~ofstream();

Semantics: The public ~ofstream destructor does not do anything explicit. The call to the public ~ofstream
destructor is inserted implicitly by the compiler at the point where the ofstream object goes out of

scope.

Results: The public ~ofstream destructor destroys the ofstream object.

See Also: ofstream

Input/Output Classes 753

ofstream::open()

Synopsis: #include <fstream.h>
public:
void ofstream::open(const char *name,
ios::openmode mode = ios::out,
int prot = filebuf::openprot);

Semantics: The open public member function connects the ofstream object to the file specified by the name

parameter, using the specified mode and prot parameters. The mode parameter is optional and usually

is not specified unless additional bits (such as ios::binary or ios::text) are to be specified.

The connection is made via the C library open function.

Results: If the open fails, ios::failbit is set in the error state in the inherited ios object.

See Also: ofstream, openmode, openprot, fstreambase::attach, fstreambase::close,

fstreambase::fd, fstreambase::is_open

754 Input/Output Classes

ostream

Declared: iostream.h

Derived from: ios

Derived by: iostream, ofstream, ostrstream

The ostream class supports writing characters to a class derived from the streambuf class, and

provides formatted conversion of types (such as integers and floating-point numbers) into characters.

The class derived from the streambuf class provides the methods for communicating with the

external device (screen, disk), while the ostream class provides the conversion of the types into

characters.

Generally, ostream objects won’t be explicitly created by a program, since there is no mechanism at

this level to open a device. The only default ostream objects in a program are cout, cerr, and

clog which write to the standard output and error devices (usually the screen).

The ostream class supports two basic concepts of output: formatted and unformatted. The

overloaded operator << member functions are called inserters and they provide the support for

formatted output. The rest of the member functions deal with unformatted output, managing the state of

the ios object and providing a friendlier interface to the associated streambuf object.

Protected Member Functions

The following protected member functions are declared:

ostream();

Public Member Functions

The following public member functions are declared:

ostream(ostream const &);
ostream(streambuf *);
virtual ~ostream();
ostream &flush();
int opfx();
void osfx();
ostream &put(char);
ostream &put(signed char);
ostream &put(unsigned char);
ostream &seekp(streampos);
ostream &seekp(streamoff, ios::seekdir);
streampos tellp();
ostream &write(char const *, int);
ostream &write(signed char const *, int);
ostream &write(unsigned char const *, int);

Public Member Operators

The following public member operators are declared:

ostream &operator =(streambuf *);
ostream &operator =(ostream const &);
ostream &operator <<(char);
ostream &operator <<(signed char);
ostream &operator <<(unsigned char);

Input/Output Classes 755

ostream

ostream &operator <<(signed short);
ostream &operator <<(unsigned short);
ostream &operator <<(signed int);
ostream &operator <<(unsigned int);
ostream &operator <<(signed long);
ostream &operator <<(unsigned long);
ostream &operator <<(float);
ostream &operator <<(double);
ostream &operator <<(long double);
ostream &operator <<(void *);
ostream &operator <<(streambuf &);
ostream &operator <<(char const *);
ostream &operator <<(signed char const *);
ostream &operator <<(unsigned char const *);
ostream &operator <<(ostream &(*)(ostream &));
ostream &operator <<(ios &(*)(ios &));

See Also: ios, iostream, istream

756 Input/Output Classes

ostream::flush()

Synopsis: #include <iostream.h>
public:
ostream &ostream::flush();

Semantics: The flush public member function causes the ostream object’s buffers to be flushed, forcing the

contents to be written to the actual device connected to the ostream object.

Results: The flush public member function returns a reference to the ostream object. On failure,

ios::failbit is set in the error state in the inherited ios object.

See Also: ostream::osfx

Input/Output Classes 757

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(char ch);
ostream &ostream::operator <<(signed char ch);
ostream &ostream::operator <<(unsigned char ch);

Semantics: These forms of the operator << public member function write the ch character into the ostream
object.

Results: These forms of the operator << public member function return a reference to the ostream object

so that further insertion operations may be specified in the same statement. ios::failbit is set in

the error state in the inherited ios object if an error occurs.

See Also: ostream::put

758 Input/Output Classes

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(char const *str);
ostream &ostream::operator <<(signed char const *str);
ostream &ostream::operator <<(unsigned char const *str);

Semantics: These forms of the operator << public member function perform a formatted write of the contents

of the C string specified by the str parameter to the ostream object. The characters from str are

transferred up to, but not including the terminating null character.

Results: These forms of the operator << public member function return a reference to the ostream object

so that further insertion operations may be specified in the same statement. ios::failbit is set in

the error state in the inherited ios object if an error occurs.

Input/Output Classes 759

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(signed int num);
ostream &ostream::operator <<(unsigned int num);
ostream &ostream::operator <<(signed long num);
ostream &ostream::operator <<(unsigned long num);
ostream &ostream::operator <<(signed short num);
ostream &ostream::operator <<(unsigned short num);

Semantics: These forms of the operator << public member function perform a formatted write of the integral

value specified by the num parameter to the ostream object. The integer value is converted to a string

of characters which are written to the ostream object. num is converted to a base representation

depending on the setting of the ios::basefield bits in ios::fmtflags. If the ios::oct bit

is the only bit on, the conversion is to an octal (base 8) representation. If the ios::hex bit is the only

bit on, the conversion is to a hexadecimal (base 16) representation. Otherwise, the conversion is to a

decimal (base 10) representation.

For decimal conversions only, a sign may be written in front of the number. If the number is negative, a

- minus sign is written. If the number is positive and the ios::showpos bit is on in

ios::fmtflags, a + plus sign is written. No sign is written for a value of zero.

If the ios::showbase bit is on in ios::fmtflags, and the conversion is to octal or hexadecimal,

the base indicator is written next. The base indicator for a conversion to octal is a zero. The base

indicator for a conversion to hexadecimal is 0x or 0X, depending on the setting of the

ios::uppercase bit in ios::fmtflags.

If the value being written is zero, the conversion is to octal, and the ios::showbase bit is on,

nothing further is written since a single zero is sufficient.

The value of num is then converted to characters. For conversions to decimal, the magnitude of the

number is converted to a string of decimal digits 0123456789. For conversions to octal, the number

is treated as an unsigned quantity and converted to a string of octal digits 01234567. For conversions

to hexadecimal, the number is treated as an unsigned quantity and converted to a string of hexadecimal

digits 0123456789 and the letters abcdef or ABCDEF, depending on the setting of the

ios::uppercase in ios::fmtflags. The string resulting from the conversion is then written to

the ostream object.

If the ios::internal bit is set in ios::fmtflags and padding is required, the padding

characters are written after the sign and/or base indicator (if present) and before the digits.

Results: These forms of the operator << public member function return a reference to the ostream object

so that further insertion operations may be specified in the same statement. ios::failbit is set in

the error state in the inherited ios object if an error occurs.

760 Input/Output Classes

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(float num);
ostream &ostream::operator <<(double num);
ostream &ostream::operator <<(long double num);

Semantics: These forms of the operator << public member function perform a formatted write of the

floating-point value specified by the num parameter to the ostream object. The number is converted

to either scientific (exponential) form or fixed-point form, depending on the setting of the

ios::floatfield bits in ios::fmtflags. If ios::scientific is the only bit set, the

conversion is to scientific form. If ios::fixed is the only bit set, the conversion is to fixed-point

form. Otherwise (neither or both bits set), the value of the number determines the conversion used. If

the exponent is less than -4 or is greater than or equal to the format precision, the scientific form is

used. Otherwise, the fixed-point form is used.

Scientific form consists of a minus sign (for negative numbers), one digit, a decimal point, format

precision-1 digits, an e or E (depending on the setting of the ios::uppercase bit), a minus sign (for

negative exponents) or a plus sign (for zero or positive exponents), and two or three digits for the

exponent. The digit before the decimal is not zero, unless the number is zero. If the format precision is

zero (or one), no digits are written following the decimal point.

Fixed-point form consists of a minus sign (for negative numbers), one or more digits, a decimal point,

and format precision digits.

If the ios::showpoint bit is not set in ios::fmtflags, trailing zeroes are trimmed after the

decimal point (and before the exponent for scientific form), and if no digits remain after the decimal

point, the decimal point is discarded as well.

If the ios::internal bit is set in ios::fmtflags and padding is required, the padding

characters are written after the sign (if present) and before the digits.

Results: These forms of the operator << public member function return a reference to the ostream object

so that further insertion operations may be specified in the same statement. ios::failbit is set in

the error state in the inherited ios object if an error occurs.

Input/Output Classes 761

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(void *ptr);

Semantics: This form of the operator << public member function performs a formatted write of the pointer

value specified by the ptr parameter to the ostream object. The ptr parameter is converted to an

implementation-defined string of characters and written to the ostream object. With the Open

Watcom C++ implementation, the string starts with 0x or 0X (depending on the setting of the

ios::uppercase bit), followed by 4 hexadecimal digits for 16-bit pointers and 8 hexadecimal digits

for 32-bit pointers. Leading zeroes are added to ensure the correct number of digits are written. For far

pointers, 4 additional hexadecimal digits and a colon are inserted immediately after the 0x prefix.

Results: This form of the operator << public member function returns a reference to the ostream object so

that further insertion operations may be specified in the same statement. ios::failbit is set in the

error state in the inherited ios object if an error occurs during the write.

762 Input/Output Classes

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(streambuf &sb);

Semantics: This form of the operator << public member function transfers the contents of the sb streambuf
object to the ostream object. Reading from the streambuf object stops when the read fails. No

padding with the fill character takes place on output to the ostream object.

Results: This form of the operator << public member function returns a reference to the ostream object so

that further insertion operations may be specified in the same statement. ios::failbit is set in the

error state in the inherited ios object if an error occurs.

Input/Output Classes 763

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(ostream &(*fn)(ostream &));
ostream &ostream::operator <<(ios &(*fn)(ios &));

Semantics: These forms of the operator << public member function are used to implement the

non-parameterized manipulators for the ostream class. The function specified by the fn parameter is

called with the ostream object as its parameter.

Results: These forms of the operator << public member function return a reference to the ostream object

so that further insertions operations may be specified in the same statement.

764 Input/Output Classes

ostream::operator =()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator =(streambuf *sb);

Semantics: This form of the operator = public member function is used to associate a streambuf object,

specified by the sb parameter, with an existing ostream object. The ostream object is initialized

and will use the specified streambuf object for subsequent operations.

Results: This form of the operator = public member function returns a reference to the ostream object that

is the target of the assignment. If the sb parameter is NULL, ios::badbit is set in the error state in

the inherited ios object.

Input/Output Classes 765

ostream::operator =()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator =(const ostream &ostrm);

Semantics: This form of the operator = public member function is used to associate the ostream object with

the streambuf object currently associated with the ostrm parameter. The ostream object is

initialized and will use the ostrm’s streambuf object for subsequent operations. The ostrm object

will continue to use the streambuf object.

Results: This form of the operator = public member function returns a reference to the ostream object that

is the target of the assignment. If there is no streambuf object currently associated with the ostrm

parameter, ios::badbit is set in the error state in the inherited ios object.

766 Input/Output Classes

ostream::opfx()

Synopsis: #include <iostream.h>
public:
int ostream::opfx();

Semantics: If opfx public member function is a prefix function executed before each of the formatted and

unformatted output operations. If any bits are set in ios::iostate, the opfx public member

function immediately returns zero, indicating that the prefix function failed. Failure in the prefix

function causes the output operation to fail.

If the ostream object is tied to another ostream object, the other ostream object is flushed.

Results: The opfx public member function returns a non-zero value on success, otherwise zero is returned.

See Also: ostream::osfx, flush, ios::tie

Input/Output Classes 767

ostream::osfx()

Synopsis: #include <iostream.h>
public:
void ostream::osfx();

Semantics: The osfx public member function is a suffix function executed at the end of each of the formatted and

unformatted output operations.

If the ios::unitbuf bit is set in ios::fmtflags, the flush member function is called. If the

ios::stdio bit is set in ios::fmtflags, the C library fflush function is invoked on the

stdout and stderr file streams.

See Also: ostream::osfx, flush

768 Input/Output Classes

ostream::ostream()

Synopsis: #include <iostream.h>
protected:
ostream::ostream();

Semantics: This form of the protected ostream constructor creates an ostream object without an attached

streambuf object.

This form of the protected ostream constructor is only used implicitly by the compiler when it

generates a constructor for a derived class.

Results: This form of the protected ostream constructor creates an initialized ostream object.

ios::badbit is set in the error state in the inherited ios object.

See Also: ~ostream

Input/Output Classes 769

ostream::ostream()

Synopsis: #include <iostream.h>
public:
ostream::ostream(ostream const &ostrm);

Semantics: This form of the public ostream constructor creates an ostream object associated with the

streambuf object currently associated with the ostrm parameter. The ostream object is initialized

and will use the ostrm’s streambuf object for subsequent operations. The ostrm object will continue

to use the streambuf object.

Results: This form of the public ostream constructor creates an initialized ostream object. If there is no

streambuf object currently associated with the ostrm parameter, ios::badbit is set in the error

state in the inherited ios object.

See Also: ~ostream

770 Input/Output Classes

ostream::ostream()

Synopsis: #include <iostream.h>
public:
ostream::ostream(streambuf *sb);

Semantics: This form of the public ostream constructor creates an ostream object with an associated

streambuf object specified by the sb parameter.

This function is likely to be used for the creation of an ostream object that is associated with the same

streambuf object as another ostream object.

Results: This form of the public ostream constructor creates an initialized ostream object. If the sb

parameter is NULL, ios::badbit is set in the error state in the inherited ios object.

See Also: ~ostream

Input/Output Classes 771

ostream::~ostream()

Synopsis: #include <iostream.h>
public:
virtual ostream::~ostream();

Semantics: The public virtual ~ostream destructor does not do anything explicit. The ios destructor is called

for that portion of the ostream object. The call to the public virtual ~ostream destructor is inserted

implicitly by the compiler at the point where the ostream object goes out of scope.

Results: The ostream object is destroyed.

See Also: ostream

772 Input/Output Classes

ostream::put()

Synopsis: #include <iostream.h>
public:
ostream &ostream::put(char ch);
ostream &ostream::put(signed char ch);
ostream &ostream::put(unsigned char ch);

Semantics: These forms of the put public member function write the ch character to the ostream object.

Results: These forms of the put public member function return a reference to the ostream object. If an error

occurs, ios::failbit is set in the error state in the inherited ios object.

See Also: ostream::operator <<, write

Input/Output Classes 773

ostream::seekp()

Synopsis: #include <iostream.h>
public:
ostream &ostream::seekp(streampos pos);

Semantics: This from of the seekp public member function positions the ostream object to the position

specified by the pos parameter so that the next output operation commences from that position.

The pos value is an absolute position within the stream. It may be obtained via a call to the tellp
member function.

Results: This from of the seekp public member function returns a reference to the ostream object. If the

seek operation fails, ios::failbit is set in the error state in the inherited ios object.

See Also: ostream::tellp, istream::tellg, istream::seekg

774 Input/Output Classes

ostream::seekp()

Synopsis: #include <iostream.h>
public:
ostream &ostream::seekp(streamoff offset, ios::seekdir dir);

Semantics: This from of the seekp public member function positions the ostream object to the specified

position so that the next output operation commences from that position.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in conjunction

with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.

ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).

ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate sign, the

seekp public member function fails.

Results: This from of the seekp public member function returns a reference to the ostream object. If the

seek operation fails, ios::failbit is set in the error state in the inherited ios object.

See Also: ostream::tellp, istream::tellg, istream::seekg

Input/Output Classes 775

ostream::tellp()

Synopsis: #include <iostream.h>
public:
streampos ostream::tellp();

Semantics: The tellp public member function returns the position in the ostream object at which the next

character will be written. The first character in an ostream object is at offset zero.

Results: The tellp public member function returns the position in the ostream object at which the next

character will be written.

See Also: ostream::seekp, istream::tellg, istream::seekg

776 Input/Output Classes

ostream::write()

Synopsis: #include <iostream.h>
public:
ostream &ostream::write(char const *buf, int len);
ostream &ostream::write(signed char const *buf, int len);
ostream &ostream::write(unsigned char const *buf, int len);

Semantics: The write public member function performs an unformatted write of the characters specified by the

buf and len parameters into the ostream object.

Results: These member functions return a reference to the ostream object. If an error occurs,

ios::failbit is set in the error state in the inherited ios object.

Input/Output Classes 777

ostrstream

Declared: strstrea.h

Derived from: strstreambase, ostream

The ostrstream class is used to create and write to string stream objects.

The ostrstream class provides little of its own functionality. Derived from the strstreambase
and ostream classes, its constructors and destructor provide simplified access to the appropriate

equivalents in those base classes. The member functions provide specialized access to the string stream

object.

Of the available I/O stream classes, creating an ostrstream object is the preferred method of

performing write operations to a string stream.

Public Member Functions

The following member functions are declared in the public interface:

ostrstream();
ostrstream(char *, int, ios::openmode = ios::out);
ostrstream(signed char *, int, ios::openmode = ios::out);
ostrstream(unsigned char *, int, ios::openmode = ios::out);
~ostrstream();
int pcount() const;
char *str();

See Also: istrstream, ostream, ostrstream, strstreambase

778 Input/Output Classes

ostrstream::ostrstream()

Synopsis: #include <strstrea.h>
public:
ostrstream::ostrstream();

Semantics: This form of the public ostrstream constructor creates an empty ostrstream object. Dynamic

allocation is used. The inherited stream member functions can be used to access the ostrstream
object.

Results: This form of the public ostrstream constructor creates an initialized, empty ostrstream object.

See Also: ~ostrstream

Input/Output Classes 779

ostrstream::ostrstream()

Synopsis: #include <strstrea.h>
public:
ostrstream::ostrstream(char *str,
int len,
ios::openmode mode = ios::out);
ostrstream::ostrstream(signed char *str,
int len,
ios::openmode mode = ios::out);
ostrstream::ostrstream(unsigned char *str,
int len,
ios::openmode mode = ios::out);

Semantics: These forms of the public ostrstream constructor create an initialized ostrstream object.

Dynamic allocation is not used. The buffer is specified by the str and len parameters. If the

ios::append or ios::atend bits are set in the mode parameter, the str parameter is assumed to

contain a C string terminated by a null character, and writing commences at the null character.

Otherwise, writing commences at str.

Results: This form of the public ostrstream constructor creates an initialized ostrstream object.

See Also: ~ostrstream

780 Input/Output Classes

ostrstream::~ostrstream()

Synopsis: #include <strstrea.h>
public:
ostrstream::~ostrstream();

Semantics: The public ~ostrstream destructor does not do anything explicit. The call to the public

~ostrstream destructor is inserted implicitly by the compiler at the point where the ostrstream
object goes out of scope.

Results: The ostrstream object is destroyed.

See Also: ostrstream

Input/Output Classes 781

ostrstream::pcount()

Synopsis: #include <strstrea.h>
public:
int ostrstream::pcount() const;

Semantics: The pcount public member function computes the number of characters that have been written to the

ostrstream object. This value is particularly useful if the ostrstream object does not contain a C

string (terminated by a null character), so that the number of characters cannot be determined with the C

library strlen function. If the ostrstream object was created by appending to a C string in a static

buffer, the length of the original string is included in the character count.

Results: The pcount public member function returns the number of characters contained in the ostrstream
object.

782 Input/Output Classes

ostrstream::str()

Synopsis: #include <strstrea.h>
public:
char *ostrstream::str();

Semantics: The str public member function creates a pointer to the buffer being used by the ostrstream object

. If the ostrstream object was created without dynamic allocation (static mode), the pointer is the

same as the buffer pointer passed in the constructor.

For ostrstream objects using dynamic allocation, the str public member function makes an

implicit call to the strstreambuf::freeze member function. If nothing has been written to the

ostrstream object, the returned pointer will be NULL.

Note that the buffer does not necessarily end with a null character. If the pointer returned by the str
public member function is to be interpreted as a C string, it is the program’s responsibility to ensure that

the null character is present.

Results: The str public member function returns a pointer to the buffer being used by the ostrstream object

.

Input/Output Classes 783

stdiobuf

Declared: stdiobuf.h

Derived from: streambuf

The stdiobuf class specializes the streambuf class and is used to implement the standard

input/output buffering required for the cin, cout, cerr and clog predefined objects.

The stdiobuf class behaves in a similar way to the filebuf class, but does not need to switch

between the get area and put area, since no stdiobuf object can be created for both reading and

writing. When the get area is empty and a read is done, the underflow virtual member function

reads more characters and fills the get area again. When the put area is full and a write is done, the

overflow virtual member function writes the characters and makes the put area empty again.

C++ programmers who wish to use the standard input/output streams without deriving new objects do

not need to explicitly create or use a stdiobuf object.

Public Member Functions

The following member functions are declared in the public interface:

stdiobuf();
stdiobuf(FILE *);
~stdiobuf();
virtual int overflow(int = EOF);
virtual int underflow();
virtual int sync();

See Also: streambuf, ios

784 Input/Output Classes

stdiobuf::overflow()

Synopsis: #include <stdiobuf.h>
public:
virtual int stdiobuf::overflow(int ch = EOF);

Semantics: The overflow public virtual member function provides the output communication to the standard

output and standard error devices to which the stdiobuf object is connected. Member functions in

the streambuf class call the overflow public virtual member function for the derived class when

the put area is full.

The overflow public virtual member function performs the following steps:

1. If no buffer is present, a buffer is allocated with the streambuf::allocate member

function, which may call the doallocate virtual member function. The put area is then

set up. If, after calling streambuf::allocate, no buffer is present, the stdiobuf
object is unbuffered and ch (if not EOF) is written directly to the file without buffering, and

no further action is taken.

2. If the get area is present, it is flushed with a call to the sync virtual member function. Note

that the get area won’t be present if a buffer was set up in step 1.

3. If ch is not EOF, it is added to the put area, if possible.

4. Any characters in the put area are written to the file.

5. The put area pointers are updated to reflect the new state of the put area. If the write did not

complete, the unwritten portion of the put area is still present. If the put area was full before

the write, ch (if not EOF) is placed at the start of the put area. Otherwise, the put area is

empty.

Results: The overflow public virtual member function returns __NOT_EOF on success, otherwise EOF is

returned.

See Also: stdiobuf::underflow, streambuf::overflow

Input/Output Classes 785

stdiobuf::stdiobuf()

Synopsis: #include <stdiobuf.h>
public:
stdiobuf::stdiobuf();

Semantics: This form of the public stdiobuf constructor creates a stdiobuf object that is initialized but not

yet connected to a file.

Results: This form of the public stdiobuf constructor creates a stdiobuf object.

See Also: ~stdiobuf

786 Input/Output Classes

stdiobuf::stdiobuf()

Synopsis: #include <stdiobuf.h>
public:
stdiobuf::stdiobuf(FILE *fptr);

Semantics: This form of the public stdiobuf constructor creates a stdiobuf object that is initialized and

connected to a C library FILE stream. Usually, one of stdin, stdout or stderr is specified for the

fptr parameter.

Results: This form of the public stdiobuf constructor creates a stdiobuf object that is initialized and

connected to a C library FILE stream.

See Also: ~stdiobuf

Input/Output Classes 787

stdiobuf::~stdiobuf()

Synopsis: #include <stdiobuf.h>
public:
stdiobuf::~stdiobuf();

Semantics: The public ~stdiobuf destructor does not do anything explicit. The streambuf destructor is

called for that portion of the stdiobuf object. The call to the public ~stdiobuf destructor is

inserted implicitly by the compiler at the point where the stdiobuf object goes out of scope.

Results: The stdiobuf object is destroyed.

See Also: stdiobuf

788 Input/Output Classes

stdiobuf::sync()

Synopsis: #include <stdiobuf.h>
public:
virtual int stdiobuf::sync();

Semantics: The sync public virtual member function synchronizes the stdiobuf object with the associated

device. If the put area contains characters, it is flushed. If the get area contains buffered characters,

the sync public virtual member function fails.

Results: The sync public virtual member function returns __NOT_EOF on success, otherwise, EOF is returned.

See Also: streambuf::sync

Input/Output Classes 789

stdiobuf::underflow()

Synopsis: #include <stdiobuf.h>
public:
virtual int stdiobuf::underflow();

Semantics: The underflow public virtual member function provides the input communication from the standard

input device to which the stdiobuf object is connected. Member functions in the streambuf class

call the underflow public virtual member function for the derived class when the get area is empty.

The underflow public virtual member function performs the following steps:

1. If no reserve area is present, a buffer is allocated with the streambuf::allocate
member function, which may call the doallocate virtual member function. If, after

calling allocate, no reserve area is present, the stdiobuf object is unbuffered and a

one-character reserve area (plus putback area) is set up to do unbuffered input. This buffer is

embedded in the stdiobuf object. The get area is set up as empty.

2. The unused part of the get area is used to read characters from the file connected to the

stdiobuf object. The get area pointers are then set up to reflect the new get area.

Results: The underflow public virtual member function returns the first unread character of the get area, on

success, otherwise EOF is returned. Note that the get pointer is not advanced on success.

