
Open Watcom Vi Editor Reference and User’s
Guide

Version 2.0

Notice of Copyright

Copyright 2002-2025 the Open Watcom Contributors. Portions Copyright 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

ii

Preface
The Open Watcom Vi Editor is a programmer’s editor. It is loosely based on UNIX Vi, but is much more
powerful. This manual may be used by someone without any knowledge of Vi, or by experienced Vi users.
People familiar with Vi will find Open Watcom Vi Editor is very similar in its basic behaviour, but with
many additional features.

Chapter 1 Introduction provides an overview of Vi.

Chapter 2 Basic Usage is for the novice Vi user. This section provides an overview of the basic
features of Vi through some simple exercises.

Chapter 3 Intermediate Usage provides some more exercises which introduce additional useful
features of Vi.

Chapter 4 Advanced Usage This chapter discusses the advanced features of Vi.

Chapter 5 Command Mode Keys This chapter describes the keystrokes that initiate the many different
features of command mode.

Chapter 6 Editor Command Line This chapter describes all the different commands that may be
issued in Vi.

Chapter 7 Editor Settings This chapter shows all the different settings that are used for configuring
Vi.

Chapter 8 Windowing, Menus and the Mouse This chapter provides a guide for using and
configuring the user interface of Vi to suit your needs.

Chapter 9 Editor Script Reference This chapter describes Vi’s script language.

Chapter 10 Regular Expressions This chapter describes how to use regular expressions in Vi when
executing search, search and replace, and global commands.

Trademarks Used in this Manual

UNIX is a registered trademark of The Open Group.

IBM is a registered trademark and OS/2 is a trademark of International Business Machines Corp.

Intel is a registered trademark of Intel Corp.

Microsoft is a registered trademark of Microsoft Corp. Microsoft Windows is a trademark of Microsoft
Corp.

QNX is a registered trademark of QNX Software Systems Ltd.

iii

iv

Table of Contents

The Open Watcom Vi Editor User’s Guide .. 1

1 Introduction to the Open Watcom Vi Editor .. 3
1.1 Terms and Notation ... 4

1.1.1 The Mouse .. 4
1.1.2 The Screen .. 4

2 Basic Usage .. 7
2.1 Starting the Open Watcom Vi Editor .. 7
2.2 What is a Modal Editor? .. 8
2.3 Some Basic Commands ... 10

2.3.1 Moving Around .. 10
2.3.2 Saving and Exiting a File ... 11
2.3.3 Inputting Text ... 12

2.4 Cutting and Pasting Text ... 16
2.4.1 Lines ... 17
2.4.2 Characters ... 18

2.5 Using the Menus .. 21
2.5.1 Edit Window Menu .. 21
2.5.2 Window Menu .. 22
2.5.3 Options Menu ... 23
2.5.4 File Menu .. 24
2.5.5 Edit Menu ... 25
2.5.6 Position Menu ... 25
2.5.7 Help Menu .. 26

3 Intermediate Usage .. 29
3.1 The Command Line ... 29

3.1.1 Line Numbers ... 30
3.2 Getting a File for Editing .. 31
3.3 Moving Between Files .. 32
3.4 Moving Around in a File ... 34
3.5 Saving and Exiting a File Revisited .. 37
3.6 Using the Mouse .. 40
3.7 Selecting Text .. 40
3.8 Joining Text ... 44
3.9 Using Marks .. 44
3.10 Searching for Text ... 46
3.11 Deleting, Copying, and Pasting Text .. 48
3.12 Altering Text ... 51
3.13 Undo and Redo .. 53
3.14 Repeating Edit Operations .. 54

4 Advanced Usage .. 57
4.1 The Substitute Command .. 57
4.2 The Global Command ... 58
4.3 Searching Files For Text ... 59
4.4 Mapping Keys ... 60

The Open Watcom Vi Editor Reference ... 63

v

Table of Contents

5 The Open Watcom Vi Editor Environment ... 65
5.1 Using Edbind ... 65
5.2 Invoking the Open Watcom Vi Editor .. 66
5.3 Lost File Recovery .. 67

6 Modes ... 69
6.1 Text Insertion Mode .. 69

6.1.1 Special Keys ... 70
6.2 Command Mode .. 72

6.2.1 Movement ... 72
6.2.2 Undoing Changes ... 79
6.2.3 Marks .. 79
6.2.4 Copy Buffers .. 81
6.2.5 Searching .. 82

6.2.5.1 Special Keys In The Search String Window ... 83
6.2.6 Inserting Text .. 85
6.2.7 Replacing Text .. 85
6.2.8 Deleting Text .. 86
6.2.9 Copying Text .. 88
6.2.10 Changing Text .. 89
6.2.11 Shifting Text ... 91
6.2.12 Case Toggling ... 92
6.2.13 Filters .. 93
6.2.14 Text Selection ... 94
6.2.15 Miscellaneous Keys .. 96