See Also: stdiobuf::overflow, streambuf::underflow

790 Input/Output Classes

streambuf

Declared: streambu.h

Derived by: filebuf, stdiobuf, strstreambuf

The streambuf class is responsible for maintaining the buffer used to create an efficient

implementation of the stream classes. Through its pure virtual functions, it is also responsible for the

actual communication with the device associated with the stream.

The streambuf class is abstract, due to the presence of pure virtual member functions. Abstract

classes may not be instantiated, only inherited. Hence, streambuf objects will not be created by user

programs.

Stream objects maintain a pointer to an associated streambuf object and present the interface that the

user deals with most often. Whenever a stream member function wishes to read or write characters, it

uses the rdbuf member function to access the associated streambuf object and its member

functions. Through judicious use of inline functions, most reads and writes of characters access the

buffer directly without even doing a function call. Whenever the buffer gets filled (writing) or

exhausted (reading), these inline functions invoke the function required to rectify the situation so that

the proper action can take place.

A streambuf object can be unbuffered, but most often has one buffer which can be used for both

input and output operations. The buffer (called the reserve area) is divided into two areas, called the

get area and the put area. For a streambuf object being used exclusively to write, the get area is

empty or not present. Likewise, a streambuf object being used exclusively for reading has an empty

or non-existent put area.

The use of the get area and put area differs among the various classes derived from the streambuf
class.

The filebuf class allows only the get area or the put area, but not both, to be active at a time. This

follows from the capability of files opened for both reading and writing to have operations of each type

performed at arbitrary locations in the file. When writing is occurring, the characters are buffered in the

put area. If a seek or read operation is done, the put area must be flushed before the next operation in

order to ensure that the characters are written to the proper location in the file. Similarly, if reading is

occurring, characters are buffered in the get area. If a write operation is done, the get area must be

flushed and synchronized before the write operation in order to ensure the write occurs at the proper

location in the file. If a seek operation is done, the get area does not have to be synchronized, but is

discarded. When the get area is empty and a read is done, the underflow virtual member function

reads more characters and fills the get area again. When the put area is full and a write is done, the

overflow virtual member function writes the characters and makes the put area empty again.

The stdiobuf class behaves in a similar way to the filebuf class, but does not need to switch

between the get area and put area, since no stdiobuf object can be created for both reading and

writing. When the get area is empty and a read is done, the underflow virtual member function

reads more characters and fills the get area again. When the put area is full and a write is done, the

overflow virtual member function writes the characters and makes the put area empty again.

The strstreambuf class differs quite markedly from the filebuf and stdiobuf classes. Since

there is no actual source or destination for the characters in strstream objects, the buffer itself takes

on that role. When writing is occurring and the put area is full, the overflow virtual member

function reallocates the buffer to a larger size (if possible), the put area is extended and the writing

continues. If reading is occurring and the get area is empty, the underflow virtual member function

checks to see if the put area is present and not empty. If so, the get area is extended to overlap the put

area.

Input/Output Classes 791

streambuf

The reserve area is marked by two pointer values. The base member function returns the pointer to

the start of the buffer. The ebuf member function returns the pointer to the end of the buffer (last

character + 1). The setb protected member function is used to set both pointers.

Within the reserve area, the get area is marked by three pointer values. The eback member function

returns a pointer to the start of the get area. The egptr member function returns a pointer to the end

of the get area (last character + 1). The gptr member function returns the get pointer. The get pointer

is a pointer to the next character to be extracted from the get area. Characters before the get pointer

have already been consumed by the program, while characters at and after the get pointer have been

read from their source and are buffered and waiting to be read by the program. The setg member

function is used to set all three pointer values. If any of these pointers are NULL, there is no get area.

Also within the reserve area, the put area is marked by three pointer values. The pbase member

function returns a pointer to the start of the put area. The epptr member function returns a pointer to

the end of the put area (last character + 1). The pptr member function returns the put pointer. The

put pointer is a pointer to the next available position into which a character may be stored. Characters

before the put pointer are buffered and waiting to be written to their final destination, while character

positions at and after the put pointer have yet to be written by the program. The setp member

function is used to set all three pointer values. If any of these pointers are NULL, there is no put area.

Unbuffered I/O is also possible. If unbuffered, the overflow virtual member function is used to write

single characters directly to their final destination without using the put area. Similarly, the

underflow virtual member function is used to read single characters directly from their source

without using the get area.

Protected Member Functions

The following member functions are declared in the protected interface:

streambuf();
streambuf(char *, int);
virtual ~streambuf();
int allocate();
char *base() const;
char *ebuf() const;
int blen() const;
void setb(char *, char *, int);
char *eback() const;
char *gptr() const;
char *egptr() const;
void gbump(streamoff);
void setg(char *, char *, char *);
char *pbase() const;
char *pptr() const;
char *epptr() const;
void pbump(streamoff);
void setp(char *, char *);
int unbuffered(int);
int unbuffered() const;
virtual int doallocate();

Public Member Functions

The following member functions are declared in the public interface:

int in_avail() const;

792 Input/Output Classes

streambuf

int out_waiting() const;
int snextc();
int sgetn(char *, int);
int speekc();
int sgetc();
int sgetchar();
int sbumpc();
void stossc();
int sputbackc(char);
int sputc(int);
int sputn(char const *, int);
void dbp();

virtual int do_sgetn(char *, int);
virtual int do_sputn(char const *, int);
virtual int pbackfail(int);
virtual int overflow(int = EOF) = 0;
virtual int underflow() = 0;
virtual streambuf *setbuf(char *, int);
virtual streampos seekoff(streamoff, ios::seekdir,
ios::openmode = ios::in|ios::out);
virtual streampos seekpos(streampos,
ios::openmode = ios::in|ios::out);
virtual int sync();

See Also: filebuf, stdiobuf, strstreambuf

Input/Output Classes 793

streambuf::allocate()

Synopsis: #include <streambu.h>
protected:
int streambuf::allocate();

Semantics: The allocate protected member function works in tandem with the doallocate protected virtual

member function to manage allocation of the streambuf object reserve area. Classes derived from

the streambuf class should call the allocate protected member function, rather than the

doallocate protected virtual member function. The allocate protected member function

determines whether or not the streambuf object is allowed to allocate a buffer for use as the reserve

area. If a reserve area already exists or if the streambuf object unbuffering state is non-zero, the

allocate protected member function fails. Otherwise, it calls the doallocate protected virtual

member function.

Results: The allocate protected member function returns __NOT_EOF on success, otherwise EOF is

returned.

See Also: streambuf::doallocate, underflow, overflow

794 Input/Output Classes

streambuf::base()

Synopsis: #include <streambu.h>
protected:
char *streambuf::base() const;

Semantics: The base protected member function returns a pointer to the start of the reserve area that the

streambuf object is using.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The base protected member function returns a pointer to the start of the reserve area that the

streambuf object is using. If the streambuf object currently does not have a reserve area, NULL
is returned.

See Also: streambuf::blen, ebuf, setb

Input/Output Classes 795

streambuf::blen()

Synopsis: #include <streambu.h>
protected:
int streambuf::blen() const;

Semantics: The blen protected member function reports the length of the reserve area that the streambuf
object is using.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The blen protected member function returns the length of the reserve area that the streambuf
object is using. If the streambuf object currently does not have a reserve area, zero is returned.

See Also: streambuf::base, ebuf, setb

796 Input/Output Classes

streambuf::dbp()

Synopsis: #include <streambu.h>
public:
void streambuf::dbp();

Semantics: The dbp public member function dumps information about the streambuf object directly to

stdout, and is used for debugging classes derived from the streambuf class.

The following is an example of what the dbp public member function dumps:
STREAMBUF Debug Info:
this = 00030679, unbuffered = 0, delete_reserve = 1
base = 00070010, ebuf = 00070094
eback = 00000000, gptr = 00000000, egptr = 00000000
pbase = 00070010, pptr = 00070010, epptr = 00070094

Input/Output Classes 797

streambuf::do_sgetn()

Synopsis: #include <streambu.h>
public:
virtual int do_sgetn(char *buf, int len);

Semantics: The do_sgetn public virtual member function works in tandem with the sgetn member function to

transfer len characters from the get area into buf.

Classes derived from the streambuf class should call the sgetn member function, rather than the

do_sgetn public virtual member function.

Derived Implementation Protocol:

Classes derived from the streambuf class that implement the do_sgetn public virtual member

function should support copying up to len characters from the source through the get area and into buf.

Default Implementation:

The default do_sgetn public virtual member function provided with the streambuf class calls the

underflow virtual member function to fetch more characters and then copies the characters from the

get area into buf.

Results: The do_sgetn public virtual member function returns the number of characters successfully

transferred.

See Also: streambuf::sgetn

798 Input/Output Classes

streambuf::do_sputn()

Synopsis: #include <streambu.h>
public:
virtual int do_sputn(char const *buf, int len);

Semantics: The do_sputn public virtual member function works in tandem with the sputn member function to

transfer len characters from buf to the end of the put area and advances the put pointer.

Classes derived from the streambuf class should call the sputn member function, rather than the

do_sputn public virtual member function.

Derived Implementation Protocol:

Classes derived from the streambuf class that implement the do_sputn public virtual member

function should support copying up to len characters from buf through the put area and out to the

destination device.

Default Implementation:

The default do_sputn public virtual member function provided with the streambuf class calls the

overflow virtual member function to flush the put area and then copies the rest of the characters

from buf into the put area.

Results: The do_sputn public virtual member function returns the number of characters successfully written.

If an error occurs, this number may be less than len.

See Also: streambuf::sputn

Input/Output Classes 799

streambuf::doallocate()

Synopsis: #include <streambu.h>
protected:
virtual int streambuf::doallocate();

Semantics: The doallocate protected virtual member function manages allocation of the streambuf object’s

reserve area in tandem with the allocate protected member function.

Classes derived from the streambuf class should call the allocate protected member function

rather than the doallocate protected virtual member function.

The doallocate protected virtual member function does the actual memory allocation, and can be

defined for each class derived from the streambuf class.

Derived Implementation Protocol:

Classes derived from the streambuf class should implement the doallocate protected virtual

member function such that it does the following:

1. attempts to allocate an area of memory,

2. calls the setb protected member function to initialize the reserve area pointers,

3. performs any class specific operations required.

Default Implementation:

The default doallocate protected virtual member function provided with the streambuf class

attempts to allocate a buffer area with the operator new intrinsic function. It then calls the setb
protected member function to set up the pointers to the reserve area.

Results: The doallocate protected virtual member function returns __NOT_EOF on success, otherwise EOF
is returned.

See Also: streambuf::allocate

800 Input/Output Classes

streambuf::eback()

Synopsis: #include <streambu.h>
protected:
char *streambuf::eback() const;

Semantics: The eback protected member function returns a pointer to the start of the get area within the reserve

area used by the streambuf object.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The eback protected member function returns a pointer to the start of the get area. If the

streambuf object currently does not have a get area, NULL is returned.

See Also: streambuf::egptr, gptr, setg

Input/Output Classes 801

streambuf::ebuf()

Synopsis: #include <streambu.h>
protected:
char *streambuf::ebuf() const;

Semantics: The ebuf protected member function returns a pointer to the end of the reserve area that the

streambuf object is using. The character pointed at is actually the first character past the end of the

reserve area.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The ebuf protected member function returns a pointer to the end of the reserve area. If the

streambuf object currently does not have a reserve area, NULL is returned.

See Also: streambuf::base, blen, setb

802 Input/Output Classes

streambuf::egptr()

Synopsis: #include <streambu.h>
protected:
char *streambuf::egptr() const;

Semantics: The egptr protected member function returns a pointer to the end of the get area within the reserve

area used by the streambuf object. The character pointed at is actually the first character past the

end of the get area.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The egptr protected member function returns a pointer to the end of the get area. If the streambuf
object currently does not have a get area, NULL is returned.

See Also: streambuf::eback, gptr, setg

Input/Output Classes 803

streambuf::epptr()

Synopsis: #include <streambu.h>
protected:
char *streambuf::epptr() const;

Semantics: The epptr protected member function returns a pointer to the end of the put area within the reserve

area used by the streambuf object. The character pointed at is actually the first character past the

end of the put area.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The epptr protected member function returns a pointer to the end of the put area. If the streambuf
object currently does not have a put area, NULL is returned.

See Also: streambuf::pbase, pptr, setp

804 Input/Output Classes

streambuf::gbump()

Synopsis: #include <streambu.h>
protected:
void streambuf::gbump(streamoff offset);

Semantics: The gbump protected member function increments the get pointer by the specified offset, without

regard for the boundaries of the get area. The offset parameter may be positive or negative.

Results: The gbump protected member function returns nothing.

See Also: streambuf::gptr, pbump, sbumpc, sputbackc

Input/Output Classes 805

streambuf::gptr()

Synopsis: #include <streambu.h>
protected:
char *streambuf::gptr() const;

Semantics: The gptr protected member function returns a pointer to the next available character in the get area

within the reserve area used by the streambuf object. This pointer is called the get pointer.

If the get pointer points beyond the end of the get area, all characters in the get area have been read by

the program and a subsequent read causes the underflow virtual member function to be called to

fetch more characters from the source to which the streambuf object is attached.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The gptr protected member function returns a pointer to the next available character in the get area.

If the streambuf object currently does not have a get area, NULL is returned.

See Also: streambuf::eback, egptr, setg

806 Input/Output Classes

streambuf::in_avail()

Synopsis: #include <streambu.h>
public:
int streambuf::in_avail() const;

Semantics: The in_avail public member function computes the number of input characters buffered in the get

area that have not yet been read by the program. These characters can be read with a guarantee that no

errors will occur.

Results: The in_avail public member function returns the number of buffered input characters.

See Also: streambuf::egptr, gptr

Input/Output Classes 807

streambuf::out_waiting()

Synopsis: #include <streambu.h>
public:
int streambuf::out_waiting() const;

Semantics: The out_waiting public member function computes the number of characters that have been

buffered in the put area and not yet been written to the output device.

Results: The out_waiting public member function returns the number of buffered output characters.

See Also: streambuf::pbase, pptr

808 Input/Output Classes

streambuf::overflow()

Synopsis: #include <streambu.h>
public:
virtual int streambuf::overflow(int ch = EOF) = 0;

Semantics: The overflow public virtual member function is used to flush the put area when it is full.

Derived Implementation Protocol:

Classes derived from the streambuf class should implement the overflow public virtual member

function so that it performs the following:

1. if no reserve area is present and the streambuf object is not unbuffered, allocate a reserve

area using the allocate member function and set up the reserve area pointers using the

setb protected member function,

2. flush any other uses of the reserve area,

3. write any characters in the put area to the streambuf object’s destination,

4. set up the put area pointers to reflect the characters that were written,

5. return __NOT_EOF on success, otherwise return EOF.

Default Implementation:

There is no default streambuf class implementation of the overflow public virtual member

function. The overflow public virtual member function must be defined for all classes derived from

the streambuf class.

Results: The overflow public virtual member function returns __NOT_EOF on success, otherwise EOF is

returned.

See Also: filebuf::overflow, stdiobuf::overflow, strstreambuf::overflow

Input/Output Classes 809

streambuf::pbackfail()

Synopsis: #include <streambu.h>
public:
virtual int streambuf::pbackfail(int ch);

Semantics: The pbackfail public virtual member function is called by the sputbackc member function when

the get pointer is at the beginning of the get area, and so there is no place to put the ch parameter.

Derived Implementation Protocol:

Classes derived from the streambuf class should implement the pbackfail public virtual member

function such that it attempts to put ch back into the source of the stream.

Default Implementation:

The default streambuf class implementation of the pbackfail public virtual member function is

to return EOF.

Results: If the pbackfail public virtual member function succeeds, it returns ch. Otherwise, EOF is returned.

810 Input/Output Classes

streambuf::pbase()

Synopsis: #include <streambu.h>
protected:
char *streambuf::pbase() const;

Semantics: The pbase protected member function returns a pointer to the start of the put area within the reserve

area used by the streambuf object.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The pbase protected member function returns a pointer to the start of the put area. If the

streambuf object currently does not have a put area, NULL is returned.

See Also: streambuf::epptr, pptr, setp

Input/Output Classes 811

streambuf::pbump()

Synopsis: #include <streambu.h>
protected:
void streambuf::pbump(streamoff offset);

Semantics: The pbump protected member function increments the put pointer by the specified offset, without

regard for the boundaries of the put area. The offset parameter may be positive or negative.

Results: The pbump protected member function returns nothing.

See Also: streambuf::gbump, pbase, pptr

812 Input/Output Classes

streambuf::pptr()

Synopsis: #include <streambu.h>
protected:
char *streambuf::pptr() const;

Semantics: The pptr protected member function returns a pointer to the next available space in the put area within

the reserve area used by the streambuf object. This pointer is called the put pointer.

If the put pointer points beyond the end of the put area, the put area is full and a subsequent write

causes the overflow virtual member function to be called to empty the put area to the device to

which the streambuf object is attached.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.

ebuf() end of the reserve area.

blen() length of the reserve area.

eback() start of the get area.

gptr() the get pointer.

egptr() end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are characters buffered

but not yet read. From pbase to pptr are characters buffered and not yet written. From pptr to

epptr is unused buffer area.

Results: The pptr protected member function returns a pointer to the next available space in the put area. If

the streambuf object currently does not have a put area, NULL is returned.

See Also: streambuf::epptr, pbase, setp

Input/Output Classes 813

streambuf::sbumpc()

Synopsis: #include <streambu.h>
public:
int streambuf::sbumpc();

Semantics: The sbumpc public member function extracts the next available character from the get area and

advances the get pointer. If no character is available, it calls the underflow virtual member function

to fetch more characters from the source into the get area.

Due to the sbumpc member functions’s awkward name, the sgetchar member function was added

to take its place in the WATCOM implementation.

Results: The sbumpc public member function returns the next available character in the get area. If no

character is available, EOF is returned.

See Also: streambuf::gbump, sgetc, sgetchar, sgetn, snextc, sputbackc

814 Input/Output Classes

streambuf::seekoff()

Synopsis: #include <streambu.h>
public:
virtual streampos streambuf::seekoff(streamoff offset,
ios::seekdir dir,
ios::openmode mode);

Semantics: The seekoff public virtual member function is used for positioning to a relative location within the

streambuf object, and hence within the device that is connected to the streambuf object. The

offset and dir parameters specify the relative change in position. The mode parameter controls whether

the get pointer and/or the put pointer are repositioned.

Derived Implementation Protocol:

Classes derived from the streambuf class should implement the seekoff virtual member function

so that it uses its parameters in the following way.

The mode parameter may be ios::in, ios::out, or ios::in|ios::out and should be

interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.

ios::out the put pointer should be moved.

ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekoff public virtual member function fails.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in conjunction

with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.

ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).

ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate sign, the

seekoff public virtual member function fails.

Default Implementation:

The default implementation of the seekoff public virtual member function provided by the

streambuf class returns EOF.

Results: The seekoff public virtual member function returns the new position in the stream on success,

otherwise EOF is returned.

See Also: streambuf::seekpos

Input/Output Classes 815

streambuf::seekpos()

Synopsis: #include <streambu.h>
public:
virtual streampos streambuf::seekpos(streampos pos,
ios::openmode mode = ios::in|ios::out);

Semantics: The seekpos public virtual member function is used for positioning to an absolute location within the

streambuf object, and hence within the device that is connected to the streambuf object. The pos

parameter specifies the absolute position. The mode parameter controls whether the get pointer and/or

the put pointer are repositioned.

Derived Implementation Protocol:

Classes derived from the streambuf class should implement the seekpos public virtual member

function so that it uses its parameters in the following way.

The mode parameter may be ios::in, ios::out, or ios::in|ios::out and should be

interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.

ios::out the put pointer should be moved.

ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekpos public virtual member function fails.

In general the seekpos public virtual member function is equivalent to calling the seekoff virtual

member function with the offset set to pos, the direction set to ios::beg and the mode set to mode.

Default Implementation:

The default implementation of the seekpos public virtual member function provided by the

streambuf class calls the seekoff virtual member function with the offset set to pos, the direction

set to ios::beg, and the mode set to mode.

Results: The seekpos public virtual member function returns the new position in the stream on success,

otherwise EOF is returned.

See Also: streambuf::seekoff

816 Input/Output Classes

streambuf::setb()

Synopsis: #include <streambu.h>
protected:
void streambuf::setb(char *base, char *ebuf, int autodel);

Semantics: The setb protected member function is used to set the pointers to the reserve area that the

streambuf object is using.

The base parameter is a pointer to the start of the reserve area and corresponds to the value that the

base member function returns.

The ebuf parameter is a pointer to the end of the reserve area and corresponds to the value that the

ebuf member function returns.

The autodel parameter indicates whether or not the streambuf object can free the reserve area when

the streambuf object is destroyed or when a new reserve area is set up in a subsequent call to the

setb protected member function. If the autodel parameter is non-zero, the streambuf object can

delete the reserve area, using the operator delete intrinsic function. Otherwise, a zero value

indicates that the buffer will be deleted elsewhere.

If either of the base or ebuf parameters are NULL or if ebuf <= base, the streambuf object does not

have a buffer and input/output operations are unbuffered, unless another buffer is set up.

Note that the setb protected member function is used to set the reserve area pointers, while the

setbuf protected member function is used to offer a buffer to the streambuf object.

See Also: streambuf::base, blen, ebuf, setbuf

Input/Output Classes 817

streambuf::setbuf()

Synopsis: #include <streambu.h>
public:
virtual streambuf *streambuf::setbuf(char *buf, int len);

Semantics: The setbuf public virtual member function is used to offer a buffer specified by the buf and len

parameters to the streambuf object for use as its reserve area. Note that the setbuf public virtual

member function is used to offer a buffer, while the setb protected member function is used to set the

reserve area pointers once a buffer has been accepted.

Derived Implementation Protocol:

Classes derived from the streambuf class may implement the setbuf public virtual member

function if the default behavior is not suitable.

Derived classes that provide their own implementations of the setbuf public virtual member function

may accept or reject the offered buffer. Often, if a buffer is already allocated, the offered buffer is

rejected, as it may be difficult to transfer the information from the current buffer.

Default Implementation:

The default setbuf public virtual member function provided by the streambuf class rejects the

buffer if one is already present.

If no buffer is present and either buf is NULL or len is zero, the offer is accepted and the streambuf
object is unbuffered.

Otherwise, no buffer is present and one is specified. If len is less than five characters the buffer is too

small and it is rejected. Otherwise, the buffer is accepted.

Results: The setbuf public virtual member function returns the address of the streambuf object if the

offered buffer is accepted, otherwise NULL is returned.

See Also: streambuf::setb

818 Input/Output Classes

streambuf::setg()

Synopsis: #include <streambu.h>
protected:
void streambuf::setg(char *eback, char *gptr, char *egptr);

Semantics: The setg protected member function is used to set the three get area pointers.

The eback parameter is a pointer to the start of the get area and corresponds to the value that the

eback member function returns.

The gptr parameter is a pointer to the first available character in the get area, that is, the get pointer, and

usually is greater than the eback parameter in order to accommodate a putback area. The gptr

parameter corresponds to the value that the gptr member function returns.

The egptr parameter is a pointer to the end of the get area and corresponds to the value that the egptr
member function returns.

If any of the three parameters are NULL, there is no get area.

See Also: streambuf::eback, egptr, gptr

Input/Output Classes 819

streambuf::setp()

Synopsis: #include <streambu.h>
protected:
void streambuf::setp(char *pbase, char *epptr);

Semantics: The setp protected member function is used to set the three put area pointers.

The pbase parameter is a pointer to the start of the put area and corresponds to the value that the

pbase member function returns.

The epptr parameter is a pointer to the end of the put area and corresponds to the value that the epptr
member function returns.

The put pointer is set to the pbase parameter value and corresponds to the value that the pptr member

function returns.

If either parameter is NULL, there is no put area.

See Also: streambuf::epptr, pbase, pptr

820 Input/Output Classes

streambuf::sgetc()

Synopsis: #include <streambu.h>
public:
int streambuf::sgetc();

Semantics: The sgetc public member function returns the next available character in the get area. The get

pointer is not advanced. If the get area is empty, the underflow virtual member function is called to

fetch more characters from the source into the get area.

Due to the sgetc member function’s confusing name (the C library getc function does advance the

pointer), the speekc member function was added to take its place in the WATCOM implementation.

Results: The sgetc public member function returns the next available character in the get area. If no character

is available, EOF is returned.

See Also: streambuf::sbumpc, sgetchar, sgetn, snextc, speekc

Input/Output Classes 821

streambuf::sgetchar()

Synopsis: #include <streambu.h>
public:
int streambuf::sgetchar();

Semantics: The sgetchar public member function extracts the next available character from the get area and

advances the get pointer. If no character is available, it calls the underflow virtual member function

to fetch more characters from the source into the get area.

Due to the sbumpc member functions’s awkward name, the sgetchar member function was added

to take its place in the WATCOM implementation.

Results: The sgetchar public member function returns the next available character in the get area. If no

character is available, EOF is returned.

See Also: streambuf::gbump, sgetc, sgetchar, sgetn, snextc, speekc, sputbackc

822 Input/Output Classes

streambuf::sgetn()

Synopsis: #include <streambu.h>
public:
int streambuf::sgetn(char *buf, int len);

Semantics: The sgetn public member function transfers up to len characters from the get area into buf. If there

are not enough characters in the get area, the do_sgetn virtual member function is called to fetch

more.

Classes derived from the streambuf class should call the sgetn public member function, rather than

the do_sgetn virtual member function.

Results: The sgetn public member function returns the number of characters transferred from the get area into

buf.

See Also: streambuf::do_sgetn, sbumpc, sgetc, sgetchar, speekc

Input/Output Classes 823

streambuf::snextc()

Synopsis: #include <streambu.h>
public:
int streambuf::snextc();

Semantics: The snextc public member function advances the get pointer and then returns the character following

the get pointer. The get pointer is left pointing at the returned character.

If the get pointer cannot be advanced, the underflow virtual member function is called to fetch more

characters from the source into the get area.

Results: The snextc public member function advances the get pointer and returns the next available character

in the get area. If there is no next available character, EOF is returned.

See Also: streambuf::sbumpc, sgetc, sgetchar, sgetn, speekc

824 Input/Output Classes

streambuf::speekc()

Synopsis: #include <streambu.h>
public:
int streambuf::speekc();

Semantics: The speekc public member function returns the next available character in the get area. The get

pointer is not advanced. If the get area is empty, the underflow virtual member function is called to

fetch more characters from the source into the get area.

Due to the sgetc member function’s confusing name (the C library getc function does advance the

pointer), the speekc member function was added to take its place in the WATCOM implementation.

Results: The speekc public member function returns the next available character in the get area. If no

character is available, EOF is returned.

See Also: streambuf::sbumpc, sgetc, sgetchar, sgetn, snextc

Input/Output Classes 825

streambuf::sputbackc()

Synopsis: #include <streambu.h>
public:
int streambuf::sputbackc(char ch);

Semantics: The sputbackc public member function is used to put a character back into the get area. The ch

character specified must be the same as the character before the get pointer, otherwise the behavior is

undefined. The get pointer is backed up by one position. At least four characters may be put back

without any intervening reads.

Results: The sputbackc public member function returns ch on success, otherwise EOF is returned.

See Also: streambuf::gbump, sbumpc, sgetchar

826 Input/Output Classes

streambuf::sputc()

Synopsis: #include <streambu.h>
public:
int streambuf::sputc(int ch);

Semantics: The sputc public member function adds the character ch to the end of the put area and advances the

put pointer. If the put area is full before the character is added, the overflow virtual member

function is called to empty the put area and write the character.

Results: The sputc public member function returns ch on success, otherwise EOF is returned.

See Also: streambuf::sgetc, sputn

Input/Output Classes 827

streambuf::sputn()

Synopsis: #include <streambu.h>
public:
int streambuf::sputn(char const *buf, int len);

Semantics: The sputn public member function transfers up to len characters from buf to the end of the put area

and advance the put pointer. If the put area is full or becomes full and more characters are to be

written, the do_sputn virtual member function is called to empty the put area and finish writing the

characters.

Classes derived from the streambuf class should call the sputn public member function, rather than

the do_sputn virtual member function.

Results: The sputn public member function returns the number of characters successfully written. If an error

occurs, this number may be less than len.

See Also: streambuf::do_sputn, sputc

828 Input/Output Classes

streambuf::stossc()

Synopsis: #include <streambu.h>
public:
void streambuf::stossc();

Semantics: The stossc public member function advances the get pointer by one without returning a character. If

the get area is empty, the underflow virtual member function is called to fetch more characters and

then the get pointer is advanced.

See Also: streambuf::gbump, sbumpc, sgetchar, snextc

Input/Output Classes 829

streambuf::streambuf()

Synopsis: #include <streambu.h>
protected:
streambuf::streambuf();

Semantics: This form of the protected streambuf constructor creates an empty streambuf object with all

fields initialized to zero. No reserve area is yet allocated, but the streambuf object is buffered

unless a subsequent call to the setbuf or unbuffered member functions dictate otherwise.

Results: This form of the protected streambuf constructor creates an initialized streambuf object with no

associated reserve area.

See Also: ~streambuf

830 Input/Output Classes

streambuf::streambuf()

Synopsis: #include <streambu.h>
protected:
streambuf::streambuf(char *buf, int len);

Semantics: This form of the protected streambuf constructor creates an empty streambuf object with all

fields initialized to zero. The buf and len parameters are passed to the setbuf member function,

which sets up the buffer (if specified), or makes the streambuf object unbuffered (if the buf

parameter is NULL or the len parameter is not positive).

Results: This form of the protected streambuf constructor creates an initialized streambuf object with an

associated reserve area.

See Also: ~streambuf, setbuf

Input/Output Classes 831

streambuf::~streambuf()

Synopsis: #include <streambu.h>
protected:
virtual streambuf::~streambuf();

Semantics: The streambuf object is destroyed. If the buffer was allocated by the streambuf object, it is freed.

Otherwise, the buffer is not freed and must be freed by the user of the streambuf object. The call to

the protected ~streambuf destructor is inserted implicitly by the compiler at the point where the

streambuf object goes out of scope.

Results: The streambuf object is destroyed.

See Also: streambuf

832 Input/Output Classes

streambuf::sync()

Synopsis: #include <streambu.h>
public:
virtual int streambuf::sync();

Semantics: The sync public virtual member function is used to synchronize the streambuf object’s get area

and put area with the associated device.

Derived Implementation Protocol:

Classes derived from the streambuf class should implement the sync public virtual member

function such that it attempts to perform the following:

1. flush the put area,

2. discard the contents of the get area and reposition the stream device so that the discarded

characters may be read again.

Default Implementation:

The default implementation of the sync public virtual member function provided by the streambuf
class takes no action. It succeeds if the get area and the put area are empty, otherwise it fails.

Results: The sync public virtual member function returns __NOT_EOF on success, otherwise EOF is returned.

Input/Output Classes 833

streambuf::unbuffered()

Synopsis: #include <streambu.h>
protected:
int ios::unbuffered() const;
int ios::unbuffered(int unbuf);

Semantics: The unbuffered protected member function is used to query and/or set the unbuffering state of the

streambuf object. A non-zero unbuffered state indicates that the streambuf object is unbuffered.

An unbuffered state of zero indicates that the streambuf object is buffered.

The first form of the unbuffered protected member function is used to query the current unbuffering

state.

The second form of the unbuffered protected member function is used to set the unbuffering state to

unbuf.

Note that the unbuffering state only affects the allocate protected member function, which does

nothing if the unbuffering state is non-zero. Setting the unbuffering state to a non-zero value does not

mean that future I/O operations will be unbuffered.

To determine if current I/O operations are unbuffered, use the base protected member function. A

return value of NULL from the base protected member function indicates that unbuffered I/O

operations will be used.

Results: The unbuffered protected member function returns the previous unbuffered state.

See Also: streambuf::allocate, pbase, setbuf

834 Input/Output Classes

streambuf::underflow()

Synopsis: #include <streambu.h>
public:
virtual int streambuf::underflow() = 0;

Semantics: The underflow public virtual member function is used to fill the get area when it is empty.

Derived Implementation Protocol:

Classes derived from the streambuf class should implement the underflow public virtual member

function so that it performs the following:

1. if no reserve area is present and the streambuf object is buffered, allocate the reserve

area using the allocate member function and set up the reserve area pointers using the

setb protected member function,

2. flush any other uses of the reserve area,

3. read some characters from the streambuf object’s source into the get area,

4. set up the get area pointers to reflect the characters that were read,

5. return the first character of the get area, or EOF if no characters could be read.

Default Implementation:

There is no default streambuf class implementation of the underflow public virtual member

function. The underflow public virtual member function must be defined for all classes derived from

the streambuf class.

Results: The underflow public virtual member function returns the first character read into the get area, or

EOF if no characters could be read.

See Also: filebuf::underflow, stdiobuf::underflow, strstreambuf::underflow

Input/Output Classes 835

strstream

Declared: strstrea.h

Derived from: strstreambase, iostream

The strstream class is used to create and write to string stream objects.

The strstream class provides little of its own functionality. Derived from the strstreambase
and iostream classes, its constructors and destructor provide simplified access to the appropriate

equivalents in those base classes. The member functions provide specialized access to the string stream

object.

Of the available I/O stream classes, creating a strstream object is the preferred method of

performing read and write operations on a string stream.

Public Member Functions

The following member functions are declared in the public interface:

strstream();
strstream(char *,
int,
ios::openmode = ios::in|ios::out);
strstream(signed char *,
int,
ios::openmode = ios::in|ios::out);
strstream(unsigned char *,
int,
ios::openmode = ios::in|ios::out);
~strstream();
char *str();

See Also: istrstream, ostrstream, strstreambase

836 Input/Output Classes

strstream::str()

Synopsis: #include <strstrea.h>
public:
char *strstream::str();

Semantics: The str public member function creates a pointer to the buffer being used by the strstream object.

If the strstream object was created without dynamic allocation (static mode), the pointer is the same

as the buffer pointer passed in the constructor.

For strstream objects using dynamic allocation, the str public member function makes an implicit

call to the strstreambuf::freeze member function. If nothing has been written to the

strstream object, the returned pointer will be NULL.

Note that the buffer does not necessarily end with a null character. If the pointer returned by the str
public member function is to be interpreted as a C string, it is the program’s responsibility to ensure that

the null character is present.

Results: The str public member function returns a pointer to the buffer being used by the strstream object.

See Also: strstreambuf::str, strstreambuf::freeze

Input/Output Classes 837

strstream::strstream()

Synopsis: #include <strstrea.h>
public:
strstream::strstream();

Semantics: This form of the public strstream constructor creates an empty strstream object. Dynamic

allocation is used. The inherited stream member functions can be used to access the strstream
object. Note that the get pointer and put pointer are not necessarily pointing at the same location, so

moving one pointer (e.g. by doing a write) does not affect the location of the other pointer.

Results: This form of the public strstream constructor creates an initialized, empty strstream object.

See Also: ~strstream

838 Input/Output Classes

strstream::strstream()

Synopsis: #include <strstrea.h>
public:
strstream::strstream(char *str,
int len,
ios::openmode mode);
strstream::strstream(signed char *str,
int len,
ios::openmode mode);
strstream::strstream(unsigned char *str,
int len,
ios::openmode mode);

Semantics: These forms of the public strstream constructor create an initialized strstream object. Dynamic

allocation is not used. The buffer is specified by the str and len parameters. If the ios::append or

ios::atend bits are set in the mode parameter, the str parameter is assumed to contain a C string

terminated by a null character, and writing commences at the null character. Otherwise, writing

commences at str. Reading commences at str.

Results: This form of the public strstream constructor creates an initialized strstream object.

See Also: ~strstream

Input/Output Classes 839

strstream::~strstream()

Synopsis: #include <strstrea.h>
public:
strstream::~strstream();

Semantics: The public ~strstream destructor does not do anything explicit. The call to the public

~strstream destructor is inserted implicitly by the compiler at the point where the strstream
object goes out of scope.

Results: The strstream object is destroyed.

See Also: strstream

840 Input/Output Classes

strstreambase

Declared: strstrea.h

Derived from: ios

Derived by: istrstream, ostrstream, strstream

The strstreambase class is a base class that provides common functionality for the three string

stream-based classes, istrstream, ostrstream and strstream. The strstreambase class

is derived from the ios class which provides the stream state information. The strstreambase
class provides constructors for string stream objects and one member function.

Protected Member Functions

The following member functions are declared in the protected interface:

strstreambase();
strstreambase(char *, int, char * = 0);
~strstreambase();

Public Member Functions

The following member function is declared in the public interface:

strstreambuf *rdbuf() const;

See Also: istrstream, ostrstream, strstream, strstreambuf

Input/Output Classes 841

strstreambase::rdbuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf *strstreambase::rdbuf() const;

Semantics: The rdbuf public member function creates a pointer to the strstreambuf associated with the

strstreambase object. Since the strstreambuf object is embedded within the

strstreambase object, this function never returns NULL.

Results: The rdbuf public member function returns a pointer to the strstreambuf associated with the

strstreambase object.

842 Input/Output Classes

strstreambase::strstreambase()

Synopsis: #include <strstrea.h>
protected:
strstreambase::strstreambase();

Semantics: This form of the protected strstreambase constructor creates a strstreambase object that is

initialized, but empty. Dynamic allocation is used to store characters. No buffer is allocated. A buffer

is be allocated when data is first written to the strstreambase object.

This form of the protected strstreambase constructor is only used implicitly by the compiler when

it generates a constructor for a derived class.

Results: The protected strstreambase constructor creates an initialized strstreambase object.

See Also: ~strstreambase

Input/Output Classes 843

strstreambase::strstreambase()

Synopsis: #include <strstrea.h>
protected:
strstreambase::strstreambase(char *str,
int len,
char *pstart);

Semantics: This form of the protected strstreambase constructor creates a strstreambase object that is

initialized and uses the buffer specified by the str and len parameters as its reserve area within the

associated strstreambuf object. Dynamic allocation is not used.

This form of the protected strstreambase constructor is unlikely to be explicitly used, except in the

member initializer list for the constructor of a derived class.

The str, len and pstart parameters are interpreted as follows:

1. The buffer starts at str.

2. If len is positive, the buffer is len characters long.

3. If len is zero, str is a pointer to a C string which is terminated by a null character, and the

length of the buffer is the length of the string.

4. If len is negative, the buffer is unbounded. This last form should be used with extreme

caution, since no buffer is truly unlimited in size and it would be easy to write beyond the

available space.

5. If the pstart parameter is NULL, the strstreambase object is read-only.

6. Otherwise, pstart divides the buffer into two regions. The get area starts at str and ends at

pstart-1. The put area starts at pstart and goes to the end of the buffer.

Results: The protected strstreambase constructor creates an initialized strstreambase object.

See Also: ~strstreambase

844 Input/Output Classes

strstreambase::~strstreambase()

Synopsis: #include <strstrea.h>
protected:
strstreambase::~strstreambase();

Semantics: The protected ~strstreambase destructor does not do anything explicit. The call to the protected

~strstreambase destructor is inserted implicitly by the compiler at the point where the

strstreambase object goes out of scope.

Results: The strstreambase object is destroyed.

See Also: strstreambase

Input/Output Classes 845

strstreambuf

Declared: strstrea.h

Derived from: streambuf

The strstreambuf class is derived from the streambuf class and provides additional

functionality required to write characters to and read characters from a string buffer. Read and write

operations can occur at different positions in the string buffer, since the get pointer and put pointer are

not necessarily connected. Seek operations are also supported.

The reserve area used by the strstreambuf object may be either fixed in size or dynamic.

Generally, input strings are of a fixed size, while output streams are dynamic, since the final size may

not be predictable. For dynamic buffers, the strstreambuf object automatically grows the buffer

when necessary.

The strstreambuf class differs quite markedly from the filebuf and stdiobuf classes. Since

there is no actual source or destination for the characters in strstream objects, the buffer itself takes

on that role. When writing is occurring and the put area is full, the overflow virtual member

function reallocates the buffer to a larger size (if possible), the put area is extended and the writing

continues. If reading is occurring and the get area is empty, the underflow virtual member function

checks to see if the put area is present and not empty. If so, the get area is extended to overlap the put

area.

C++ programmers who wish to use string streams without deriving new objects will probably never

explicitly create or use a strstreambuf object.

Protected Member Functions

The following member function is declared in the protected interface:

virtual int doallocate();

Public Member Functions

The following member functions are declared in the public interface:

strstreambuf();
strstreambuf(int);
strstreambuf(void *(*)(long), void (*)(void *));
strstreambuf(char *, int, char * = 0);
~strstreambuf();
int alloc_size_increment(int);
void freeze(int = 1);
char *str();
virtual int overflow(int = EOF);
virtual int underflow();
virtual streambuf *setbuf(char *, int);
virtual streampos seekoff(streamoff,
ios::seekdir,
ios::openmode);
virtual int sync();

See Also: streambuf, strstreambase

846 Input/Output Classes

strstreambuf::alloc_size_increment()

Synopsis: #include <strstrea.h>
public:
int strstreambuf::alloc_size_increment(int increment);

Semantics: The alloc_size_increment public member function modifies the allocation size used when the

buffer is first allocated or reallocated by dynamic allocation. The increment parameter is added to the

previous allocation size for future use.

This function is a WATCOM extension.

Results: The alloc_size_increment public member function returns the previous value of the allocation

size.

See Also: strstreambuf::doallocate, setbuf

Input/Output Classes 847

strstreambuf::doallocate()

Synopsis: #include <strstrea.h>
protected:
virtual int strstreambuf::doallocate();

Semantics: The doallocate protected virtual member function is called by the allocate member function

when it is determined that the put area is full and needs to be extended.

The doallocate protected virtual member function performs the following steps:

1. If dynamic allocation is not being used, the doallocate protected virtual member function

fails.

2. A new size for the buffer is determined. If the allocation size is bigger than the current size,

the allocation size is used. Otherwise, the buffer size is increased by

DEFAULT_MAINBUF_SIZE, which is 512.

3. A new buffer is allocated. If an allocation function was specified in the constructor for the

strstreambuf object, that allocation function is used, otherwise the operator new
intrinsic function is used. If the allocation fails, the doallocate protected virtual member

function fails.

4. If necessary, the contents of the get area are copied to the newly allocated buffer and the get

area pointers are adjusted accordingly.

5. The contents of the put area are copied to the newly allocated buffer and the put area

pointers are adjusted accordingly, extending the put area to the end of the new buffer.

6. The old buffer is freed. If a free function was specified in the constructor for the

strstreambuf object, that free function is used, otherwise the operator delete
intrinsic function is used.

Results: The doallocate protected virtual member function returns __NOT_EOF on success, otherwise EOF
is returned.

See Also: strstreambuf::alloc_size_increment, setbuf

848 Input/Output Classes

strstreambuf::freeze()

Synopsis: #include <strstrea.h>
public:
void strstreambuf::freeze(int frozen = 1);

Semantics: The freeze public member function enables and disables automatic deletion of the reserve area. If

the freeze public member function is called with no parameter or a non-zero parameter, the

strstreambuf object is frozen. If the freeze public member function is called with a zero

parameter, the strstreambuf object is unfrozen.

A frozen strstreambuf object does not free the reserve area in the destructor. If the

strstreambuf object is destroyed while it is frozen, it is the program’s responsibility to also free the

reserve area.

If characters are written to the strstreambuf object while it is frozen, the effect is undefined since

the reserve area may be reallocated and therefore may move. However, if the strstreambuf object

is frozen and then unfrozen, characters may be written to it.

Results: The freeze public member function returns the previous frozen state.

See Also: strstreambuf::str, ~strstreambuf

Input/Output Classes 849

strstreambuf::overflow()

Synopsis: #include <strstrea.h>
public:
virtual int strstreambuf::overflow(int ch = EOF);

Semantics: The overflow public virtual member function provides the output communication between the

streambuf member functions and the strstreambuf object. Member functions in the

streambuf class call the overflow public virtual member function when the put area is full. The

overflow public virtual member function attempts to grow the put area so that writing may continue.

The overflow public virtual member function performs the following steps:

1. If dynamic allocation is not being used, the put area cannot be extended, so the overflow
public virtual member function fails.

2. If dynamic allocation is being used, a new buffer is allocated using the doallocate
member function. It handles copying the contents of the old buffer to the new buffer and

discarding the old buffer.

3. If the ch parameter is not EOF, it is added to the end of the extended put area and the put

pointer is advanced.

Results: The overflow public virtual member function returns __NOT_EOF when it successfully extends the

put area, otherwise EOF is returned.

See Also: streambuf::overflow
strstreambuf::underflow

850 Input/Output Classes

strstreambuf::seekoff()

Synopsis: #include <strstrea.h>
public:
virtual streampos strstreambuf::seekoff(streamoff offset,
ios::seekdir dir,
ios::openmode mode);

Semantics: The seekoff public virtual member function positions the get pointer and/or put pointer to the

specified position in the reserve area. If the get pointer is moved, it is moved to a position relative to

the start of the reserve area (which is also the start of the get area). If a position is specified that is

beyond the end of the get area but is in the put area, the get area is extended to include the put area. If

the put pointer is moved, it is moved to a position relative to the start of the put area, not relative to the

start of the reserve area.

The seekoff public virtual member function seeks offset bytes from the position specified by the dir

parameter.

The mode parameter may be ios::in, ios::out, or ios::in|ios::out and should be

interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.

ios::out the put pointer should be moved.

ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekoff public virtual member function fails.

ios::in|ios::out is not valid if the dir parameter is ios::cur.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in conjunction

with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.

ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).

ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate sign, the

seekoff public virtual member function fails.

Results: The seekoff public virtual member function returns the new position in the file on success, otherwise

EOF is returned. If both or ios::in|ios::out are specified and the dir parameter is ios::cur
the returned position refers to the put pointer.

Input/Output Classes 851

strstreambuf::setbuf()

Synopsis: #include <strstrea.h>
public:
virtual streambuf *strstreambuf::setbuf(char *, int size);

Semantics: The setbuf public virtual member function is used to control the size of the allocations when the

strstreambuf object is using dynamic allocation. The first parameter is ignored. The next time an

allocation is required, at least the number of characters specified in the size parameter is allocated. If

the specified size is not sufficient, the allocation reverts to its default behavior, which is to extend the

buffer by DEFAULT_MAINBUF_SIZE, which is 512 characters.

If a program is going to write a large number of characters to the strstreambuf object, it should call

the setbuf public virtual member function to indicate the size of the next allocation, to prevent

multiple allocations as the buffer gets larger.

Results: The setbuf public virtual member function returns a pointer to the strstreambuf object.

See Also: strstreambuf::alloc_size_increment, doallocate

852 Input/Output Classes

strstreambuf::str()

Synopsis: #include <strstrea.h>
public:
char *strstreambuf::str();

Semantics: The str public member function freezes the strstreambuf object and returns a pointer to the

reserve area. This pointer remains valid after the strstreambuf object is destroyed provided the

strstreambuf object remains frozen, since the destructor does not free the reserve area if it is

frozen.

The returned pointer may be NULL if the strstreambuf object is using dynamic allocation but has

not yet had anything written to it.

If the strstreambuf object is not using dynamic allocation, the pointer returned by the str public

member function is the same buffer pointer provided to the constructor. For a strstreambuf object

using dynamic allocation, the pointer points to a dynamically allocated area.

Note that the reserve area does not necessarily end with a null character. If the pointer returned by the

str public member function is to be interpreted as a C string, it is the program’s responsibility to

ensure that the null character is present.

Results: The str public member function returns a pointer to the reserve area and freezes the strstreambuf
object.

See Also: strstreambuf::freeze

Input/Output Classes 853

strstreambuf::strstreambuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf::strstreambuf();

Semantics: This form of the public strstreambuf constructor creates an empty strstreambuf object that

uses dynamic allocation. No reserve area is allocated to start. Whenever characters are written to

extend the strstreambuf object, the reserve area is reallocated and copied as required. The size of

allocation is determined by the strstreambuf object unless the setbuf or

alloc_size_increment member functions are called to change the allocation size. The default

allocation size is determined by the constant DEFAULT_MAINBUF_SIZE, which is 512.

Results: This form of the public strstreambuf constructor creates a strstreambuf object.

See Also: strstreambuf::doallocate, ~strstreambuf

854 Input/Output Classes

strstreambuf::strstreambuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf::strstreambuf(int alloc_size);

Semantics: This form of the public strstreambuf constructor creates an empty strstreambuf object that

uses dynamic allocation. No buffer is allocated to start. Whenever characters are written to extend the

strstreambuf object, the reserve area is reallocated and copied as required. The size of the first

allocation is determined by the alloc_size parameter, unless changed by a call to the setbuf or

alloc_size_increment member functions.

Note that the alloc_size parameter is the starting reserve area size. When the reserve area is

reallocated, the strstreambuf object uses DEFAULT_MAINBUF_SIZE to increase the reserve area

size, unless the setbuf or alloc_size_increment member functions have been called to specify

a new allocation size.

Results: This form of the public strstreambuf constructor creates a strstreambuf object.

See Also: strstreambuf::alloc_size_increment, doallocate, setbuf, ~strstreambuf

Input/Output Classes 855

strstreambuf::strstreambuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf::strstreambuf(void * (*alloc_fn)(long),
void (*free_fn)(void *));

Semantics: This form of the public strstreambuf constructor creates an empty strstreambuf object that

uses dynamic allocation. No buffer is allocated to start. Whenever characters are written to extend the

strstreambuf object, the reserve area is reallocated and copied as required, using the specified

alloc_fn and free_fn functions. The size of allocation is determined by the class unless the setbuf or

alloc_size_increment member functions are called to change the allocation size. The default

allocation size is determined by the constant DEFAULT_MAINBUF_SIZE, which is 512.

When a new reserve area is allocated, the function specified by the alloc_fn parameter is called with a

long integer value indicating the number of bytes to allocate. If alloc_fn is NULL, the

operator new intrinsic function is used. Likewise, when the reserve area is freed, the function

specified by the free_fn parameter is called with the pointer returned by the alloc_fn function as the

parameter. If free_fn is NULL, the operator delete intrinsic function is used.

Results: This form of the public strstreambuf constructor creates a strstreambuf object.

See Also: strstreambuf::alloc_size_increment, doallocate, setbuf, ~strstreambuf

856 Input/Output Classes

strstreambuf::strstreambuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf::strstreambuf(char *str,
int len,
char *pstart = NULL);
strstreambuf::strstreambuf(signed char *str,
int len,
signed char *pstart = NULL);
strstreambuf::strstreambuf(unsigned char *str,
int len,
unsigned char *pstart = NULL);

Semantics: This form of the public strstreambuf constructor creates a strstreambuf object that does not

use dynamic allocation (unless str is NULL). The strstreambuf object is said to be using static

allocation. The str and len parameters specify the bounds of the reserve area.

The str, len and pstart parameters are interpreted as follows:

1. The buffer starts at str.

2. If len is positive, the buffer is len characters long.

3. If len is zero, str is a pointer to a C string which is terminated by a null character, and the

length of the buffer is the length of the string.

4. If len is negative, the buffer is unbounded. This last form should be used with extreme

caution, since no buffer is truly unlimited in size and it would be easy to write beyond the

available space.

5. If the pstart parameter is NULL, the strstreambuf object is read-only.

6. Otherwise, pstart divides the buffer into two regions. The get area starts at str and ends at

pstart-1. The put area starts at pstart and goes to the end of the buffer.

If the get area is exhausted and characters have been written to the put area, the get area is extended to

include the put area.

The get pointer and put pointer do not necessarily point at the same position in the reserve area, so a

read followed by a write does not imply that the write stores following the last character read. The get

pointer is positioned following the last read operation, and the put pointer is positioned following the

last write operation, unless the seekoff member function has been used to reposition the pointer(s).

Note that if str is NULL the effect is to create an empty dynamic strstreambuf object.

Results: This form of the public strstreambuf constructor creates a strstreambuf object.

See Also: ~strstreambuf

Input/Output Classes 857

strstreambuf::~strstreambuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf::~strstreambuf();

Semantics: The public ~strstreambuf destructor destroys the strstreambuf object after discarding the

reserve area. The reserve area is discarded only if the strstreambuf object is using dynamic

allocation and is not frozen. The reserve area is freed using the free function specified by the form of

the constructor that allows specification of the allocate and free functions, or using the

operator delete intrinsic function. If the strstreambuf object is frozen or using static

allocation, the user of the strstreambuf object must have a pointer to the reserve area and is

responsible for freeing it. The call to the public ~strstreambuf destructor is inserted implicitly by

the compiler at the point where the strstreambuf object goes out of scope.

Results: The strstreambuf object is destroyed.

See Also: strstreambuf

858 Input/Output Classes

strstreambuf::sync()

Synopsis: #include <strstrea.h>
public:
virtual int strstreambuf::sync();

Semantics: The sync public virtual member function does nothing because there is no external device with which

to synchronize.

Results: The sync public virtual member function returns __NOT_EOF.

Input/Output Classes 859

strstreambuf::underflow()

Synopsis: #include <strstrea.h>
public:
virtual int strstreambuf::underflow();

Semantics: The underflow public virtual member function provides the input communication between the

streambuf member functions and the strstreambuf object. Member functions in the

streambuf class call the underflow public virtual member function when the get area is empty.

If there is a non-empty put area present following the get area, the get area is extended to include the

put area, allowing the input operation to continue using the put area. Otherwise the get area cannot be

extended.

Results: The underflow public virtual member function returns the first available character in the get area on

successful extension, otherwise EOF is returned.

See Also: streambuf::underflow
strstreambuf::overflow

860 Input/Output Classes

19 String Class

This class is used to store arbitrarily long sequences of characters in memory. Objects of this type may be

concatenated, substringed, compared and searched without the need for memory management by the user.

Unlike a C string, this object has no delimiting character, so any character in the collating sequence, or

character set, may be stored in an object.

The class documented here is the Open Watcom legacy string class. It is not related to the

std::basic_string class template nor to its corresponding specialization std::string.

String Class 861

String

Declared: string.hpp

The String class is used to store arbitrarily long sequences of characters in memory. Objects of this

type may be concatenated, substringed, compared and searched without the need for memory

management by the user. Unlike a C string, a String object has no delimiting character, so any

character in the collating sequence, or character set, may be stored in a String object.

Public Functions

The following constructors and destructors are declared:

String();
String(size_t, capacity);
String(String const &, size_t = 0, size_t = NPOS);
String(char const *, size_t = NPOS);
String(char, size_t = 1);
~String();

The following member functions are declared:

operator char const *();
operator char() const;
String &operator =(String const &);
String &operator =(char const *);
String &operator +=(String const &);
String &operator +=(char const *);
String operator ()(size_t, size_t) const;
char &operator ()(size_t);
char const &operator [](size_t) const;
char &operator [](size_t);
int operator !() const;
size_t length() const;
char const &get_at(size_t) const;
void put_at(size_t, char);
int match(String const &) const;
int match(char const *) const;
int index(String const &, size_t = 0) const;
int index(char const *, size_t = 0) const;
String upper() const;
String lower() const;
int valid() const;
int alloc_mult_size() const;
int alloc_mult_size(int);

The following friend functions are declared:

friend int operator ==(String const &, String const &);
friend int operator ==(String const &, char const *);
friend int operator ==(char const *, String const &);
friend int operator ==(String const &, char);
friend int operator ==(char , String const &);
friend int operator !=(String const &, String const &);
friend int operator !=(String const &, char const *);
friend int operator !=(char const *, String const &);
friend int operator !=(String const &, char);
friend int operator !=(char , String const &);
friend int operator <(String const &, String const &);

862 String Class

String

friend int operator <(String const &, char const *);
friend int operator <(char const *, String const &);
friend int operator <(String const &, char);
friend int operator <(char , String const &);
friend int operator <=(String const &, String const &);
friend int operator <=(String const &, char const *);
friend int operator <=(char const *, String const &);
friend int operator <=(String const &, char);
friend int operator <=(char , String const &);
friend int operator >(String const &, String const &);
friend int operator >(String const &, char const *);
friend int operator >(char const *, String const &);
friend int operator >(String const &, char);
friend int operator >(char , String const &);
friend int operator >=(String const &, String const &);
friend int operator >=(String const &, char const *);
friend int operator >=(char const *, String const &);
friend int operator >=(String const &, char);
friend int operator >=(char , String const &);
friend String operator +(String &, String const &);
friend String operator +(String &, char const *);
friend String operator +(char const *, String const &);
friend String operator +(String &, char);
friend String operator +(char , String const &);
friend int valid(String const &);

The following I/O Stream inserter and extractor functions are declared:

friend istream &operator >>(istream &, String &);
friend ostream &operator <<(ostream &, String const &);

String Class 863

String::alloc_mult_size()

Synopsis: #include <string.hpp>
public:
int String::alloc_mult_size() const;
int String::alloc_mult_size(int mult);

Semantics: The alloc_mult_size public member function is used to query and/or change the allocation

multiple size.

The first form of the alloc_mult_size public member function queries the current setting.

The second form of the alloc_mult_size public member function sets the value to a multiple of 8

based on the mult parameter. The value of mult is rounded down to a multiple of 8 characters. If mult

is less than 8, the new multiple size is 1 and allocation sizes are exact.

The scheme used to store a String object allocates the memory for the characters in multiples of some

size. By default, this size is 8 characters. A String object with a length of 10 actually has 16

characters of storage allocated for it. Concatenating more characters on the end of the String object

only allocates a new storage block if more than 6 (16-10) characters are appended. This scheme tries to

find a balance between reallocating frequently (multiples of a small value) and creating a large amount

of unused space (multiples of a large value).

Results: The alloc_mult_size public member function returns the previous allocation multiple size.

864 String Class

String::get_at()

Synopsis: #include <string.hpp>
public:
char const &String::get_at(size_t pos);

Semantics: The get_at public member function creates a const reference to the character at offset pos within the

String object. This reference may not be used to modify that character. The first character of a

String object is at position zero.

If pos is greater than or equal to the length of the String object, and the resulting reference is used,

the behavior is undefined.

The reference is associated with the String object, and therefore has meaning only as long as the

String object is not modified (or destroyed). If the String object has been modified and an old

reference is used, the behavior is undefined.

Results: The get_at public member function returns a const reference to a character.

See Also: String::put_at, operator [], operator ()

String Class 865

String::index()

Synopsis: #include <string.hpp>
public:
int String::index(String const &str, size_t pos = 0) const;
int String::index(char const *pch, size_t pos = 0) const;

Semantics: The index public member function computes the offset at which a sequence of characters in the

String object is found.

The first form searches the String object for the contents of the str String object.

The second form searches the String object for the sequence of characters pointed at by pch.

If pos is specified, the search begins at that offset from the start of the String object. Otherwise, the

search begins at offset zero (the first character).

The index public member function treats upper and lower case letters as not equal.

Results: The index public member function returns the offset at which the sequence of characters is found. If

the substring is not found, -1 is returned.

See Also: String::lower, operator !=, operator ==, match, upper

866 String Class

String::length()

Synopsis: #include <string.hpp>
public:
size_t String::length() const;

Semantics: The length public member function computes the number of characters contained in the String
object.

Results: The length public member function returns the number of characters contained in the String object

.

String Class 867

String::lower()

Synopsis: #include <string.hpp>
public:
String String::lower() const;

Semantics: The lower public member function creates a String object whose value is the same as the original

object’s value, except that all upper-case letters have been converted to lower-case.

Results: The lower public member function returns a lower-case String object.

See Also: String::upper

868 String Class

String::match()

Synopsis: #include <string.hpp>
public:
int String::match(String const &str) const;
int String::match(char const *pch) const;

Semantics: The match public member function compares two character sequences to find the offset where they

differ.

The first form compares the String object to the str String object.

The second form compares the String object to the pch C string.

The first character is at offset zero. The match public member function treats upper and lower case

letters as not equal.

Results: The match public member function returns the offset at which the two character sequences differ. If

the character sequences are equal, -1 is returned.

See Also: String::index, lower, operator !=, operator ==, upper

String Class 869

String::operator !()

Synopsis: #include <string.hpp>
public:
int String::operator !() const;

Semantics: The operator ! public member function tests the validity of the String object.

Results: The operator ! public member function returns a non-zero value if the String object is invalid,

otherwise zero is returned.

See Also: String::valid, valid

870 String Class

String operator !=()

Synopsis: #include <string.hpp>
public:
friend int operator !=(String const &lft, String const &rht);
friend int operator !=(String const &lft, char const *rht);
friend int operator !=(char const *lft, String const &rht);
friend int operator !=(String const &lft, char rht);
friend int operator !=(char lft, String const &rht);

Semantics: The operator != function compares two sequences of characters in terms of an inequality

relationship.

A String object is different from another String object if the lengths are different or they contain

different sequences of characters. A String object and a C string are different if their lengths are

different or they contain a different sequence of characters. A C string is terminated by a null character.

A String object and a character are different if the String object does not contain only the

character. Upper-case and lower-case characters are considered different.

Results: The operator != function returns a non-zero value if the lengths or sequences of characters in the lft

and rht parameter are different, otherwise zero is returned.

See Also: String::operator ==, operator <, operator <=, operator >, operator >=

String Class 871

String::operator ()()

Synopsis: #include <string.hpp>
public:
char &String::operator ()(size_t pos);

Semantics: The operator () public member function creates a reference to the character at offset pos within the

String object. This reference may be used to modify that character. The first character of a String
object is at position zero.

If pos is greater than or equal to the length of the String object, and the resulting reference is used,

the behavior is undefined.

If the reference is used to modify other characters within the String object, the behavior is undefined.

The reference is associated with the String object, and therefore has meaning only as long as the

String object is not modified (or destroyed). If the String object has been modified and an old

reference is used, the behavior is undefined.

Results: The operator () public member function returns a reference to a character.

See Also: String::operator [], operator char, operator char const *

872 String Class

String::operator ()()

Synopsis: #include <string.hpp>
public:
String String::operator ()(size_t pos, size_t len) const;

Semantics: This form of the operator () public member function extracts a sub-sequence of characters from

the String object. A new String object is created that contains the sub-sequence of characters.

The sub-sequence begins at offset pos within the String object and continues for len characters. The

first character of a String object is at position zero.

If pos is greater than or equal to the length of the String object, the result is empty.

If len is such that pos + len exceeds the length of the object, the result is the sub-sequence of characters

from the String object starting at offset pos and running to the end of the String object.

Results: The operator () public member function returns a String object.

See Also: String::operator [], operator char, operator char const *

String Class 873

String operator +()

Synopsis: #include <string.hpp>
public:
friend String operator +(String &lft, String const &rht);
friend String operator +(String &lft, char const *rht);
friend String operator +(char const *lft, String const &rht);
friend String operator +(String &lft, char rht);
friend String operator +(char lft, String const &rht);

Semantics: The operator + function concatenates two sequences of characters into a new String object. The

new String object contains the sequence of characters from the lft parameter followed by the

sequence of characters from the rht parameter.

A NULL pointer to a C string is treated as a pointer to an empty C string.

Results: The operator + function returns a new String object that contains the characters from the lft

parameter followed by the characters from the rht parameter.

See Also: String::operator +=

874 String Class

String::operator +=()

Synopsis: #include <string.hpp>
public:
String &String::operator +=(String const &str);
String &String::operator +=(char const *pch);

Semantics: The operator += public member function appends the contents of the parameter to the end of the

String object.

The first form of the operator += public member function appends the contents of the str String
object to the String object.

The second form appends the null-terminated sequence of characters stored at pch to the String
object. If the pch parameter is NULL, nothing is appended.

Results: The operator += public member function returns a reference to the String object that was the

target of the assignment.

See Also: String::operator =

String Class 875

String operator <()

Synopsis: #include <string.hpp>
public:
friend int operator <(String const &lft, String const &rht);
friend int operator <(String const &lft, char const *rht);
friend int operator <(char const *lft, String const &rht);
friend int operator <(String const &lft, char rht);
friend int operator <(char lft, String const &rht);

Semantics: The operator < function compares two sequences of characters in terms of a less-than relationship.

lft is less-than rht if lft if the characters of lft occur before the characters of rht in the collating sequence.

Upper-case and lower-case characters are considered different.

Results: The operator < function returns a non-zero value if the lft sequence of characters is less than the rht

sequence, otherwise zero is returned.

See Also: String::operator !=, operator ==, operator <=, operator >, operator >=

876 String Class

String operator <<()

Synopsis: #include <string.hpp>
public:
friend ostream &operator <<(ostream &strm, String const &str);

Semantics: The operator << function is used to write the sequence of characters in the str String object to

the strm ostream object. Like C strings, the value of the str String object is written to strm without

the addition of any characters. No special processing occurs for any characters in the String object

that have special meaning for the strm object, such as carriage-returns.

The underlying implementation of the operator << function uses the ostream write method, which

writes unformatted characters to the output stream. If formatted output is required, then the

programmer should make use of the classes accessor methods, such as c_str(), and pass the resulting

data item to the stream using the appropriate insert operator.

Results: The operator << function returns a reference to the strm parameter.

See Also: ostream

String Class 877

String operator <=()

Synopsis: #include <string.hpp>
public:
friend int operator <=(String const &lft, String const &rht);
friend int operator <=(String const &lft, char const *rht);
friend int operator <=(char const *lft, String const &rht);
friend int operator <=(String const &lft, char rht);
friend int operator <=(char lft, String const &rht);

Semantics: The operator <= function compares two sequences of characters in terms of a less-than or equal

relationship.

lft is less-than or equal to rht if the characters of lft are equal to or occur before the characters of rht in

the collating sequence. Upper-case and lower-case characters are considered different.

Results: The operator <= function returns a non-zero value if the lft sequence of characters is less than or

equal to the rht sequence, otherwise zero is returned.

See Also: String::operator !=, operator ==, operator <, operator >, operator >=

878 String Class

String::operator =()

Synopsis: #include <string.hpp>
public:
String &String::operator =(String const &str);
String &String::operator =(char const *pch);

Semantics: The operator = public member function sets the contents of the String object to be the same as

the parameter.

The first form of the operator = public member function sets the value of the String object to be

the same as the value of the str String object.

The second form sets the value of the String object to the null-terminated sequence of characters

stored at pch. If the pch parameter is NULL, the String object is empty.

Results: The operator = public member function returns a reference to the String object that was the

target of the assignment.

See Also: String::operator +=, String

String Class 879

String operator ==()

Synopsis: #include <string.hpp>
public:
friend int operator ==(String const &lft, String const &rht);
friend int operator ==(String const &lft, char const *rht);
friend int operator ==(char const *lft, String const &rht);
friend int operator ==(String const &lft, char rht);
friend int operator ==(char lft, String const &rht);

Semantics: The operator == function compares two sequences of characters in terms of an equality

relationship.

A String object is equal to another String object if they have the same length and they contain the

same sequence of characters. A String object and a C string are equal if their lengths are the same

and they contain the same sequence of characters. The C string is terminated by a null character. A

String object and a character are equal if the String object contains only that character.

Upper-case and lower-case characters are considered different.

Results: The operator == function returns a non-zero value if the lengths and sequences of characters in the

lft and rht parameter are identical, otherwise zero is returned.

See Also: String::operator !=, operator <, operator <=, operator >, operator >=

880 String Class

String operator >()

Synopsis: #include <string.hpp>
public:
friend int operator >(String const &lft, String const &rht);
friend int operator >(String const &lft, char const *rht);
friend int operator >(char const *lft, String const &rht);
friend int operator >(String const &lft, char rht);
friend int operator >(char lft, String const &rht);

Semantics: The operator > function compares two sequences of characters in terms of a greater-than

relationship.

lft is greater-than rht if the characters of lft occur after the characters of rht in the collating sequence.

Upper-case and lower-case characters are considered different.

Results: The operator > function returns a non-zero value if the lft sequence of characters is greater than the

rht sequence, otherwise zero is returned.

See Also: String::operator !=, operator ==, operator <, operator <=, operator >=

String Class 881

String operator >=()

Synopsis: #include <string.hpp>
public:
friend int operator >=(String const &lft, String const &rht);
friend int operator >=(String const &lft, char const *rht);
friend int operator >=(char const *lft, String const &rht);
friend int operator >=(String const &lft, char rht);
friend int operator >=(char lft, String const &rht);

Semantics: The operator >= function compares two sequences of characters in terms of a greater-than or equal

relationship.

lft is greater-than or equal to rht if the characters of lft are equal to or occur after the characters of rht in

the collating sequence. Upper-case and lower-case characters are considered different.

Results: The operator >= function returns a non-zero value if the lft sequence of characters is greater than or

equal to the rht sequence, otherwise zero is returned.

See Also: String::operator !=, operator ==, operator <, operator <=, operator >

882 String Class

String operator >>()

Synopsis: #include <string.hpp>
public:
friend istream &operator >>(istream &strm, String &str);

Semantics: The operator >> function is used to read a sequence of characters from the strm istream object

into the str String object. Like C strings, the gathering of characters for a str String object ends at

the first whitespace encountered, so that the last character placed in str is the character before the

whitespace.

Results: The operator >> function returns a reference to the strm parameter.

See Also: istream

String Class 883

String::operator []()

Synopsis: #include <string.hpp>
public:
char const &String::operator [](size_t pos) const;
char &String::operator [](size_t pos);

Semantics: The operator [] public member function creates either a const or a non-const reference to the

character at offset pos within the String object. The non-const reference may be used to modify that

character. The first character of a String object is at position zero.

If pos is greater than or equal to the length of the String object, and the resulting reference is used,

the behavior is undefined.

If the non-const reference is used to modify other characters within the String object, the behavior is

undefined.

The reference is associated with the String object, and therefore has meaning only as long as the

String object is not modified (or destroyed). If the String object has been modified and an old

reference is used, the behavior is undefined.

Results: The operator [] public member function returns either a const or a non-const reference to a

character.

See Also: String::operator (), operator char, operator char const *

884 String Class

String::operator char()

Synopsis: #include <string.hpp>
public:
String::operator char();

Semantics: The operator char public member function converts a String object into the first character it

contains. If the String object is empty, the result is the null character.

Results: The operator char public member function returns the first character contained in the String
object. If the String object is empty, the null character is returned.

See Also: String::operator (), operator [], operator char const *

String Class 885

String::operator char const *()

Synopsis: #include <string.hpp>
public:
String::operator char const *();

Semantics: The operator char const * public member function converts a String object into a C string

containing the same length and sequence of characters, terminated by a null character. If the String
object contains a null character the resulting C string is terminated by that null character.

The returned pointer is associated with the String object, and therefore has meaning only as long as

the String object is not modified. If the intention is to be able to refer to the C string after the

String object has been modified, a copy of the string should be made, perhaps by using the C library

strdup function.

The returned pointer is a pointer to a constant C string. If the pointer is used in some way to modify the

C string, the behavior is undefined.

Results: The operator char const * public member function returns a pointer to a null-terminated

constant C string that contains the same characters as the String object.

See Also: String::operator (), operator [], operator char

886 String Class

String::put_at()

Synopsis: #include <string.hpp>
public:
void String::put_at(size_t pos, char chr);

Semantics: The put_at public member function modifies the character at offset pos within the String object.

The character at the specified offset is set to the value of chr. If pos is greater than the number of

characters within the String object, chr is appended to the String object.

Results: The put_at public member function has no return value.

See Also: String::get_at, operator [], operator (), operator +=, operator +

String Class 887

String::String()

Synopsis: #include <string.hpp>
public:
String::String();

Semantics: This form of the public String constructor creates a default String object containing no characters.

The created String object has length zero.

Results: This form of the public String constructor produces a String object.

See Also: String::operator =, operator +=, ~String

888 String Class

String::String()

Synopsis: #include <string.hpp>
public:
String::String(size_t size, String::capacity cap);

Semantics: This form of the public String constructor creates a String object. The function constructs a

String object of length size if cap is equal to the enumerated default_size. The function reserves size

bytes of memory and sets the length of the String object to be zero if cap is equal to the enumerated

reserve.

Results: This form of the public String constructor produces a String object of size size.

See Also: String::operator =, ~String

String Class 889

String::String()

Synopsis: #include <string.hpp>
public:
String::String(String const &str, size_t pos = 0, size_t num = NPOS
);

Semantics: This form of the public String constructor creates a String object which contains a sub-string of

the str parameter. The sub-string starts at position pos within str and continues for num characters or

until the end of the str parameter, whichever comes first.

Results: This form of the public String constructor produces a sub-string or duplicate of the str parameter.

See Also: String::operator =, operator (), operator [], ~String

890 String Class

String::String()

Synopsis: #include <string.hpp>
public:
String::String(char const *pch, size_t num = NPOS);

Semantics: This form of the public String constructor creates a String object from a C string. The String
object contains the sequence of characters located at the pch parameter. Characters are included up to

num or the end of the C string pointed at by pch. Note that C strings are terminated by a null character

and that the value of the created String object does not contain that character, nor any following it.

Results: This form of the public String constructor produces a String object of at most length n containing

the characters in the C string starting at the pch parameter.

See Also: String::operator =, operator char const *, operator (), operator [],
~String

String Class 891

String::String()

Synopsis: #include <string.hpp>
public:
String::String(char ch, size_t rep = 1);

Semantics: This form of the public String constructor creates a String object containing rep copies of the ch

parameter.

Results: This form of the public String constructor produces a String object of length rep containing only

the character specified by the ch parameter.

See Also: String::operator =, operator char, ~String

892 String Class

String::~String()

Synopsis: #include <string.hpp>
public:
String::~String();

Semantics: The public ~String destructor destroys the String object. The call to the public ~String
destructor is inserted implicitly by the compiler at the point where the String object goes out of

scope.

Results: The String object is destroyed.

See Also: String

String Class 893

String::upper()

Synopsis: #include <string.hpp>
public:
String String::upper() const;

Semantics: The upper public member function creates a new String object whose value is the same as the

original String object, except that all lower-case letters have been converted to upper-case.

Results: The upper public member function returns a new upper-case String object.

See Also: String::lower

894 String Class

String valid()

Synopsis: #include <string.hpp>
public:
friend int valid(String const &str);

Semantics: The valid function tests the validity of the str String object.

Results: The valid function returns a non-zero value if the str String object is valid, otherwise zero is

returned.

See Also: String::operator !, valid

String Class 895

String::valid()

Synopsis: #include <string.hpp>
public:
int String::valid() const;

Semantics: The valid public member function tests the validity of the String object.

Results: The valid public member function returns a non-zero value if the String object is valid, otherwise

zero is returned.

See Also: String::operator !, valid

896 String Class

Index

WCValDListIter<Type> 394, 402

WCValOrderedVector<Type> 568, 576
_ WCValSList<Type> 283, 293

WCValSListIter<Type> 394, 402

WCValSortedVector<Type> 568, 576

arg, related function__NOT_EOF 7
Complex 19, 23

asin, related function

Complex 19, 24

asinh, related functionA
Complex 19, 25

atan, related function

Complex 19, 26

atanh, related functionabs, related function

Complex 19, 27Complex 19-20

ate, member enumerationacos, related function

ios 675Complex 19, 21

atend, member enumerationacosh, related function

ios 675Complex 19, 22

attach, member functionadjustfield, member enumeration

filebuf 610, 612ios 665

fstreambase 635-636all_fine, member enumeration

WCExcept 70

WCIterExcept 75

alloc_mult_size, member function

BString 862, 864

alloc_size_increment, member function

strstreambuf 846-847

allocate, member function
bad, member functionstreambuf 792, 794

ios 655, 657allocator
badbit, member enumerationfunction 259, 263, 286, 290, 416, 514

ios 673app, member enumeration
base, member functionios 675

streambuf 792, 795append, member enumeration
basefield, member enumerationios 675

ios 665append, member function
beg, member enumerationWCIsvConstDListIter<Type> 308

ios 683WCIsvConstSListIter<Type> 308
binary, member enumerationWCIsvDList<Type> 233, 241

ios 675WCIsvDListIter<Type> 324, 332
bitalloc, member functionWCIsvSList<Type> 233, 241

ios 656, 658WCIsvSListIter<Type> 324, 332
bitHash, member functionWCPtrConstDListIter<Type> 343

WCPtrHashDict<Key,Value> 82, 88WCPtrConstSListIter<Type> 343
WCPtrHashSet<Type> 106, 115WCPtrDList<Type> 256, 266
WCPtrHashTable<Type> 106, 115WCPtrDListIter<Type> 359, 367
WCValHashDict<Key,Value> 132, 137WCPtrOrderedVector<Type> 525, 532
WCValHashSet<Type> 154, 163WCPtrSList<Type> 256, 266
WCValHashTable<Type> 154, 163WCPtrSListIter<Type> 359, 367

blen, member functionWCPtrSortedVector<Type> 525, 532
streambuf 792, 796WCValConstDListIter<Type> 378

buckets, member functionWCValConstSListIter<Type> 378
WCPtrHashDict<Key,Value> 82, 89WCValDList<Type> 283, 293

897

Index

WCPtrHashSet<Type> 106, 116 WCPtrHashTable<Type> 106, 118

WCPtrHashTable<Type> 106, 116 WCPtrOrderedVector<Type> 525, 534

WCValHashDict<Key,Value> 132, 138 WCPtrSkipList<Type> 446, 457

WCValHashSet<Type> 154, 164 WCPtrSkipListDict<Key,Value> 426, 433

WCValHashTable<Type> 154, 164 WCPtrSkipListSet<Type> 446, 457

WCPtrSList<Type> 256, 268

WCPtrSortedVector<Type> 525, 534

WCPtrVector<Type> 555, 561

WCValDList<Type> 283, 295C
WCValSList<Type> 283, 295

clog 9

close, member function
cerr 9 filebuf 610, 613
check_all, member enumeration fstreambase 635, 637

WCExcept 70 common types 7
WCIterExcept 75 Complex class 17

check_none, member enumeration Complex related functions
WCExcept 70 abs 19-20
WCIterExcept 75 acos 19, 21

cin 9 acosh 19, 22
clear, member function arg 19, 23

ios 655, 659 asin 19, 24
WCIsvDList<Type> 233, 242 asinh 19, 25
WCIsvSList<Type> 233, 242 atan 19, 26
WCPtrDList<Type> 256, 267 atanh 19, 27
WCPtrHashDict<Key,Value> 83, 90 conj 19, 32
WCPtrHashSet<Type> 106, 117 cos 19, 33
WCPtrHashTable<Type> 106, 117 cosh 19, 34
WCPtrOrderedVector<Type> 525, 533 exp 19, 35
WCPtrSkipList<Type> 446, 456 imag 19, 37
WCPtrSkipListDict<Key,Value> 426, 432 log 19
WCPtrSkipListSet<Type> 446, 456 log10 19, 39
WCPtrSList<Type> 256, 267 norm 19, 40
WCPtrSortedVector<Type> 525, 533 num 38
WCPtrVector<Type> 555, 560 operator != 19, 41
WCQueue<Type,FType> 414, 418 operator * 18, 42
WCStack<Type,FType> 512, 516 operator + 18, 45
WCValDList<Type> 283, 294 operator - 18, 48
WCValHashDict<Key,Value> 132, 139 operator / 18, 50
WCValHashSet<Type> 154, 165 operator << 18, 52
WCValHashTable<Type> 154, 165 operator == 18-19, 54
WCValOrderedVector<Type> 568, 577 operator >> 18, 55
WCValSkipList<Type> 489, 498 polar 19, 56
WCValSkipListDict<Key,Value> 470, 475 pow 19, 57
WCValSkipListSet<Type> 489, 498 real 19, 59
WCValSList<Type> 283, 294 sin 19, 60
WCValSortedVector<Type> 568, 577 sinh 19, 61
WCValVector<Type> 598, 603 sqrt 19, 62

clearAndDestroy, member function tan 19, 63
WCIsvDList<Type> 233, 243 tanh 19, 64
WCIsvSList<Type> 233, 243 Complex::Complex 18, 28-30
WCPtrDList<Type> 256, 268 Complex::imag 18, 36
WCPtrHashDict<Key,Value> 83, 91 Complex::operator *= 18, 43
WCPtrHashSet<Type> 106, 118 Complex::operator + 18, 44

898

Index

Complex::operator += 18, 46 WCValSkipListDict<Key,Value> 471-473

Complex::operator - 18, 47 WCValSList<Type> 283

Complex::operator -= 18, 49 WCValSListIter<Type> 394

Complex::operator /= 18, 51 WCValSortedVector<Type> 570-571, 573-574

Complex::operator = 18, 53 WCValVector<Type> 598-601

Complex::real 18, 58 container, member function

Complex::~Complex 18, 31 WCIsvConstDListIter<Type> 308, 315

conj, related function WCIsvConstSListIter<Type> 308, 315

Complex 19, 32 WCIsvDListIter<Type> 324, 333

constructor WCIsvSListIter<Type> 324, 333

Complex 18, 28-30 WCPtrConstDListIter<Type> 343, 350

filebuf 610, 615-617 WCPtrConstSListIter<Type> 343, 350

fstream 628-632 WCPtrDListIter<Type> 359, 368

fstreambase 635, 638-641 WCPtrHashDictIter<Key,Value> 180, 184

ifstream 648-652 WCPtrHashSetIter<Type> 202, 209

ios 655, 670-671 WCPtrHashTableIter<Type> 202, 209

iostream 691-694 WCPtrSListIter<Type> 359, 368

istream 698, 710-712 WCValConstDListIter<Type> 378, 385

istrstream 729-731 WCValConstSListIter<Type> 378, 385

ofstream 748-752 WCValDListIter<Type> 394, 403

ostream 755, 769-771 WCValHashDictIter<Key,Value> 191, 195

ostrstream 778-780 WCValHashSetIter<Type> 215, 222

stdiobuf 784, 786-787 WCValHashTableIter<Type> 215, 222

streambuf 792, 830-831 WCValSListIter<Type> 394, 403

String 862, 888-892 contains, member function

strstream 836, 838-839 WCIsvDList<Type> 233, 244

strstreambase 841, 843-844 WCIsvSList<Type> 233, 244

strstreambuf 846, 854-857 WCPtrDList<Type> 256, 269

WCDLink 230-231 WCPtrHashDict<Key,Value> 83, 92

WCExcept 66-67 WCPtrHashSet<Type> 106, 119

WCIsvConstSListIter<Type> 308 WCPtrHashTable<Type> 106, 119

WCIsvSList<Type> 233 WCPtrOrderedVector<Type> 525, 535

WCIsvSListIter<Type> 324 WCPtrSkipList<Type> 447, 458

WCIterExcept 71-72 WCPtrSkipListDict<Key,Value> 426, 434

WCPtrConstSListIter<Type> 343 WCPtrSkipListSet<Type> 447, 458

WCPtrHashDict<Key,Value> 84-86 WCPtrSList<Type> 256, 269

WCPtrHashDictIter<Key,Value> 180 WCPtrSortedVector<Type> 525, 535

WCPtrHashSetIter<Type> 202 WCValDList<Type> 283, 296

WCPtrHashTable<Type> 107-109, 111-113 WCValHashDict<Key,Value> 132, 140

WCPtrSkipList<Type> 448-450, 452-454 WCValHashSet<Type> 154, 166

WCPtrSkipListDict<Key,Value> 428-430 WCValHashTable<Type> 154, 166

WCPtrSList<Type> 256 WCValOrderedVector<Type> 568, 578

WCPtrSListIter<Type> 359 WCValSkipList<Type> 489, 499

WCPtrSortedVector<Type> 526-527, 529-530 WCValSkipListDict<Key,Value> 470, 476

WCPtrVector<Type> 555-558 WCValSkipListSet<Type> 489, 499

WCQueue<Type,FType> 414-416 WCValSList<Type> 283, 296

WCSLink 280-281 WCValSortedVector<Type> 568, 578

WCStack<Type,FType> 512-514 cos, related function

WCValConstSListIter<Type> 378 Complex 19, 33

WCValHashDict<Key,Value> 133-135 cosh, related function

WCValHashDictIter<Key,Value> 191 Complex 19, 34

WCValHashSetIter<Type> 215 cout 9

WCValHashTable<Type> 155-157, 159-161 cur, member enumeration

WCValSkipList<Type> 490-492, 494-496 ios 683

899

Index

current, member function WCIsvSListIter<Type> 324

WCIsvConstDListIter<Type> 308, 316 WCIterExcept 71, 73

WCIsvConstSListIter<Type> 308, 316 WCPtrConstSListIter<Type> 343

WCIsvDListIter<Type> 324, 334 WCPtrHashDict<Key,Value> 87

WCIsvSListIter<Type> 324, 334 WCPtrHashDictIter<Key,Value> 180

WCPtrConstDListIter<Type> 343, 351 WCPtrHashSetIter<Type> 202

WCPtrConstSListIter<Type> 343, 351 WCPtrHashTable<Type> 110, 114

WCPtrDListIter<Type> 359, 369 WCPtrSkipList<Type> 451, 455

WCPtrHashSetIter<Type> 202, 210 WCPtrSkipListDict<Key,Value> 431

WCPtrHashTableIter<Type> 202, 210 WCPtrSList<Type> 256

WCPtrSListIter<Type> 359, 369 WCPtrSListIter<Type> 359

WCValConstDListIter<Type> 378, 386 WCPtrSortedVector<Type> 528, 531

WCValConstSListIter<Type> 378, 386 WCPtrVector<Type> 555, 559

WCValDListIter<Type> 394, 404 WCQueue<Type,FType> 414, 417

WCValHashSetIter<Type> 215, 223 WCSLink 280, 282

WCValHashTableIter<Type> 215, 223 WCStack<Type,FType> 512, 515

WCValSListIter<Type> 394, 404 WCValConstSListIter<Type> 378

WCValHashDict<Key,Value> 136

WCValHashDictIter<Key,Value> 191

WCValHashSetIter<Type> 215

WCValHashTable<Type> 158, 162D
WCValSkipList<Type> 493, 497

WCValSkipListDict<Key,Value> 474

WCValSList<Type> 283
dbp, member function WCValSListIter<Type> 394

streambuf 793, 797 WCValSortedVector<Type> 572, 575
dealloctor WCValVector<Type> 598, 602

function 259, 263, 286, 290, 416, 514 do_sgetn, member function
dec, manipulator 733-734 streambuf 793, 798
dec, member enumeration do_sputn, member function

ios 665 streambuf 793, 799
destructor doallocate, member function

Complex 18, 31 streambuf 792, 800
filebuf 610, 618 strstreambuf 846, 848
fstream 628, 633

fstreambase 635, 642

ifstream 648, 653

ios 655, 672 E
iostream 691, 695

istream 698, 713

istrstream 729, 732

ofstream 748, 753 eatwhite, member function

ostream 755, 772 istream 698, 700

ostrstream 778, 781 eback, member function

stdiobuf 784, 788 streambuf 792, 801

streambuf 792, 832 ebuf, member function

String 862, 893 streambuf 792, 802

strstream 836, 840 egptr, member function

strstreambase 841, 845 streambuf 792, 803

strstreambuf 846, 858 empty_container

WCDLink 230, 232 exception 70, 246-247, 249, 271-272, 274, 298-299,

WCExcept 66, 68 301, 420-421, 424, 519, 521, 538, 543, 545,

WCIsvConstSListIter<Type> 308 551-553, 563, 581, 586, 588, 594-596, 605

WCIsvSList<Type> 233 empty_container, member enumeration

900

Index

WCExcept 70

end, member enumeration
Fios 683

endl, manipulator 733, 735

ends, manipulator 733, 736

entries, member function fail, member function
WCIsvDList<Type> 233, 245 ios 655, 662
WCIsvSList<Type> 233, 245 failbit, member enumeration
WCPtrDList<Type> 256, 270 ios 673
WCPtrHashDict<Key,Value> 83, 93 fd, member function
WCPtrHashSet<Type> 106, 120 filebuf 610, 614
WCPtrHashTable<Type> 106, 120 fstreambase 635, 644
WCPtrOrderedVector<Type> 525, 536 filebuf 791
WCPtrSkipList<Type> 447, 459 filebuf::attach 610, 612
WCPtrSkipListDict<Key,Value> 426, 435 filebuf::close 610, 613
WCPtrSkipListSet<Type> 447, 459 filebuf::fd 610, 614
WCPtrSList<Type> 256, 270 filebuf::filebuf 610, 615-617
WCPtrSortedVector<Type> 525, 536 filebuf::is_open 610, 619
WCQueue<Type,FType> 414, 419 filebuf::open 610, 620
WCStack<Type,FType> 512, 517 filebuf::openprot 610, 621
WCValDList<Type> 283, 297 filebuf::overflow 610, 622
WCValHashDict<Key,Value> 132, 141 filebuf::pbackfail 610, 623
WCValHashSet<Type> 154, 167 filebuf::seekoff 611, 624
WCValHashTable<Type> 154, 167 filebuf::setbuf 611, 625
WCValOrderedVector<Type> 568, 579 filebuf::sync 611, 626
WCValSkipList<Type> 489, 500 filebuf::underflow 610, 627
WCValSkipListDict<Key,Value> 470, 477 filebuf::~filebuf 610, 618
WCValSkipListSet<Type> 489, 500 filedesc 7
WCValSList<Type> 283, 297 fill character 663
WCValSortedVector<Type> 568, 579 fill, member function

EOF 7 ios 655, 663
eof, member function find, member function

ios 655, 660 WCIsvDList<Type> 233, 246
eofbit, member enumeration WCIsvSList<Type> 233, 246

ios 673 WCPtrDList<Type> 256, 271
epptr, member function WCPtrHashDict<Key,Value> 83, 94

streambuf 792, 804 WCPtrHashSet<Type> 106, 121
exception handling 3 WCPtrHashTable<Type> 106, 121
exceptions 70 WCPtrOrderedVector<Type> 525, 537

function 75 WCPtrSkipList<Type> 447, 460
exceptions, member function WCPtrSkipListDict<Key,Value> 426, 436

ios 655, 661 WCPtrSkipListSet<Type> 447, 460
WCExcept 66, 69 WCPtrSList<Type> 256, 271
WCIterExcept 71, 74 WCPtrSortedVector<Type> 525, 537

exp, related function WCValDList<Type> 283, 298
Complex 19, 35 WCValHashDict<Key,Value> 132, 142

extractor 11, 698 WCValHashSet<Type> 154, 168

WCValHashTable<Type> 154, 168

WCValOrderedVector<Type> 568, 580

WCValSkipList<Type> 489, 501

WCValSkipListDict<Key,Value> 470, 478

WCValSkipListSet<Type> 489, 501

WCValSList<Type> 283, 298

WCValSortedVector<Type> 568, 580

901

Index

findKeyAndValue, member function fstream 635, 691

WCPtrHashDict<Key,Value> 83, 95 fstream::fstream 628-632

WCPtrSkipListDict<Key,Value> 426, 437 fstream::open 628, 634

WCValHashDict<Key,Value> 132, 143 fstream::~fstream 628, 633

WCValSkipListDict<Key,Value> 470, 479 fstreambase 628, 648, 748

findLast, member function fstreambase::attach 635-636

WCIsvDList<Type> 233, 247 fstreambase::close 635, 637

WCIsvSList<Type> 233, 247 fstreambase::fd 635, 644

WCPtrDList<Type> 256, 272 fstreambase::fstreambase 635, 638-641

WCPtrSList<Type> 256, 272 fstreambase::is_open 635, 643

WCValDList<Type> 283, 299 fstreambase::open 635, 645

WCValSList<Type> 283, 299 fstreambase::rdbuf 635, 646

first, member function fstreambase::setbuf 635, 647

WCPtrOrderedVector<Type> 525, 538 fstreambase::~fstreambase 635, 642

WCPtrSortedVector<Type> 525, 538 functions and types 15

WCQueue<Type,FType> 414, 420

WCValOrderedVector<Type> 568, 581

WCValSortedVector<Type> 568, 581

fixed, member enumeration G
ios 665

flags, member function

ios 655, 664
gbump, member functionfloatfield, member enumeration

streambuf 792, 805ios 665
gcount, member functionflush, manipulator 733, 737

istream 699, 701flush, member function
get area 791ostream 755, 757
get pointer 806fmtflags, member enumeration
get, member functionios 655, 665

istream 698, 702-705forall, member function
WCIsvDList<Type> 233, 249WCIsvDList<Type> 233, 248
WCIsvSList<Type> 233, 249WCIsvSList<Type> 233, 248
WCPtrDList<Type> 256, 274WCPtrDList<Type> 256, 273
WCPtrSList<Type> 256, 274WCPtrHashDict<Key,Value> 83, 96
WCQueue<Type,FType> 414, 421WCPtrHashSet<Type> 106, 122
WCValDList<Type> 283, 301WCPtrHashTable<Type> 106, 122
WCValSList<Type> 283, 301WCPtrSkipList<Type> 447, 461

get_at, member functionWCPtrSkipListDict<Key,Value> 426, 438
String 862, 865WCPtrSkipListSet<Type> 447, 461

getline, member functionWCPtrSList<Type> 256, 273
istream 698, 706WCValDList<Type> 283, 300

good, member functionWCValHashDict<Key,Value> 132, 144
ios 655, 668WCValHashSet<Type> 154, 169

goodbit, member enumerationWCValHashTable<Type> 154, 169
ios 673WCValSkipList<Type> 489, 502

gptr, member functionWCValSkipListDict<Key,Value> 470, 480
streambuf 792, 806WCValSkipListSet<Type> 489, 502

WCValSList<Type> 283, 300

format precision 679

format width 689
Hformatted input 11

formatted output 13

freeze, member function

strstreambuf 846, 849 header files

902

Index

algorithm 3 ios 675

complex 3 in_avail, member function

exception 3 streambuf 793, 807

fstream 4 index, member function

functional 3 String 862, 866

generic 4 WCIsvDList<Type> 233, 250-251

iomanip 4 WCIsvSList<Type> 233, 250-251

ios 4 WCPtrDList<Type> 256, 275

iosfwd 4 WCPtrOrderedVector<Type> 525, 539

iostream 4 WCPtrSList<Type> 256, 275

istream 4 WCPtrSortedVector<Type> 525, 539

iterator 4 WCValDList<Type> 283, 302

limits 4 WCValOrderedVector<Type> 568, 582

list 4 WCValSList<Type> 283, 302

map 4 WCValSortedVector<Type> 568, 582

memory 4 index_range

new 5 exception 70, 100, 148, 247, 272, 299, 420-421,

numeric 5 424, 442, 484, 519, 521, 538, 541, 543, 545,

ostream 5 563, 581, 584, 586, 588, 605

set 5 index_range, member enumeration

stdiobuf 5 WCExcept 70

streambuf 5 init, member function

string 5 ios 655, 669

strstream 5 insert, member function

vector 5 WCIsvConstDListIter<Type> 308

wcdefs 5 WCIsvConstSListIter<Type> 308

wclbase 5 WCIsvDList<Type> 233, 252

wclcom 5 WCIsvDListIter<Type> 324, 335

wclibase 5 WCIsvSList<Type> 233, 252

wclist 5 WCIsvSListIter<Type> 324, 335

wclistit 5 WCPtrConstDListIter<Type> 343

wcqueue 6 WCPtrConstSListIter<Type> 343

wcstack 6 WCPtrDList<Type> 256, 276

hex, manipulator 733, 738 WCPtrDListIter<Type> 359, 370

hex, member enumeration WCPtrHashDict<Key,Value> 83, 97

ios 665 WCPtrHashSet<Type> 106, 123

WCPtrHashTable<Type> 106, 123

WCPtrOrderedVector<Type> 525, 540

WCPtrSkipList<Type> 447, 462

WCPtrSkipListDict<Key,Value> 426, 439I
WCPtrSkipListSet<Type> 447, 462

WCPtrSList<Type> 256, 276

WCPtrSListIter<Type> 359, 370
ifstream 635, 698 WCPtrSortedVector<Type> 525, 540
ifstream::ifstream 648-652 WCQueue<Type,FType> 414, 422
ifstream::open 648, 654 WCValConstDListIter<Type> 378
ifstream::~ifstream 648, 653 WCValConstSListIter<Type> 378
ignore, member function WCValDList<Type> 283, 303

istream 698, 707 WCValDListIter<Type> 394, 405
imag, member function WCValHashDict<Key,Value> 132, 145

Complex 18, 36 WCValHashSet<Type> 154, 170
imag, related function WCValHashTable<Type> 154, 170

Complex 19, 37 WCValOrderedVector<Type> 568, 583
in, member enumeration WCValSkipList<Type> 489, 503

903

Index

WCValSkipListDict<Key,Value> 470, 481 ios::openmode 655, 675

WCValSkipListSet<Type> 489, 503 ios::operator ! 656, 677

WCValSList<Type> 283, 303 ios::operator void * 656, 678

WCValSListIter<Type> 394, 405 ios::out 675

WCValSortedVector<Type> 568, 583 ios::precision 655, 679

insertAt, member function ios::pword 656, 680

WCPtrOrderedVector<Type> 525, 541 ios::rdbuf 655, 681

WCPtrSortedVector<Type> 525, 541 ios::rdstate 655, 682

WCValOrderedVector<Type> 568, 584 ios::right 665

WCValSortedVector<Type> 568, 584 ios::scientific 665

inserter 13, 755 ios::seekdir 655, 683

internal, member enumeration ios::setf 655, 684

ios 665 ios::setstate 655, 685

intrusive ios::showbase 665

classes 233 ios::showpoint 665

ios 635, 698, 755, 841 ios::showpos 665

ios::adjustfield 665 ios::skipws 665

ios::app 675 ios::stdio 665

ios::append 675 ios::sync_with_stdio 656, 686

ios::ate 675 ios::text 675

ios::atend 675 ios::tie 655, 687

ios::bad 655, 657 ios::trunc 675

ios::badbit 673 ios::truncate 675

ios::basefield 665 ios::unitbuf 665

ios::beg 683 ios::unsetf 655, 688

ios::binary 675 ios::uppercase 665

ios::bitalloc 656, 658 ios::width 655-656, 689

ios::clear 655, 659 ios::xalloc 656, 690

ios::cur 683 ios::~ios 655, 672

ios::dec 665 iostate, member enumeration

ios::end 683 ios 655, 673

ios::eof 655, 660 iostream 628, 698, 755, 836

ios::eofbit 673 iostream::iostream 691-694

ios::exceptions 655, 661 iostream::operator = 691, 696-697

ios::fail 655, 662 iostream::~iostream 691, 695

ios::failbit 673 ipfx, member function

ios::fill 655, 663 istream 698, 708

ios::fixed 665 is_open, member function

ios::flags 655, 664 filebuf 610, 619

ios::floatfield 665 fstreambase 635, 643

ios::fmtflags 655, 665 isEmpty, member function

ios::good 655, 668 WCIsvDList<Type> 233, 253

ios::goodbit 673 WCIsvSList<Type> 233, 253

ios::hex 665 WCPtrDList<Type> 256, 277

ios::in 675 WCPtrHashDict<Key,Value> 83, 98

ios::init 655, 669 WCPtrHashSet<Type> 106, 124

ios::internal 665 WCPtrHashTable<Type> 106, 124

ios::ios 655, 670-671 WCPtrOrderedVector<Type> 525, 542

ios::iostate 655, 673 WCPtrSkipList<Type> 447, 463

ios::iword 656, 674 WCPtrSkipListDict<Key,Value> 426, 440

ios::left 665 WCPtrSkipListSet<Type> 447, 463

ios::nocreate 675 WCPtrSList<Type> 256, 277

ios::noreplace 675 WCPtrSortedVector<Type> 525, 542

ios::oct 665 WCQueue<Type,FType> 414, 423

904

Index

WCStack<Type,FType> 512, 518

WCValDList<Type> 283, 304
LWCValHashDict<Key,Value> 132, 146

WCValHashSet<Type> 154, 171

WCValHashTable<Type> 154, 171

WCValOrderedVector<Type> 568, 585 last, member function
WCValSkipList<Type> 489, 504 WCPtrOrderedVector<Type> 525, 543
WCValSkipListDict<Key,Value> 470, 482 WCPtrSortedVector<Type> 525, 543
WCValSkipListSet<Type> 489, 504 WCQueue<Type,FType> 414, 424
WCValSList<Type> 283, 304 WCValOrderedVector<Type> 568, 586
WCValSortedVector<Type> 568, 585 WCValSortedVector<Type> 568, 586

isfx, member function left, member enumeration
istream 698, 709 ios 665

istream 648, 655, 691, 729 length, member function
istream input 11 String 862, 867
istream::eatwhite 698, 700 WCPtrVector<Type> 555, 562
istream::gcount 699, 701 WCValVector<Type> 598, 604
istream::get 698, 702-705 list containers 5
istream::getline 698, 706 log, related function
istream::ignore 698, 707 Complex 19
istream::ipfx 698, 708 log10, related function
istream::isfx 698, 709 Complex 19, 39
istream::istream 698, 710-712 lower, member function
istream::operator = 699, 714-715 String 862, 868
istream::operator >> 699, 716-721

istream::peek 699, 722

istream::putback 698, 723

istream::read 698, 724 M
istream::seekg 698, 725-726

istream::sync 699, 727

istream::tellg 698, 728

istream::~istream 698, 713 manipulator manipulators

istrstream 698, 841 dec 733-734

istrstream::istrstream 729-731 endl 733, 735

istrstream::~istrstream 729, 732 ends 733, 736

iter_range flush 733, 737

exception 75, 319, 321, 338, 340, 354, 356, 373, hex 733, 738

375, 389, 391, 408, 410 oct 733, 739

iter_range, member enumeration resetiosflags 733, 740

WCIterExcept 75 setbase 733, 741

iterator classes 5 setfill 733, 742

iword, member function setiosflags 733, 743

ios 656, 674 setprecision 733, 744

setw 733, 745

setwidth 733, 746

ws 733, 747

K manipulators

dec 733-734

endl 733, 735

ends 733, 736
key, member function flush 733, 737

WCPtrHashDictIter<Key,Value> 180, 185 hex 733, 738
WCValHashDictIter<Key,Value> 191, 196 oct 733, 739

resetiosflags 733, 740

905

Index

setbase 733, 741 oct, member enumeration

setfill 733, 742 ios 665

setiosflags 733, 743 ofstream 635, 755

setprecision 733, 744 ofstream::ofstream 748-752

setw 733, 745 ofstream::open 748, 754

setwidth 733, 746 ofstream::~ofstream 748, 753

ws 733, 747 open, member function

match, member function filebuf 610, 620

String 862, 869 fstream 628, 634

fstreambase 635, 645

ifstream 648, 654

ofstream 748, 754

openmode, member enumerationN
ios 655, 675

openprot, member data

filebuf 621
nocreate, member enumeration openprot, member function

ios 675 filebuf 610
noreplace, member enumeration operator !, member function

ios 675 ios 656, 677
norm, related function String 862, 870

Complex 19, 40 operator !=, related function
not_empty Complex 19, 41

exception 70, 87, 110, 114, 136, 158, 162, 237, 240, String 862, 871
261, 265, 288, 292, 417, 431, 451, 455, 474, operator (), member function
493, 497, 515, 528, 531, 559, 572, 575, 602 String 862, 872-873

not_empty, member enumeration WCIsvConstDListIter<Type> 308, 317
WCExcept 70 WCIsvConstSListIter<Type> 308, 317

not_unique WCIsvDListIter<Type> 324, 336
exception 70, 123, 170, 462, 503 WCIsvSListIter<Type> 324, 336

not_unique, member enumeration WCPtrConstDListIter<Type> 343, 352
WCExcept 70 WCPtrConstSListIter<Type> 343, 352

num, related function WCPtrDListIter<Type> 359, 371
Complex 38 WCPtrHashDictIter<Key,Value> 180, 186

WCPtrHashSetIter<Type> 202, 211

WCPtrHashTableIter<Type> 202, 211

WCPtrSListIter<Type> 359, 371
O WCValConstDListIter<Type> 378, 387

WCValConstSListIter<Type> 378, 387

WCValDListIter<Type> 394, 406

WCValHashDictIter<Key,Value> 191, 197occurrencesOf, member function
WCValHashSetIter<Type> 215, 224WCPtrHashSet<Type> 106, 125
WCValHashTableIter<Type> 215, 224WCPtrHashTable<Type> 106, 125
WCValSListIter<Type> 394, 406WCPtrOrderedVector<Type> 525, 544

operator *, related functionWCPtrSkipList<Type> 447, 464
Complex 18, 42WCPtrSkipListSet<Type> 447, 464

operator *=, member functionWCPtrSortedVector<Type> 525, 544
Complex 18, 43WCValHashSet<Type> 154, 172

operator ++, member functionWCValHashTable<Type> 154, 172
WCIsvConstDListIter<Type> 308, 318WCValOrderedVector<Type> 568, 587
WCIsvConstSListIter<Type> 308, 318WCValSkipList<Type> 489, 505
WCIsvDListIter<Type> 324, 337WCValSkipListSet<Type> 489, 505
WCIsvSListIter<Type> 324, 337WCValSortedVector<Type> 568, 587
WCPtrConstDListIter<Type> 343, 353oct, manipulator 733, 739

906

Index

WCPtrConstSListIter<Type> 343, 353 WCIsvDListIter<Type> 324-325, 340

WCPtrDListIter<Type> 359, 372 WCIsvSListIter<Type> 324-325, 340

WCPtrHashDictIter<Key,Value> 180, 187 WCPtrConstDListIter<Type> 343, 356

WCPtrHashSetIter<Type> 202, 212 WCPtrConstSListIter<Type> 343, 356

WCPtrHashTableIter<Type> 202, 212 WCPtrDListIter<Type> 359-360, 375

WCPtrSListIter<Type> 359, 372 WCPtrSListIter<Type> 359-360, 375

WCValConstDListIter<Type> 378, 388 WCValConstDListIter<Type> 378, 391

WCValConstSListIter<Type> 378, 388 WCValConstSListIter<Type> 378, 391

WCValDListIter<Type> 394, 407 WCValDListIter<Type> 394-395, 410

WCValHashDictIter<Key,Value> 191, 198 WCValSListIter<Type> 394-395, 410

WCValHashSetIter<Type> 215, 225 operator /, related function

WCValHashTableIter<Type> 215, 225 Complex 18, 50

WCValSListIter<Type> 394, 407 operator /=, member function

operator +, member function Complex 18, 51

Complex 18, 44 operator <, related function

operator +, related function String 862-863, 876

Complex 18, 45 operator <<, member function

String 863, 874 ostream 755-756, 758-764

operator +=, member function operator <<, related function

Complex 18, 46 Complex 18, 52

String 862, 875 String 863, 877

WCIsvConstDListIter<Type> 308, 319 operator <=, related function

WCIsvConstSListIter<Type> 308, 319 String 863, 878

WCIsvDListIter<Type> 324, 338 operator =, member function

WCIsvSListIter<Type> 324, 338 Complex 18, 53

WCPtrConstDListIter<Type> 343, 354 iostream 691, 696-697

WCPtrConstSListIter<Type> 343, 354 istream 699, 714-715

WCPtrDListIter<Type> 359, 373 ostream 755, 765-766

WCPtrSListIter<Type> 359, 373 String 862, 879

WCValConstDListIter<Type> 378, 389 WCIsvDList<Type> 233, 254

WCValConstSListIter<Type> 378, 389 WCIsvSList<Type> 233, 254

WCValDListIter<Type> 394, 408 WCPtrDList<Type> 256, 278

WCValSListIter<Type> 394, 408 WCPtrHashDict<Key,Value> 83, 101

operator -, member function WCPtrHashSet<Type> 106, 126

Complex 18, 47 WCPtrHashTable<Type> 106, 126

operator -, related function WCPtrOrderedVector<Type> 525, 546

Complex 18, 48 WCPtrSkipList<Type> 447, 465

operator --, member function WCPtrSkipListDict<Key,Value> 427, 443

WCIsvConstDListIter<Type> 308, 320 WCPtrSkipListSet<Type> 447, 465

WCIsvConstSListIter<Type> 308, 320 WCPtrSList<Type> 256, 278

WCIsvDListIter<Type> 324-325, 339 WCPtrSortedVector<Type> 525, 546

WCIsvSListIter<Type> 324-325, 339 WCPtrVector<Type> 555, 564

WCPtrConstDListIter<Type> 343, 355 WCValDList<Type> 284, 305

WCPtrConstSListIter<Type> 343, 355 WCValHashDict<Key,Value> 132, 149

WCPtrDListIter<Type> 359-360, 374 WCValHashSet<Type> 154, 173

WCPtrSListIter<Type> 359-360, 374 WCValHashTable<Type> 154, 173

WCValConstDListIter<Type> 378, 390 WCValOrderedVector<Type> 569, 589

WCValConstSListIter<Type> 378, 390 WCValSkipList<Type> 489, 506

WCValDListIter<Type> 394-395, 409 WCValSkipListDict<Key,Value> 470, 485

WCValSListIter<Type> 394-395, 409 WCValSkipListSet<Type> 489, 506

operator -=, member function WCValSList<Type> 284, 305

Complex 18, 49 WCValSortedVector<Type> 569, 589

WCIsvConstDListIter<Type> 308, 321 WCValVector<Type> 598, 606

WCIsvConstSListIter<Type> 308, 321 operator ==, member function

907

Index

WCIsvDList<Type> 234, 255 opfx, member function

WCIsvSList<Type> 234, 255 ostream 755, 767

WCPtrDList<Type> 256, 279 osfx, member function

WCPtrHashDict<Key,Value> 83, 102 ostream 755, 768

WCPtrHashSet<Type> 106, 127 ostream 655, 691, 748, 778

WCPtrHashTable<Type> 106, 127 ostream output 13

WCPtrOrderedVector<Type> 525, 547 ostream::flush 755, 757

WCPtrSkipList<Type> 447, 466 ostream::operator << 755-756, 758-764

WCPtrSkipListDict<Key,Value> 427, 444 ostream::operator = 755, 765-766

WCPtrSkipListSet<Type> 447, 466 ostream::opfx 755, 767

WCPtrSList<Type> 256, 279 ostream::osfx 755, 768

WCPtrSortedVector<Type> 525, 547 ostream::ostream 755, 769-771

WCPtrVector<Type> 555, 565 ostream::put 755, 773

WCValDList<Type> 284, 306 ostream::seekp 755, 774-775

WCValHashDict<Key,Value> 132, 150 ostream::tellp 755, 776

WCValHashSet<Type> 154, 174 ostream::write 755, 777

WCValHashTable<Type> 154, 174 ostream::~ostream 755, 772

WCValOrderedVector<Type> 569, 590 ostrstream 755, 841

WCValSkipList<Type> 489, 507 ostrstream::ostrstream 778-780

WCValSkipListDict<Key,Value> 470, 486 ostrstream::pcount 778, 782

WCValSkipListSet<Type> 489, 507 ostrstream::str 778, 783

WCValSList<Type> 284, 306 ostrstream::~ostrstream 778, 781

WCValSortedVector<Type> 569, 590 out, member enumeration

WCValVector<Type> 598, 607 ios 675

operator ==, related function out_of_memory 367, 370, 402, 405

Complex 18-19, 54 exception 70, 84, 86, 97, 99, 101, 104, 107, 109,

String 862, 880 111, 113, 123, 126, 130, 133, 135, 145, 147,

operator >, related function 149, 152, 155, 157, 159, 161, 170, 173, 177,

String 863, 881 260, 264, 266, 276, 278, 287, 291, 293, 303,

operator >=, related function 305, 422, 428, 430, 439, 441, 443, 448, 450,

String 863, 882 452, 454, 462, 465, 471, 473, 481, 483, 485,

operator >>, member function 490, 492, 494, 496, 503, 506, 520, 527, 530,

istream 699, 716-721 532, 540-541, 546, 548, 554, 558, 563-564,

operator >>, related function 566, 571, 574, 576, 583-584, 589, 591, 597,

Complex 18, 55 601, 605-606, 608

String 863, 883 out_of_memory, member enumeration

operator [], member function WCExcept 70

String 862, 884 out_waiting, member function

WCPtrHashDict<Key,Value> 83, 99-100 streambuf 793, 808

WCPtrOrderedVector<Type> 525, 545 overflow, member function

WCPtrSkipListDict<Key,Value> 427, 441-442 filebuf 610, 622

WCPtrSortedVector<Type> 525, 545 stdiobuf 784-785

WCPtrVector<Type> 555, 563 streambuf 793, 809

WCValHashDict<Key,Value> 132, 147-148 strstreambuf 846, 850

WCValOrderedVector<Type> 568, 588

WCValSkipListDict<Key,Value> 470, 483-484

WCValSortedVector<Type> 568, 588

WCValVector<Type> 598, 605 P
operator char const *, member function

String 862, 886

operator char, member function
pbackfail, member functionString 862, 885

filebuf 610, 623operator void *, member function
streambuf 793, 810ios 656, 678

908

Index

pbase, member function Complex 18, 58

streambuf 792, 811 real, related function

pbump, member function Complex 19, 59

streambuf 792, 812 remove, member function

pcount, member function WCPtrHashDict<Key,Value> 83, 103

ostrstream 778, 782 WCPtrHashSet<Type> 106, 128

peek, member function WCPtrHashTable<Type> 106, 128

istream 699, 722 WCPtrOrderedVector<Type> 525, 549

pointer WCPtrSkipList<Type> 447, 467

lists 229 WCPtrSkipListDict<Key,Value> 426, 445

polar, related function WCPtrSkipListSet<Type> 447, 467

Complex 19, 56 WCPtrSortedVector<Type> 525, 549

pop, member function WCValHashDict<Key,Value> 132, 151

WCStack<Type,FType> 512, 519 WCValHashSet<Type> 154, 175

pow, related function WCValHashTable<Type> 154, 175

Complex 19, 57 WCValOrderedVector<Type> 568, 592

pptr, member function WCValSkipList<Type> 489, 508

streambuf 792, 813 WCValSkipListDict<Key,Value> 470, 487

precision, member function WCValSkipListSet<Type> 489, 508

ios 655, 679 WCValSortedVector<Type> 568, 592

predefined objects 9 removeAll, member function

prepend, member function WCPtrHashSet<Type> 106, 129

WCPtrOrderedVector<Type> 525, 548 WCPtrHashTable<Type> 106, 129

WCPtrSortedVector<Type> 525, 548 WCPtrOrderedVector<Type> 525, 550

WCValOrderedVector<Type> 568, 591 WCPtrSkipList<Type> 447, 468

WCValSortedVector<Type> 568, 591 WCPtrSkipListSet<Type> 447, 468

push, member function WCPtrSortedVector<Type> 525, 550

WCStack<Type,FType> 512, 520 WCValHashSet<Type> 154, 176

put area 791 WCValHashTable<Type> 154, 176

put pointer 813 WCValOrderedVector<Type> 568, 593

put, member function WCValSkipList<Type> 489, 509

ostream 755, 773 WCValSkipListSet<Type> 489, 509

put_at, member function WCValSortedVector<Type> 568, 593

String 862, 887 removeAt, member function

putback, member function WCPtrOrderedVector<Type> 525, 551

istream 698, 723 WCPtrSortedVector<Type> 525, 551

pword, member function WCValOrderedVector<Type> 568, 594

ios 656, 680 WCValSortedVector<Type> 568, 594

removeFirst, member function

WCPtrOrderedVector<Type> 525, 552

WCPtrSortedVector<Type> 525, 552

WCValOrderedVector<Type> 568, 595R
WCValSortedVector<Type> 568, 595

removeLast, member function

WCPtrOrderedVector<Type> 525, 553
rdbuf, member function WCPtrSortedVector<Type> 525, 553

fstreambase 635, 646 WCValOrderedVector<Type> 568, 596
ios 655, 681 WCValSortedVector<Type> 568, 596
strstreambase 841-842 reserve area 791

rdstate, member function reset, member function
ios 655, 682 WCIsvConstDListIter<Type> 308, 322-323

read, member function WCIsvConstSListIter<Type> 308, 322-323
istream 698, 724 WCIsvDListIter<Type> 324, 341-342

real, member function WCIsvSListIter<Type> 324, 341-342

909

Index

WCPtrConstDListIter<Type> 343, 357-358 seekp, member function

WCPtrConstSListIter<Type> 343, 357-358 ostream 755, 774-775

WCPtrDListIter<Type> 359, 376-377 seekpos, member function

WCPtrHashDictIter<Key,Value> 180, 188-189 streambuf 793, 816

WCPtrHashSetIter<Type> 202, 213-214 setb, member function

WCPtrHashTableIter<Type> 202, 213-214 streambuf 792, 817

WCPtrSListIter<Type> 359, 376-377 setbase, manipulator 733, 741

WCValConstDListIter<Type> 378, 392-393 setbuf, member function

WCValConstSListIter<Type> 378, 392-393 filebuf 611, 625

WCValDListIter<Type> 394, 411-412 fstreambase 635, 647

WCValHashDictIter<Key,Value> 191, 199-200 streambuf 793, 818

WCValHashSetIter<Type> 215, 226-227 strstreambuf 846, 852

WCValHashTableIter<Type> 215, 226-227 setf, member function

WCValSListIter<Type> 394, 411-412 ios 655, 684

resetiosflags, manipulator 733, 740 setfill, manipulator 733, 742

resize, member function setg, member function

WCPtrHashDict<Key,Value> 83, 104 streambuf 792, 819

WCPtrHashSet<Type> 106, 130 setiosflags, manipulator 733, 743

WCPtrHashTable<Type> 106, 130 setp, member function

WCPtrOrderedVector<Type> 525, 554 streambuf 792, 820

WCPtrSortedVector<Type> 525, 554 setprecision, manipulator 733, 744

WCPtrVector<Type> 555, 566 setstate, member function

WCValHashDict<Key,Value> 132, 152 ios 655, 685

WCValHashSet<Type> 154, 177 setw, manipulator 733, 745

WCValHashTable<Type> 154, 177 setwidth, manipulator 733, 746

WCValOrderedVector<Type> 568, 597 sgetc, member function

WCValSortedVector<Type> 568, 597 streambuf 793, 821

WCValVector<Type> 598, 608 sgetchar, member function

resize_required streambuf 793, 822

exception 70, 524, 526, 529, 532, 540-541, 548, sgetn, member function

563, 567, 570, 573, 576, 583-584, 591, 605 streambuf 793, 823

resize_required, member enumeration showbase, member enumeration

WCExcept 70 ios 665

right, member enumeration showpoint, member enumeration

ios 665 ios 665

showpos, member enumeration

ios 665

sin, related function

Complex 19, 60S
sinh, related function

Complex 19, 61

skipws, member enumeration
sbumpc, member function ios 665

streambuf 793, 814 snextc, member function
scientific, member enumeration streambuf 793, 824

ios 665 speekc, member function
seekdir, member enumeration streambuf 793, 825

ios 655, 683 sputbackc, member function
seekg, member function streambuf 793, 826

istream 698, 725-726 sputc, member function
seekoff, member function streambuf 793, 827

filebuf 611, 624 sputn, member function
streambuf 793, 815 streambuf 793, 828
strstreambuf 846, 851 sqrt, related function

910

Index

Complex 19, 62 streambuf::unbuffered 792, 834

stdio, member enumeration streambuf::underflow 793, 835

ios 665 streambuf::~streambuf 792, 832

stdiobuf 791 streamoff 7

stdiobuf::overflow 784-785 streampos 7

stdiobuf::stdiobuf 784, 786-787 String related functions

stdiobuf::sync 784, 789 operator != 862, 871

stdiobuf::underflow 784, 790 operator + 863, 874

stdiobuf::~stdiobuf 784, 788 operator < 862-863, 876

stossc, member function operator << 863, 877

streambuf 793, 829 operator <= 863, 878

str, member function operator == 862, 880

ostrstream 778, 783 operator > 863, 881

strstream 836-837 operator >= 863, 882

strstreambuf 846, 853 operator >> 863, 883

streambuf 610, 784, 846 valid 863, 895

streambuf::allocate 792, 794 String::alloc_mult_size 862, 864

streambuf::base 792, 795 String::get_at 862, 865

streambuf::blen 792, 796 String::index 862, 866

streambuf::dbp 793, 797 String::length 862, 867

streambuf::do_sgetn 793, 798 String::lower 862, 868

streambuf::do_sputn 793, 799 String::match 862, 869

streambuf::doallocate 792, 800 String::operator ! 862, 870

streambuf::eback 792, 801 String::operator () 862, 872-873

streambuf::ebuf 792, 802 String::operator += 862, 875

streambuf::egptr 792, 803 String::operator = 862, 879

streambuf::epptr 792, 804 String::operator [] 862, 884

streambuf::gbump 792, 805 String::operator char 862, 885

streambuf::gptr 792, 806 String::operator char const * 862, 886

streambuf::in_avail 793, 807 String::put_at 862, 887

streambuf::out_waiting 793, 808 String::String 862, 888-892

streambuf::overflow 793, 809 String::upper 862, 894

streambuf::pbackfail 793, 810 String::valid 862, 896

streambuf::pbase 792, 811 String::~String 862, 893

streambuf::pbump 792, 812 strstream 691, 841

streambuf::pptr 792, 813 strstream::str 836-837

streambuf::sbumpc 793, 814 strstream::strstream 836, 838-839

streambuf::seekoff 793, 815 strstream::~strstream 836, 840

streambuf::seekpos 793, 816 strstreambase 729, 778, 836

streambuf::setb 792, 817 strstreambase::rdbuf 841-842

streambuf::setbuf 793, 818 strstreambase::strstreambase 841, 843-844

streambuf::setg 792, 819 strstreambase::~strstreambase 841, 845

streambuf::setp 792, 820 strstreambuf 791

streambuf::sgetc 793, 821 strstreambuf::alloc_size_increment 846-847

streambuf::sgetchar 793, 822 strstreambuf::doallocate 846, 848

streambuf::sgetn 793, 823 strstreambuf::freeze 846, 849

streambuf::snextc 793, 824 strstreambuf::overflow 846, 850

streambuf::speekc 793, 825 strstreambuf::seekoff 846, 851

streambuf::sputbackc 793, 826 strstreambuf::setbuf 846, 852

streambuf::sputc 793, 827 strstreambuf::str 846, 853

streambuf::sputn 793, 828 strstreambuf::strstreambuf 846, 854-857

streambuf::stossc 793, 829 strstreambuf::sync 846, 859

streambuf::streambuf 792, 830-831 strstreambuf::underflow 846, 860

streambuf::sync 793, 833 strstreambuf::~strstreambuf 846, 858

911

Index

sync, member function filebuf 610, 627

filebuf 611, 626 stdiobuf 784, 790

istream 699, 727 streambuf 793, 835

stdiobuf 784, 789 strstreambuf 846, 860

streambuf 793, 833 undex_iter

strstreambuf 846, 859 exception 179, 307

sync_with_stdio, member function unformatted input 11

ios 656, 686 unformatted output 13

unitbuf, member enumeration

ios 665

unsetf, member function

ios 655, 688T
upper, member function

String 862, 894

uppercase, member enumeration
tan, related function ios 665

Complex 19, 63

tanh, related function

Complex 19, 64

tellg, member function V
istream 698, 728

tellp, member function

ostream 755, 776

text, member enumeration valid, member function

ios 675 String 862, 896

tie, member function valid, related function

ios 655, 687 String 863, 895

top, member function value

WCStack<Type,FType> 512, 521 lists 229

trunc, member enumeration value, member function

ios 675 WCPtrHashDictIter<Key,Value> 180, 190

truncate, member enumeration WCValHashDictIter<Key,Value> 191, 201

ios 675

W
U

wc_state, member enumeration

unbuffered, member function WCExcept 66, 70

streambuf 792, 834 WCDLink 280

undef_item 185, 190, 196, 201, 210, 223, 316, 334, WCDLink::WCDLink 230-231

351, 369, 386, 404 WCDLink::~WCDLink 230, 232

exception 75 WCExcept::all_fine 70

undef_item, member enumeration WCExcept::check_all 70

WCIterExcept 75 WCExcept::check_none 70

undef_iter WCExcept::empty_container 70

exception 75, 184, 186-187, 195, 197-198, 209, WCExcept::exceptions 66, 69

211-212, 222, 224-225, 315, 317-321, WCExcept::index_range 70

332-333, 335-340, 350, 352-356, 367-368, WCExcept::not_empty 70

370-375, 385, 387-391, 402-403, 405-410 WCExcept::not_unique 70

undef_iter, member enumeration WCExcept::out_of_memory 70

WCIterExcept 75 WCExcept::resize_required 70

underflow, member function WCExcept::wc_state 66, 70

912

Index

WCExcept::WCExcept 66-67 WCIsvDList<Type>::clearAndDestroy 233, 243

WCExcept::zero_buckets 70 WCIsvDList<Type>::contains 233, 244

WCExcept::~WCExcept 66, 68 WCIsvDList<Type>::entries 233, 245

WCIsvConstDListIter, member function WCIsvDList<Type>::find 233, 246

WCIsvConstDListIter<Type> 312-313 WCIsvDList<Type>::findLast 233, 247

WCIsvConstSListIter<Type> 312-313 WCIsvDList<Type>::forAll 233, 248

WCIsvConstDListIter<Type>::append 308 WCIsvDList<Type>::get 233, 249

WCIsvConstDListIter<Type>::container 308, 315 WCIsvDList<Type>::index 233, 250-251

WCIsvConstDListIter<Type>::current 308, 316 WCIsvDList<Type>::insert 233, 252

WCIsvConstDListIter<Type>::insert 308 WCIsvDList<Type>::isEmpty 233, 253

WCIsvConstDListIter<Type>::operator () 308, 317 WCIsvDList<Type>::operator = 233, 254

WCIsvConstDListIter<Type>::operator ++ 308, 318 WCIsvDList<Type>::operator == 234, 255

WCIsvConstDListIter<Type>::operator += 308, 319 WCIsvDList<Type>::WCIsvDList 233, 236, 238-240

WCIsvConstDListIter<Type>::operator -- 308, 320 WCIsvDList<Type>::WCIsvSList 233, 235, 237

WCIsvConstDListIter<Type>::operator -= 308, 321 WCIsvDListIter, member function

WCIsvConstDListIter<Type>::reset 308, 322-323 WCIsvDListIter<Type> 329-330

WCIsvConstDListIter<Type>::WCIsvConstDListIter WCIsvSListIter<Type> 329-330

312-313 WCIsvDListIter<Type>::append 324, 332

WCIsvConstDListIter<Type>::WCIsvConstSListIter WCIsvDListIter<Type>::container 324, 333

309-310 WCIsvDListIter<Type>::current 324, 334

WCIsvConstDListIter<Type>::~WCIsvConstDListIter WCIsvDListIter<Type>::insert 324, 335

314 WCIsvDListIter<Type>::operator () 324, 336

WCIsvConstDListIter<Type>::~WCIsvConstSListIter WCIsvDListIter<Type>::operator ++ 324, 337

311 WCIsvDListIter<Type>::operator += 324, 338

WCIsvConstSListIter, member function WCIsvDListIter<Type>::operator -- 324-325, 339

WCIsvConstDListIter<Type> 309-310 WCIsvDListIter<Type>::operator -= 324-325, 340

WCIsvConstSListIter<Type> 309-310 WCIsvDListIter<Type>::reset 324, 341-342

WCIsvConstSListIter<Type>::append 308 WCIsvDListIter<Type>::WCIsvDListIter 329-330

WCIsvConstSListIter<Type>::container 308, 315 WCIsvDListIter<Type>::WCIsvSListIter 326-327

WCIsvConstSListIter<Type>::current 308, 316 WCIsvDListIter<Type>::~WCIsvDListIter 331

WCIsvConstSListIter<Type>::insert 308 WCIsvDListIter<Type>::~WCIsvSListIter 328

WCIsvConstSListIter<Type>::operator () 308, 317 WCIsvSList, member function

WCIsvConstSListIter<Type>::operator ++ 308, 318 WCIsvDList<Type> 233, 235, 237

WCIsvConstSListIter<Type>::operator += 308, 319 WCIsvSList<Type> 233, 235, 237

WCIsvConstSListIter<Type>::operator -- 308, 320 WCIsvSList<Type>::append 233, 241

WCIsvConstSListIter<Type>::operator -= 308, 321 WCIsvSList<Type>::clear 233, 242

WCIsvConstSListIter<Type>::reset 308, 322-323 WCIsvSList<Type>::clearAndDestroy 233, 243

WCIsvConstSListIter<Type>::WCIsvConstDListIter WCIsvSList<Type>::contains 233, 244

312-313 WCIsvSList<Type>::entries 233, 245

WCIsvConstSListIter<Type>::WCIsvConstSListIter WCIsvSList<Type>::find 233, 246

309-310 WCIsvSList<Type>::findLast 233, 247

WCIsvConstSListIter<Type>::WCIsvConstSListIter<T WCIsvSList<Type>::forAll 233, 248

ype> 308 WCIsvSList<Type>::get 233, 249

WCIsvConstSListIter<Type>::~WCIsvConstDListIter WCIsvSList<Type>::index 233, 250-251

314 WCIsvSList<Type>::insert 233, 252

WCIsvConstSListIter<Type>::~WCIsvConstSListIter WCIsvSList<Type>::isEmpty 233, 253

311 WCIsvSList<Type>::operator = 233, 254

WCIsvConstSListIter<Type>::~WCIsvConstSListIter< WCIsvSList<Type>::operator == 234, 255

Type> 308 WCIsvSList<Type>::WCIsvDList 233, 236, 238-240

WCIsvDList, member function WCIsvSList<Type>::WCIsvSList 233, 235, 237

WCIsvDList<Type> 233, 236, 238-240 WCIsvSList<Type>::WCIsvSList<Type> 233

WCIsvSList<Type> 233, 236, 238-240 WCIsvSList<Type>::~WCIsvSList<Type> 233

WCIsvDList<Type>::append 233, 241 WCIsvSListIter, member function

WCIsvDList<Type>::clear 233, 242 WCIsvDListIter<Type> 326-327

913

Index

WCIsvSListIter<Type> 326-327 WCPtrConstSListIter<Type> 344-345

WCIsvSListIter<Type>::append 324, 332 WCPtrConstSListIter<Type>::append 343

WCIsvSListIter<Type>::container 324, 333 WCPtrConstSListIter<Type>::container 343, 350

WCIsvSListIter<Type>::current 324, 334 WCPtrConstSListIter<Type>::current 343, 351

WCIsvSListIter<Type>::insert 324, 335 WCPtrConstSListIter<Type>::insert 343

WCIsvSListIter<Type>::operator () 324, 336 WCPtrConstSListIter<Type>::operator () 343, 352

WCIsvSListIter<Type>::operator ++ 324, 337 WCPtrConstSListIter<Type>::operator ++ 343, 353

WCIsvSListIter<Type>::operator += 324, 338 WCPtrConstSListIter<Type>::operator += 343, 354

WCIsvSListIter<Type>::operator -- 324-325, 339 WCPtrConstSListIter<Type>::operator -- 343, 355

WCIsvSListIter<Type>::operator -= 324-325, 340 WCPtrConstSListIter<Type>::operator -= 343, 356

WCIsvSListIter<Type>::reset 324, 341-342 WCPtrConstSListIter<Type>::reset 343, 357-358

WCIsvSListIter<Type>::WCIsvDListIter 329-330 WCPtrConstSListIter<Type>::WCPtrConstDListIter

WCIsvSListIter<Type>::WCIsvSListIter 326-327 347-348

WCIsvSListIter<Type>::WCIsvSListIter<Type> 324 WCPtrConstSListIter<Type>::WCPtrConstSListIter

WCIsvSListIter<Type>::~WCIsvDListIter 331 344-345

WCIsvSListIter<Type>::~WCIsvSListIter 328 WCPtrConstSListIter<Type>::WCPtrConstSListIter<T

WCIsvSListIter<Type>::~WCIsvSListIter<Type> 324 ype> 343

wciter_state, member enumeration WCPtrConstSListIter<Type>::~WCPtrConstDListIter

WCIterExcept 71, 75 349

WCIterExcept::all_fine 75 WCPtrConstSListIter<Type>::~WCPtrConstSListIter

WCIterExcept::check_all 75 346

WCIterExcept::check_none 75 WCPtrConstSListIter<Type>::~WCPtrConstSListIter<

WCIterExcept::exceptions 71, 74 Type> 343

WCIterExcept::iter_range 75 WCPtrDList, member function

WCIterExcept::undef_item 75 WCPtrDList<Type> 260, 262-265

WCIterExcept::undef_iter 75 WCPtrSList<Type> 260, 262-265

WCIterExcept::wciter_state 71, 75 WCPtrDList<Type>::append 256, 266

WCIterExcept::WCIterExcept 71-72 WCPtrDList<Type>::clear 256, 267

WCIterExcept::~WCIterExcept 71, 73 WCPtrDList<Type>::clearAndDestroy 256, 268

WCListExcept WCPtrDList<Type>::contains 256, 269

class 66 WCPtrDList<Type>::entries 256, 270

WCPtrConstDListIter, member function WCPtrDList<Type>::find 256, 271

WCPtrConstDListIter<Type> 347-348 WCPtrDList<Type>::findLast 256, 272

WCPtrConstSListIter<Type> 347-348 WCPtrDList<Type>::forAll 256, 273

WCPtrConstDListIter<Type>::append 343 WCPtrDList<Type>::get 256, 274

WCPtrConstDListIter<Type>::container 343, 350 WCPtrDList<Type>::index 256, 275

WCPtrConstDListIter<Type>::current 343, 351 WCPtrDList<Type>::insert 256, 276

WCPtrConstDListIter<Type>::insert 343 WCPtrDList<Type>::isEmpty 256, 277

WCPtrConstDListIter<Type>::operator () 343, 352 WCPtrDList<Type>::operator = 256, 278

WCPtrConstDListIter<Type>::operator ++ 343, 353 WCPtrDList<Type>::operator == 256, 279

WCPtrConstDListIter<Type>::operator += 343, 354 WCPtrDList<Type>::WCPtrDList 260, 262-265

WCPtrConstDListIter<Type>::operator -- 343, 355 WCPtrDList<Type>::WCPtrSList 258-259, 261

WCPtrConstDListIter<Type>::operator -= 343, 356 WCPtrDListIter, member function

WCPtrConstDListIter<Type>::reset 343, 357-358 WCPtrDListIter<Type> 364-365

WCPtrConstDListIter<Type>::WCPtrConstDListIter WCPtrSListIter<Type> 364-365

347-348 WCPtrDListIter<Type>::append 359, 367

WCPtrConstDListIter<Type>::WCPtrConstSListIter WCPtrDListIter<Type>::container 359, 368

344-345 WCPtrDListIter<Type>::current 359, 369

WCPtrConstDListIter<Type>::~WCPtrConstDListIter WCPtrDListIter<Type>::insert 359, 370

349 WCPtrDListIter<Type>::operator () 359, 371

WCPtrConstDListIter<Type>::~WCPtrConstSListIter WCPtrDListIter<Type>::operator ++ 359, 372

346 WCPtrDListIter<Type>::operator += 359, 373

WCPtrConstSListIter, member function WCPtrDListIter<Type>::operator -- 359-360, 374

WCPtrConstDListIter<Type> 344-345 WCPtrDListIter<Type>::operator -= 359-360, 375

914

Index

WCPtrDListIter<Type>::reset 359, 376-377 WCPtrHashSet<Type>::clearAndDestroy 106, 118

WCPtrDListIter<Type>::WCPtrDListIter 364-365 WCPtrHashSet<Type>::contains 106, 119

WCPtrDListIter<Type>::WCPtrSListIter 361-362 WCPtrHashSet<Type>::entries 106, 120

WCPtrDListIter<Type>::~WCPtrDListIter 366 WCPtrHashSet<Type>::find 106, 121

WCPtrDListIter<Type>::~WCPtrSListIter 363 WCPtrHashSet<Type>::forall 106, 122

WCPtrHashDict, member function WCPtrHashSet<Type>::insert 106, 123

WCPtrHashDict<Key,Value> 82 WCPtrHashSet<Type>::isEmpty 106, 124

WCPtrHashDict<Key,Value>::bitHash 82, 88 WCPtrHashSet<Type>::occurrencesOf 106, 125

WCPtrHashDict<Key,Value>::buckets 82, 89 WCPtrHashSet<Type>::operator = 106, 126

WCPtrHashDict<Key,Value>::clear 83, 90 WCPtrHashSet<Type>::operator == 106, 127

WCPtrHashDict<Key,Value>::clearAndDestroy 83, WCPtrHashSet<Type>::remove 106, 128

91 WCPtrHashSet<Type>::removeAll 106, 129

WCPtrHashDict<Key,Value>::contains 83, 92 WCPtrHashSet<Type>::resize 106, 130

WCPtrHashDict<Key,Value>::entries 83, 93 WCPtrHashSet<Type>::WCPtrHashSet 105

WCPtrHashDict<Key,Value>::find 83, 94 WCPtrHashSet<Type>::WCPtrHashTable 105

WCPtrHashDict<Key,Value>::findKeyAndValue 83, WCPtrHashSet<Type>::~WCPtrHashSet 105

95 WCPtrHashSet<Type>::~WCPtrHashTable 106

WCPtrHashDict<Key,Value>::forall 83, 96 WCPtrHashSetIter, member function

WCPtrHashDict<Key,Value>::insert 83, 97 WCPtrHashSetIter<Type> 203-204

WCPtrHashDict<Key,Value>::isEmpty 83, 98 WCPtrHashTableIter<Type> 203-204

WCPtrHashDict<Key,Value>::operator = 83, 101 WCPtrHashSetIter<Type>::container 202, 209

WCPtrHashDict<Key,Value>::operator == 83, 102 WCPtrHashSetIter<Type>::current 202, 210

WCPtrHashDict<Key,Value>::operator [] 83, 99-100 WCPtrHashSetIter<Type>::operator () 202, 211

WCPtrHashDict<Key,Value>::remove 83, 103 WCPtrHashSetIter<Type>::operator ++ 202, 212

WCPtrHashDict<Key,Value>::resize 83, 104 WCPtrHashSetIter<Type>::reset 202, 213-214

WCPtrHashDict<Key,Value>::WCPtrHashDict 82 WCPtrHashSetIter<Type>::WCPtrHashSetIter

WCPtrHashDict<Key,Value>::WCPtrHashDict<Key,V 203-204

alue> 84-86 WCPtrHashSetIter<Type>::WCPtrHashSetIter<Type>

WCPtrHashDict<Key,Value>::~WCPtrHashDict 82 202

WCPtrHashDict<Key,Value>::~WCPtrHashDict<Key, WCPtrHashSetIter<Type>::WCPtrHashTableIter

Value> 87 206-207

WCPtrHashDictIter, member function WCPtrHashSetIter<Type>::~WCPtrHashSetIter 205

WCPtrHashDictIter<Key,Value> 181-182 WCPtrHashSetIter<Type>::~WCPtrHashSetIter<Type

WCPtrHashDictIter<Key,Value>::container 180, 184 > 202

WCPtrHashDictIter<Key,Value>::key 180, 185 WCPtrHashSetIter<Type>::~WCPtrHashTableIter 208

WCPtrHashDictIter<Key,Value>::operator () 180, 186 WCPtrHashTable, member function

WCPtrHashDictIter<Key,Value>::operator ++ 180, WCPtrHashSet<Type> 105

187 WCPtrHashTable<Type> 105

WCPtrHashDictIter<Key,Value>::reset 180, 188-189 WCPtrHashTable<Type>::bitHash 106, 115

WCPtrHashDictIter<Key,Value>::value 180, 190 WCPtrHashTable<Type>::buckets 106, 116

WCPtrHashDictIter<Key,Value>::WCPtrHashDictIter WCPtrHashTable<Type>::clear 106, 117

181-182 WCPtrHashTable<Type>::clearAndDestroy 106, 118

WCPtrHashDictIter<Key,Value>::WCPtrHashDictIter WCPtrHashTable<Type>::contains 106, 119

<Key,Value> 180 WCPtrHashTable<Type>::entries 106, 120

WCPtrHashDictIter<Key,Value>::~WCPtrHashDictIte WCPtrHashTable<Type>::find 106, 121

r 183 WCPtrHashTable<Type>::forall 106, 122

WCPtrHashDictIter<Key,Value>::~WCPtrHashDictIte WCPtrHashTable<Type>::insert 106, 123

r<Key,Value> 180 WCPtrHashTable<Type>::isEmpty 106, 124

WCPtrHashSet, member function WCPtrHashTable<Type>::occurrencesOf 106, 125

WCPtrHashSet<Type> 105 WCPtrHashTable<Type>::operator = 106, 126

WCPtrHashTable<Type> 105 WCPtrHashTable<Type>::operator == 106, 127

WCPtrHashSet<Type>::bitHash 106, 115 WCPtrHashTable<Type>::remove 106, 128

WCPtrHashSet<Type>::buckets 106, 116 WCPtrHashTable<Type>::removeAll 106, 129

WCPtrHashSet<Type>::clear 106, 117 WCPtrHashTable<Type>::resize 106, 130

915

Index

WCPtrHashTable<Type>::WCPtrHashSet 105 WCPtrOrderedVector<Type>::WCPtrSortedVector

WCPtrHashTable<Type>::WCPtrHashTable 105 525

WCPtrHashTable<Type>::WCPtrHashTable<Type> WCPtrOrderedVector<Type>::~WCPtrOrderedVector

107-109, 111-113 525

WCPtrHashTable<Type>::~WCPtrHashSet 105 WCPtrOrderedVector<Type>::~WCPtrSortedVector

WCPtrHashTable<Type>::~WCPtrHashTable 106 525

WCPtrHashTable<Type>::~WCPtrHashTable<Type> WCPtrSkipList, member function

110, 114 WCPtrSkipList<Type> 446

WCPtrHashTableIter, member function WCPtrSkipListSet<Type> 446

WCPtrHashSetIter<Type> 206-207 WCPtrSkipList<Type>::clear 446, 456

WCPtrHashTableIter<Type> 206-207 WCPtrSkipList<Type>::clearAndDestroy 446, 457

WCPtrHashTableIter<Type>::container 202, 209 WCPtrSkipList<Type>::contains 447, 458

WCPtrHashTableIter<Type>::current 202, 210 WCPtrSkipList<Type>::entries 447, 459

WCPtrHashTableIter<Type>::operator () 202, 211 WCPtrSkipList<Type>::find 447, 460

WCPtrHashTableIter<Type>::operator ++ 202, 212 WCPtrSkipList<Type>::forall 447, 461

WCPtrHashTableIter<Type>::reset 202, 213-214 WCPtrSkipList<Type>::insert 447, 462

WCPtrHashTableIter<Type>::WCPtrHashSetIter WCPtrSkipList<Type>::isEmpty 447, 463

203-204 WCPtrSkipList<Type>::occurrencesOf 447, 464

WCPtrHashTableIter<Type>::WCPtrHashTableIter WCPtrSkipList<Type>::operator = 447, 465

206-207 WCPtrSkipList<Type>::operator == 447, 466

WCPtrHashTableIter<Type>::~WCPtrHashSetIter 205 WCPtrSkipList<Type>::remove 447, 467

WCPtrHashTableIter<Type>::~WCPtrHashTableIter WCPtrSkipList<Type>::removeAll 447, 468

208 WCPtrSkipList<Type>::WCPtrSkipList 446

WCPtrOrderedVector, member function WCPtrSkipList<Type>::WCPtrSkipList<Type>

WCPtrOrderedVector<Type> 525 448-450, 452-454

WCPtrSortedVector<Type> 525 WCPtrSkipList<Type>::WCPtrSkipListSet 446

WCPtrOrderedVector<Type>::append 525, 532 WCPtrSkipList<Type>::~WCPtrSkipList 446

WCPtrOrderedVector<Type>::clear 525, 533 WCPtrSkipList<Type>::~WCPtrSkipList<Type> 451,

WCPtrOrderedVector<Type>::clearAndDestroy 525, 455

534 WCPtrSkipList<Type>::~WCPtrSkipListSet 446

WCPtrOrderedVector<Type>::contains 525, 535 WCPtrSkipListDict, member function

WCPtrOrderedVector<Type>::entries 525, 536 WCPtrSkipListDict<Key,Value> 426

WCPtrOrderedVector<Type>::find 525, 537 WCPtrSkipListDict<Key,Value>::clear 426, 432

WCPtrOrderedVector<Type>::first 525, 538 WCPtrSkipListDict<Key,Value>::clearAndDestroy

WCPtrOrderedVector<Type>::index 525, 539 426, 433

WCPtrOrderedVector<Type>::insert 525, 540 WCPtrSkipListDict<Key,Value>::contains 426, 434

WCPtrOrderedVector<Type>::insertAt 525, 541 WCPtrSkipListDict<Key,Value>::entries 426, 435

WCPtrOrderedVector<Type>::isEmpty 525, 542 WCPtrSkipListDict<Key,Value>::find 426, 436

WCPtrOrderedVector<Type>::last 525, 543 WCPtrSkipListDict<Key,Value>::findKeyAndValue

WCPtrOrderedVector<Type>::occurrencesOf 525, 426, 437

544 WCPtrSkipListDict<Key,Value>::forall 426, 438

WCPtrOrderedVector<Type>::operator = 525, 546 WCPtrSkipListDict<Key,Value>::insert 426, 439

WCPtrOrderedVector<Type>::operator == 525, 547 WCPtrSkipListDict<Key,Value>::isEmpty 426, 440

WCPtrOrderedVector<Type>::operator [] 525, 545 WCPtrSkipListDict<Key,Value>::operator = 427, 443

WCPtrOrderedVector<Type>::prepend 525, 548 WCPtrSkipListDict<Key,Value>::operator == 427,

WCPtrOrderedVector<Type>::remove 525, 549 444

WCPtrOrderedVector<Type>::removeAll 525, 550 WCPtrSkipListDict<Key,Value>::operator [] 427,

WCPtrOrderedVector<Type>::removeAt 525, 551 441-442

WCPtrOrderedVector<Type>::removeFirst 525, 552 WCPtrSkipListDict<Key,Value>::remove 426, 445

WCPtrOrderedVector<Type>::removeLast 525, 553 WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict

WCPtrOrderedVector<Type>::resize 525, 554 426

WCPtrOrderedVector<Type>::WCPtrOrderedVector WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict<

525 Key,Value> 428-430

916

Index

WCPtrSkipListDict<Key,Value>::~WCPtrSkipListDict WCPtrSListIter<Type>::operator () 359, 371

426 WCPtrSListIter<Type>::operator ++ 359, 372

WCPtrSkipListDict<Key,Value>::~WCPtrSkipListDict WCPtrSListIter<Type>::operator += 359, 373

<Key,Value> 431 WCPtrSListIter<Type>::operator -- 359-360, 374

WCPtrSkipListSet, member function WCPtrSListIter<Type>::operator -= 359-360, 375

WCPtrSkipList<Type> 446 WCPtrSListIter<Type>::reset 359, 376-377

WCPtrSkipListSet<Type> 446 WCPtrSListIter<Type>::WCPtrDListIter 364-365

WCPtrSkipListSet<Type>::clear 446, 456 WCPtrSListIter<Type>::WCPtrSListIter 361-362

WCPtrSkipListSet<Type>::clearAndDestroy 446, 457 WCPtrSListIter<Type>::WCPtrSListIter<Type> 359

WCPtrSkipListSet<Type>::contains 447, 458 WCPtrSListIter<Type>::~WCPtrDListIter 366

WCPtrSkipListSet<Type>::entries 447, 459 WCPtrSListIter<Type>::~WCPtrSListIter 363

WCPtrSkipListSet<Type>::find 447, 460 WCPtrSListIter<Type>::~WCPtrSListIter<Type> 359

WCPtrSkipListSet<Type>::forall 447, 461 WCPtrSortedVector, member function

WCPtrSkipListSet<Type>::insert 447, 462 WCPtrOrderedVector<Type> 525

WCPtrSkipListSet<Type>::isEmpty 447, 463 WCPtrSortedVector<Type> 525

WCPtrSkipListSet<Type>::occurrencesOf 447, 464 WCPtrSortedVector<Type>::append 525, 532

WCPtrSkipListSet<Type>::operator = 447, 465 WCPtrSortedVector<Type>::clear 525, 533

WCPtrSkipListSet<Type>::operator == 447, 466 WCPtrSortedVector<Type>::clearAndDestroy 525,

WCPtrSkipListSet<Type>::remove 447, 467 534

WCPtrSkipListSet<Type>::removeAll 447, 468 WCPtrSortedVector<Type>::contains 525, 535

WCPtrSkipListSet<Type>::WCPtrSkipList 446 WCPtrSortedVector<Type>::entries 525, 536

WCPtrSkipListSet<Type>::WCPtrSkipListSet 446 WCPtrSortedVector<Type>::find 525, 537

WCPtrSkipListSet<Type>::~WCPtrSkipList 446 WCPtrSortedVector<Type>::first 525, 538

WCPtrSkipListSet<Type>::~WCPtrSkipListSet 446 WCPtrSortedVector<Type>::index 525, 539

WCPtrSList, member function WCPtrSortedVector<Type>::insert 525, 540

WCPtrDList<Type> 258-259, 261 WCPtrSortedVector<Type>::insertAt 525, 541

WCPtrSList<Type> 258-259, 261 WCPtrSortedVector<Type>::isEmpty 525, 542

WCPtrSList<Type>::append 256, 266 WCPtrSortedVector<Type>::last 525, 543

WCPtrSList<Type>::clear 256, 267 WCPtrSortedVector<Type>::occurrencesOf 525, 544

WCPtrSList<Type>::clearAndDestroy 256, 268 WCPtrSortedVector<Type>::operator = 525, 546

WCPtrSList<Type>::contains 256, 269 WCPtrSortedVector<Type>::operator == 525, 547

WCPtrSList<Type>::entries 256, 270 WCPtrSortedVector<Type>::operator [] 525, 545

WCPtrSList<Type>::find 256, 271 WCPtrSortedVector<Type>::prepend 525, 548

WCPtrSList<Type>::findLast 256, 272 WCPtrSortedVector<Type>::remove 525, 549

WCPtrSList<Type>::forAll 256, 273 WCPtrSortedVector<Type>::removeAll 525, 550

WCPtrSList<Type>::get 256, 274 WCPtrSortedVector<Type>::removeAt 525, 551

WCPtrSList<Type>::index 256, 275 WCPtrSortedVector<Type>::removeFirst 525, 552

WCPtrSList<Type>::insert 256, 276 WCPtrSortedVector<Type>::removeLast 525, 553

WCPtrSList<Type>::isEmpty 256, 277 WCPtrSortedVector<Type>::resize 525, 554

WCPtrSList<Type>::operator = 256, 278 WCPtrSortedVector<Type>::WCPtrOrderedVector

WCPtrSList<Type>::operator == 256, 279 525

WCPtrSList<Type>::WCPtrDList 260, 262-265 WCPtrSortedVector<Type>::WCPtrSortedVector 525

WCPtrSList<Type>::WCPtrSList 258-259, 261 WCPtrSortedVector<Type>::WCPtrSortedVector<Typ

WCPtrSList<Type>::WCPtrSList<Type> 256 e> 526-527, 529-530

WCPtrSList<Type>::~WCPtrSList<Type> 256 WCPtrSortedVector<Type>::~WCPtrOrderedVector

WCPtrSListItemSize 525

macro 416, 514 WCPtrSortedVector<Type>::~WCPtrSortedVector

WCPtrSListIter, member function 525

WCPtrDListIter<Type> 361-362 WCPtrSortedVector<Type>::~WCPtrSortedVector<Ty

WCPtrSListIter<Type> 361-362 pe> 528, 531

WCPtrSListIter<Type>::append 359, 367 WCPtrVector<Type>::clear 555, 560

WCPtrSListIter<Type>::container 359, 368 WCPtrVector<Type>::clearAndDestroy 555, 561

WCPtrSListIter<Type>::current 359, 369 WCPtrVector<Type>::length 555, 562

WCPtrSListIter<Type>::insert 359, 370 WCPtrVector<Type>::operator = 555, 564

917

Index

WCPtrVector<Type>::operator == 555, 565 WCValConstSListIter<Type>::append 378

WCPtrVector<Type>::operator [] 555, 563 WCValConstSListIter<Type>::container 378, 385

WCPtrVector<Type>::resize 555, 566 WCValConstSListIter<Type>::current 378, 386

WCPtrVector<Type>::WCPtrVector<Type> 555-558 WCValConstSListIter<Type>::insert 378

WCPtrVector<Type>::~WCPtrVector<Type> 555, WCValConstSListIter<Type>::operator () 378, 387

559 WCValConstSListIter<Type>::operator ++ 378, 388

WCQueue<Type,FType>::clear 414, 418 WCValConstSListIter<Type>::operator += 378, 389

WCQueue<Type,FType>::entries 414, 419 WCValConstSListIter<Type>::operator -- 378, 390

WCQueue<Type,FType>::first 414, 420 WCValConstSListIter<Type>::operator -= 378, 391

WCQueue<Type,FType>::get 414, 421 WCValConstSListIter<Type>::reset 378, 392-393

WCQueue<Type,FType>::insert 414, 422 WCValConstSListIter<Type>::WCValConstDListIter

WCQueue<Type,FType>::isEmpty 414, 423 382-383

WCQueue<Type,FType>::last 414, 424 WCValConstSListIter<Type>::WCValConstSListIter

WCQueue<Type,FType>::WCQueue<Type,FType> 379-380

414-416 WCValConstSListIter<Type>::WCValConstSListIter<

WCQueue<Type,FType>::~WCQueue<Type,FType> Type> 378

414, 417 WCValConstSListIter<Type>::~WCValConstDListIter

WCSLink 230 384

WCSLink::WCSLink 280-281 WCValConstSListIter<Type>::~WCValConstSListIter

WCSLink::~WCSLink 280, 282 381

WCStack<Type,FType>::clear 512, 516 WCValConstSListIter<Type>::~WCValConstSListIter

WCStack<Type,FType>::entries 512, 517 <Type> 378

WCStack<Type,FType>::isEmpty 512, 518 WCValDList, member function

WCStack<Type,FType>::pop 512, 519 WCValDList<Type> 287, 289-292

WCStack<Type,FType>::push 512, 520 WCValSList<Type> 287, 289-292

WCStack<Type,FType>::top 512, 521 WCValDList<Type>::append 283, 293

WCStack<Type,FType>::WCStack<Type,FType> WCValDList<Type>::clear 283, 294

512-514 WCValDList<Type>::clearAndDestroy 283, 295

WCStack<Type,FType>::~WCStack<Type,FType> WCValDList<Type>::contains 283, 296

512, 515 WCValDList<Type>::entries 283, 297

WCValConstDListIter, member function WCValDList<Type>::find 283, 298

WCValConstDListIter<Type> 382-383 WCValDList<Type>::findLast 283, 299

WCValConstSListIter<Type> 382-383 WCValDList<Type>::forAll 283, 300

WCValConstDListIter<Type>::append 378 WCValDList<Type>::get 283, 301

WCValConstDListIter<Type>::container 378, 385 WCValDList<Type>::index 283, 302

WCValConstDListIter<Type>::current 378, 386 WCValDList<Type>::insert 283, 303

WCValConstDListIter<Type>::insert 378 WCValDList<Type>::isEmpty 283, 304

WCValConstDListIter<Type>::operator () 378, 387 WCValDList<Type>::operator = 284, 305

WCValConstDListIter<Type>::operator ++ 378, 388 WCValDList<Type>::operator == 284, 306

WCValConstDListIter<Type>::operator += 378, 389 WCValDList<Type>::WCValDList 287, 289-292

WCValConstDListIter<Type>::operator -- 378, 390 WCValDList<Type>::WCValSList 285-286, 288

WCValConstDListIter<Type>::operator -= 378, 391 WCValDListItemSize

WCValConstDListIter<Type>::reset 378, 392-393 macro 263, 290

WCValConstDListIter<Type>::WCValConstDListIter WCValDListIter, member function

382-383 WCValDListIter<Type> 399-400

WCValConstDListIter<Type>::WCValConstSListIter WCValSListIter<Type> 399-400

379-380 WCValDListIter<Type>::append 394, 402

WCValConstDListIter<Type>::~WCValConstDListIte WCValDListIter<Type>::container 394, 403

r 384 WCValDListIter<Type>::current 394, 404

WCValConstDListIter<Type>::~WCValConstSListIter WCValDListIter<Type>::insert 394, 405

381 WCValDListIter<Type>::operator () 394, 406

WCValConstSListIter, member function WCValDListIter<Type>::operator ++ 394, 407

WCValConstDListIter<Type> 379-380 WCValDListIter<Type>::operator += 394, 408

WCValConstSListIter<Type> 379-380 WCValDListIter<Type>::operator -- 394-395, 409

918

Index

WCValDListIter<Type>::operator -= 394-395, 410 WCValHashSet<Type>::clear 154, 165

WCValDListIter<Type>::reset 394, 411-412 WCValHashSet<Type>::contains 154, 166

WCValDListIter<Type>::WCValDListIter 399-400 WCValHashSet<Type>::entries 154, 167

WCValDListIter<Type>::WCValSListIter 396-397 WCValHashSet<Type>::find 154, 168

WCValDListIter<Type>::~WCValDListIter 401 WCValHashSet<Type>::forall 154, 169

WCValDListIter<Type>::~WCValSListIter 398 WCValHashSet<Type>::insert 154, 170

WCValHashDict, member function WCValHashSet<Type>::isEmpty 154, 171

WCValHashDict<Key,Value> 132 WCValHashSet<Type>::occurrencesOf 154, 172

WCValHashDict<Key,Value>::bitHash 132, 137 WCValHashSet<Type>::operator = 154, 173

WCValHashDict<Key,Value>::buckets 132, 138 WCValHashSet<Type>::operator == 154, 174

WCValHashDict<Key,Value>::clear 132, 139 WCValHashSet<Type>::remove 154, 175

WCValHashDict<Key,Value>::contains 132, 140 WCValHashSet<Type>::removeAll 154, 176

WCValHashDict<Key,Value>::entries 132, 141 WCValHashSet<Type>::resize 154, 177

WCValHashDict<Key,Value>::find 132, 142 WCValHashSet<Type>::WCValHashSet 153

WCValHashDict<Key,Value>::findKeyAndValue WCValHashSet<Type>::WCValHashTable 154

132, 143 WCValHashSet<Type>::~WCValHashSet 154

WCValHashDict<Key,Value>::forall 132, 144 WCValHashSet<Type>::~WCValHashTable 154

WCValHashDict<Key,Value>::insert 132, 145 WCValHashSetIter, member function

WCValHashDict<Key,Value>::isEmpty 132, 146 WCValHashSetIter<Type> 216-217

WCValHashDict<Key,Value>::operator = 132, 149 WCValHashTableIter<Type> 216-217

WCValHashDict<Key,Value>::operator == 132, 150 WCValHashSetIter<Type>::container 215, 222

WCValHashDict<Key,Value>::operator [] 132, WCValHashSetIter<Type>::current 215, 223

147-148 WCValHashSetIter<Type>::operator () 215, 224

WCValHashDict<Key,Value>::remove 132, 151 WCValHashSetIter<Type>::operator ++ 215, 225

WCValHashDict<Key,Value>::resize 132, 152 WCValHashSetIter<Type>::reset 215, 226-227

WCValHashDict<Key,Value>::WCValHashDict 132 WCValHashSetIter<Type>::WCValHashSetIter

WCValHashDict<Key,Value>::WCValHashDict<Key, 216-217

Value> 133-135 WCValHashSetIter<Type>::WCValHashSetIter<Type

WCValHashDict<Key,Value>::~WCValHashDict 132 > 215

WCValHashDict<Key,Value>::~WCValHashDict<Ke WCValHashSetIter<Type>::WCValHashTableIter

y,Value> 136 219-220

WCValHashDictIter, member function WCValHashSetIter<Type>::~WCValHashSetIter 218

WCValHashDictIter<Key,Value> 192-193 WCValHashSetIter<Type>::~WCValHashSetIter<Typ

WCValHashDictIter<Key,Value>::container 191, 195 e> 215

WCValHashDictIter<Key,Value>::key 191, 196 WCValHashSetIter<Type>::~WCValHashTableIter

WCValHashDictIter<Key,Value>::operator () 191, 221

197 WCValHashTable, member function

WCValHashDictIter<Key,Value>::operator ++ 191, WCValHashSet<Type> 154

198 WCValHashTable<Type> 154

WCValHashDictIter<Key,Value>::reset 191, 199-200 WCValHashTable<Type>::bitHash 154, 163

WCValHashDictIter<Key,Value>::value 191, 201 WCValHashTable<Type>::buckets 154, 164

WCValHashDictIter<Key,Value>::WCValHashDictIte WCValHashTable<Type>::clear 154, 165

r 192-193 WCValHashTable<Type>::contains 154, 166

WCValHashDictIter<Key,Value>::WCValHashDictIte WCValHashTable<Type>::entries 154, 167

r<Key,Value> 191 WCValHashTable<Type>::find 154, 168

WCValHashDictIter<Key,Value>::~WCValHashDictIt WCValHashTable<Type>::forall 154, 169

er 194 WCValHashTable<Type>::insert 154, 170

WCValHashDictIter<Key,Value>::~WCValHashDictIt WCValHashTable<Type>::isEmpty 154, 171

er<Key,Value> 191 WCValHashTable<Type>::occurrencesOf 154, 172

WCValHashSet, member function WCValHashTable<Type>::operator = 154, 173

WCValHashSet<Type> 153 WCValHashTable<Type>::operator == 154, 174

WCValHashTable<Type> 153 WCValHashTable<Type>::remove 154, 175

WCValHashSet<Type>::bitHash 154, 163 WCValHashTable<Type>::removeAll 154, 176

WCValHashSet<Type>::buckets 154, 164 WCValHashTable<Type>::resize 154, 177

919

Index

WCValHashTable<Type>::WCValHashSet 153 WCValOrderedVector<Type>::~WCValOrderedVecto

WCValHashTable<Type>::WCValHashTable 154 r 568

WCValHashTable<Type>::WCValHashTable<Type> WCValOrderedVector<Type>::~WCValSortedVector

155-157, 159-161 568

WCValHashTable<Type>::~WCValHashSet 154 WCValSkipList, member function

WCValHashTable<Type>::~WCValHashTable 154 WCValSkipList<Type> 488

WCValHashTable<Type>::~WCValHashTable<Type> WCValSkipListSet<Type> 488

158, 162 WCValSkipList<Type>::clear 489, 498

WCValHashTableIter, member function WCValSkipList<Type>::contains 489, 499

WCValHashSetIter<Type> 219-220 WCValSkipList<Type>::entries 489, 500

WCValHashTableIter<Type> 219-220 WCValSkipList<Type>::find 489, 501

WCValHashTableIter<Type>::container 215, 222 WCValSkipList<Type>::forall 489, 502

WCValHashTableIter<Type>::current 215, 223 WCValSkipList<Type>::insert 489, 503

WCValHashTableIter<Type>::operator () 215, 224 WCValSkipList<Type>::isEmpty 489, 504

WCValHashTableIter<Type>::operator ++ 215, 225 WCValSkipList<Type>::occurrencesOf 489, 505

WCValHashTableIter<Type>::reset 215, 226-227 WCValSkipList<Type>::operator = 489, 506

WCValHashTableIter<Type>::WCValHashSetIter WCValSkipList<Type>::operator == 489, 507

216-217 WCValSkipList<Type>::remove 489, 508

WCValHashTableIter<Type>::WCValHashTableIter WCValSkipList<Type>::removeAll 489, 509

219-220 WCValSkipList<Type>::WCValSkipList 488

WCValHashTableIter<Type>::~WCValHashSetIter WCValSkipList<Type>::WCValSkipList<Type>

218 490-492, 494-496

WCValHashTableIter<Type>::~WCValHashTableIter WCValSkipList<Type>::WCValSkipListSet 488-489

221 WCValSkipList<Type>::~WCValSkipList 488

WCValOrderedVector, member function WCValSkipList<Type>::~WCValSkipList<Type>

WCValOrderedVector<Type> 568 493, 497

WCValSortedVector<Type> 568 WCValSkipList<Type>::~WCValSkipListSet 489

WCValOrderedVector<Type>::append 568, 576 WCValSkipListDict, member function

WCValOrderedVector<Type>::clear 568, 577 WCValSkipListDict<Key,Value> 470

WCValOrderedVector<Type>::contains 568, 578 WCValSkipListDict<Key,Value>::clear 470, 475

WCValOrderedVector<Type>::entries 568, 579 WCValSkipListDict<Key,Value>::contains 470, 476

WCValOrderedVector<Type>::find 568, 580 WCValSkipListDict<Key,Value>::entries 470, 477

WCValOrderedVector<Type>::first 568, 581 WCValSkipListDict<Key,Value>::find 470, 478

WCValOrderedVector<Type>::index 568, 582 WCValSkipListDict<Key,Value>::findKeyAndValue

WCValOrderedVector<Type>::insert 568, 583 470, 479

WCValOrderedVector<Type>::insertAt 568, 584 WCValSkipListDict<Key,Value>::forall 470, 480

WCValOrderedVector<Type>::isEmpty 568, 585 WCValSkipListDict<Key,Value>::insert 470, 481

WCValOrderedVector<Type>::last 568, 586 WCValSkipListDict<Key,Value>::isEmpty 470, 482

WCValOrderedVector<Type>::occurrencesOf 568, WCValSkipListDict<Key,Value>::operator = 470, 485

587 WCValSkipListDict<Key,Value>::operator == 470,

WCValOrderedVector<Type>::operator = 569, 589 486

WCValOrderedVector<Type>::operator == 569, 590 WCValSkipListDict<Key,Value>::operator [] 470,

WCValOrderedVector<Type>::operator [] 568, 588 483-484

WCValOrderedVector<Type>::prepend 568, 591 WCValSkipListDict<Key,Value>::remove 470, 487

WCValOrderedVector<Type>::remove 568, 592 WCValSkipListDict<Key,Value>::WCValSkipListDict

WCValOrderedVector<Type>::removeAll 568, 593 470

WCValOrderedVector<Type>::removeAt 568, 594 WCValSkipListDict<Key,Value>::WCValSkipListDict

WCValOrderedVector<Type>::removeFirst 568, 595 <Key,Value> 471-473

WCValOrderedVector<Type>::removeLast 568, 596 WCValSkipListDict<Key,Value>::~WCValSkipListDi

WCValOrderedVector<Type>::resize 568, 597 ct 470

WCValOrderedVector<Type>::WCValOrderedVector WCValSkipListDict<Key,Value>::~WCValSkipListDi

568 ct<Key,Value> 474

WCValOrderedVector<Type>::WCValSortedVector WCValSkipListSet, member function

568 WCValSkipList<Type> 488-489

920

Index

WCValSkipListSet<Type> 488-489 WCValSListIter<Type>::WCValDListIter 399-400

WCValSkipListSet<Type>::clear 489, 498 WCValSListIter<Type>::WCValSListIter 396-397

WCValSkipListSet<Type>::contains 489, 499 WCValSListIter<Type>::WCValSListIter<Type> 394

WCValSkipListSet<Type>::entries 489, 500 WCValSListIter<Type>::~WCValDListIter 401

WCValSkipListSet<Type>::find 489, 501 WCValSListIter<Type>::~WCValSListIter 398

WCValSkipListSet<Type>::forall 489, 502 WCValSListIter<Type>::~WCValSListIter<Type>

WCValSkipListSet<Type>::insert 489, 503 394

WCValSkipListSet<Type>::isEmpty 489, 504 WCValSortedVector, member function

WCValSkipListSet<Type>::occurrencesOf 489, 505 WCValOrderedVector<Type> 568

WCValSkipListSet<Type>::operator = 489, 506 WCValSortedVector<Type> 568

WCValSkipListSet<Type>::operator == 489, 507 WCValSortedVector<Type>::append 568, 576

WCValSkipListSet<Type>::remove 489, 508 WCValSortedVector<Type>::clear 568, 577

WCValSkipListSet<Type>::removeAll 489, 509 WCValSortedVector<Type>::contains 568, 578

WCValSkipListSet<Type>::WCValSkipList 488 WCValSortedVector<Type>::entries 568, 579

WCValSkipListSet<Type>::WCValSkipListSet WCValSortedVector<Type>::find 568, 580

488-489 WCValSortedVector<Type>::first 568, 581

WCValSkipListSet<Type>::~WCValSkipList 488 WCValSortedVector<Type>::index 568, 582

WCValSkipListSet<Type>::~WCValSkipListSet 489 WCValSortedVector<Type>::insert 568, 583

WCValSList, member function WCValSortedVector<Type>::insertAt 568, 584

WCValDList<Type> 285-286, 288 WCValSortedVector<Type>::isEmpty 568, 585

WCValSList<Type> 285-286, 288 WCValSortedVector<Type>::last 568, 586

WCValSList<Type>::append 283, 293 WCValSortedVector<Type>::occurrencesOf 568, 587

WCValSList<Type>::clear 283, 294 WCValSortedVector<Type>::operator = 569, 589

WCValSList<Type>::clearAndDestroy 283, 295 WCValSortedVector<Type>::operator == 569, 590

WCValSList<Type>::contains 283, 296 WCValSortedVector<Type>::operator [] 568, 588

WCValSList<Type>::entries 283, 297 WCValSortedVector<Type>::prepend 568, 591

WCValSList<Type>::find 283, 298 WCValSortedVector<Type>::remove 568, 592

WCValSList<Type>::findLast 283, 299 WCValSortedVector<Type>::removeAll 568, 593

WCValSList<Type>::forAll 283, 300 WCValSortedVector<Type>::removeAt 568, 594

WCValSList<Type>::get 283, 301 WCValSortedVector<Type>::removeFirst 568, 595

WCValSList<Type>::index 283, 302 WCValSortedVector<Type>::removeLast 568, 596

WCValSList<Type>::insert 283, 303 WCValSortedVector<Type>::resize 568, 597

WCValSList<Type>::isEmpty 283, 304 WCValSortedVector<Type>::WCValOrderedVector

WCValSList<Type>::operator = 284, 305 568

WCValSList<Type>::operator == 284, 306 WCValSortedVector<Type>::WCValSortedVector

WCValSList<Type>::WCValDList 287, 289-292 568

WCValSList<Type>::WCValSList 285-286, 288 WCValSortedVector<Type>::WCValSortedVector<Ty

WCValSList<Type>::WCValSList<Type> 283 pe> 570-571, 573-574

WCValSList<Type>::~WCValSList<Type> 283 WCValSortedVector<Type>::~WCValOrderedVector

WCValSListItemSize 568

macro 259, 286, 416, 514 WCValSortedVector<Type>::~WCValSortedVector

WCValSListIter, member function 568

WCValDListIter<Type> 396-397 WCValSortedVector<Type>::~WCValSortedVector<T

WCValSListIter<Type> 396-397 ype> 572, 575

WCValSListIter<Type>::append 394, 402 WCValVector<Type>::clear 598, 603

WCValSListIter<Type>::container 394, 403 WCValVector<Type>::length 598, 604

WCValSListIter<Type>::current 394, 404 WCValVector<Type>::operator = 598, 606

WCValSListIter<Type>::insert 394, 405 WCValVector<Type>::operator == 598, 607

WCValSListIter<Type>::operator () 394, 406 WCValVector<Type>::operator [] 598, 605

WCValSListIter<Type>::operator ++ 394, 407 WCValVector<Type>::resize 598, 608

WCValSListIter<Type>::operator += 394, 408 WCValVector<Type>::WCValVector<Type> 598-601

WCValSListIter<Type>::operator -- 394-395, 409 WCValVector<Type>::~WCValVector<Type> 598,

WCValSListIter<Type>::operator -= 394-395, 410 602

WCValSListIter<Type>::reset 394, 411-412 width, member function

921

Index

ios 655-656, 689 WCPtrHashDictIter<Key,Value> 183

write, member function ~WCPtrHashSet, member function

ostream 755, 777 WCPtrHashSet<Type> 105

ws, manipulator 733, 747 WCPtrHashTable<Type> 105

~WCPtrHashSetIter, member function

WCPtrHashSetIter<Type> 205

WCPtrHashTableIter<Type> 205

~WCPtrHashTable, member functionX
WCPtrHashSet<Type> 106

WCPtrHashTable<Type> 106

~WCPtrHashTableIter, member function
xalloc, member function WCPtrHashSetIter<Type> 208

ios 656, 690 WCPtrHashTableIter<Type> 208

~WCPtrOrderedVector, member function

WCPtrOrderedVector<Type> 525

WCPtrSortedVector<Type> 525
Z ~WCPtrSkipList, member function

WCPtrSkipList<Type> 446

WCPtrSkipListSet<Type> 446

~WCPtrSkipListDict, member functionzero_buckets
WCPtrSkipListDict<Key,Value> 426exception 70, 104, 130, 152, 177

~WCPtrSkipListSet, member functionzero_buckets, member enumeration
WCPtrSkipList<Type> 446WCExcept 70
WCPtrSkipListSet<Type> 446

~WCPtrSListIter, member function

WCPtrDListIter<Type> 363

WCPtrSListIter<Type> 363~
~WCPtrSortedVector, member function

WCPtrOrderedVector<Type> 525

WCPtrSortedVector<Type> 525

~WCValConstDListIter, member function~WCIsvConstDListIter, member function

WCValConstDListIter<Type> 384WCIsvConstDListIter<Type> 314

WCValConstSListIter<Type> 384WCIsvConstSListIter<Type> 314

~WCValConstSListIter, member function~WCIsvConstSListIter, member function

WCValConstDListIter<Type> 381WCIsvConstDListIter<Type> 311

WCValConstSListIter<Type> 381WCIsvConstSListIter<Type> 311

~WCValDListIter, member function~WCIsvDListIter, member function

WCValDListIter<Type> 401WCIsvDListIter<Type> 331

WCValSListIter<Type> 401WCIsvSListIter<Type> 331

~WCValHashDict, member function~WCIsvSListIter, member function

WCValHashDict<Key,Value> 132WCIsvDListIter<Type> 328

~WCValHashDictIter, member functionWCIsvSListIter<Type> 328

WCValHashDictIter<Key,Value> 194~WCPtrConstDListIter, member function

~WCValHashSet, member functionWCPtrConstDListIter<Type> 349

WCValHashSet<Type> 154WCPtrConstSListIter<Type> 349

WCValHashTable<Type> 154~WCPtrConstSListIter, member function

~WCValHashSetIter, member functionWCPtrConstDListIter<Type> 346

WCValHashSetIter<Type> 218WCPtrConstSListIter<Type> 346

WCValHashTableIter<Type> 218~WCPtrDListIter, member function

~WCValHashTable, member functionWCPtrDListIter<Type> 366

WCValHashSet<Type> 154WCPtrSListIter<Type> 366

WCValHashTable<Type> 154~WCPtrHashDict, member function

~WCValHashTableIter, member functionWCPtrHashDict<Key,Value> 82

WCValHashSetIter<Type> 221~WCPtrHashDictIter, member function

922

Index

WCValHashTableIter<Type> 221

~WCValOrderedVector, member function

WCValOrderedVector<Type> 568

WCValSortedVector<Type> 568

~WCValSkipList, member function

WCValSkipList<Type> 488

WCValSkipListSet<Type> 488

~WCValSkipListDict, member function

WCValSkipListDict<Key,Value> 470

~WCValSkipListSet, member function

WCValSkipList<Type> 489

WCValSkipListSet<Type> 489

~WCValSListIter, member function

WCValDListIter<Type> 398

WCValSListIter<Type> 398

~WCValSortedVector, member function

WCValOrderedVector<Type> 568

WCValSortedVector<Type> 568

923