7 Editor Commands .. 101
7.1 Special Keys In The Command Window .. 102
7.2 Line Addresses .. 103

7.2.1 Line Address Examples .. 104
7.3 Commands ... 104

7.3.1 > .. 105
7.3.2 < .. 105
7.3.3 ! ... 105
7.3.4 ABBREV .. 106
7.3.5 ALIAS .. 106
7.3.6 APPEND ... 106
7.3.7 CASCADE ... 106
7.3.8 CD ... 107
7.3.9 CHANGE ... 107
7.3.10 COMPILE ... 107
7.3.11 COMPRESS ... 108
7.3.12 COPY ... 108
7.3.13 DATE ... 108
7.3.14 DELETE ... 108
7.3.15 ECHO ... 109
7.3.16 EDIT ... 109
7.3.17 EGREP ... 111
7.3.18 EVAL ... 111
7.3.19 EXECUTE .. 112
7.3.20 EXITALL ... 113
7.3.21 EXPAND .. 113

vi

Table of Contents

7.3.22 FGREP .. 113
7.3.23 FILES ... 114
7.3.24 FLOATMENU ... 115
7.3.25 GENCONFIG ... 115
7.3.26 GLOBAL .. 115
7.3.27 HELP .. 116
7.3.28 INSERT .. 116
7.3.29 JOIN ... 117
7.3.30 KEYADD ... 117
7.3.31 LIST .. 118
7.3.32 LOAD ... 118
7.3.33 MAP ... 118
7.3.34 MAPBASE ... 120
7.3.35 MARK .. 120
7.3.36 MATCH .. 120
7.3.37 MAXIMIZE .. 121
7.3.38 MINIMIZE ... 121
7.3.39 MOVE .. 121
7.3.40 MOVEWIN .. 122
7.3.41 NEXT ... 122
7.3.42 OPEN .. 122
7.3.43 POP ... 123
7.3.44 PREV .. 123
7.3.45 PUSH .. 123
7.3.46 PUT ... 123
7.3.47 QUIT ... 124
7.3.48 QUITALL ... 124
7.3.49 READ ... 125
7.3.50 RESIZE ... 126
7.3.51 SET ... 126
7.3.52 SETCOLOR ... 127
7.3.53 SHELL .. 127
7.3.54 SIZE .. 127
7.3.55 SOURCE .. 128
7.3.56 SUBSTITUTE .. 128
7.3.57 TAG .. 129
7.3.58 TILE ... 129
7.3.59 UNABBREV .. 130
7.3.60 UNALIAS ... 130
7.3.61 UNDO (command) ... 130
7.3.62 UNMAP .. 130
7.3.63 VERSION ... 131
7.3.64 VIEW .. 131
7.3.65 VISUAL ... 131
7.3.66 WRITE ... 132
7.3.67 WQ ... 132
7.3.68 YANK ... 132
7.3.69 XIT ... 133

8 Windows and Menus .. 135
8.1 Window Properties .. 135

8.1.1 BORDER .. 135

vii

Table of Contents

8.1.2 DIMENSION .. 136
8.1.3 ENDWINDOW .. 136
8.1.4 HILIGHT .. 136
8.1.5 TEXT .. 137

8.2 Window Types .. 137
8.2.1 COMMANDWINDOW ... 137
8.2.2 COUNTWINDOW ... 137
8.2.3 DEFAULTWINDOW .. 137
8.2.4 DIRWINDOW .. 137
8.2.5 EDITWINDOW ... 138
8.2.6 EXTRAINFOWINDOW .. 138
8.2.7 FILEWINDOW .. 138
8.2.8 FILECWINDOW ... 138
8.2.9 LINENUMBERWINDOW .. 138
8.2.10 MENUWINDOW ... 138
8.2.11 MENUBARWINDOW ... 139
8.2.12 MESSAGEWINDOW .. 139
8.2.13 SETWINDOW ... 139
8.2.14 SETVALWINDOW ... 139
8.2.15 STATUSWINDOW ... 139

8.3 Sample Window Settings .. 140
8.4 Menu Commands .. 142

8.4.1 ADDMENUITEM .. 142
8.4.2 DELETEMENU ... 143
8.4.3 DELETEMENUITEM .. 143
8.4.4 ENDMENU .. 143
8.4.5 MENU .. 143
8.4.6 MENUITEM ... 144

8.5 Sample Menus ... 144

9 Editor Settings .. 147
9.1 Boolean Settings .. 148

9.1.1 autoindent ... 148
9.1.2 automessageclear .. 148
9.1.3 beepflag .. 148
9.1.4 caseignore ... 149
9.1.5 changelikevi .. 149
9.1.6 cmode ... 149
9.1.7 columninfilestatus ... 149
9.1.8 currentstatus .. 150
9.1.9 drawtildes ... 150
9.1.10 eightbits .. 150
9.1.11 escapemessage .. 150
9.1.12 extendedmemory .. 150
9.1.13 ignorectrlz ... 150
9.1.14 ignoretagcase .. 151
9.1.15 magic .. 151
9.1.16 pauseonspawnerr .. 151
9.1.17 quiet .. 151
9.1.18 quitmovesforward ... 151
9.1.19 readentirefile ... 151
9.1.20 readonlycheck ... 152

viii

Table of Contents

9.1.21 realtabs .. 152
9.1.22 regsubmagic .. 152
9.1.23 samefilecheck ... 152
9.1.24 saveconfig ... 152
9.1.25 saveposition .. 152
9.1.26 searchwrap .. 153
9.1.27 showmatch .. 153
9.1.28 tagprompt .. 153
9.1.29 undo .. 153
9.1.30 verbose .. 153
9.1.31 wordwrap .. 153
9.1.32 wrapbackspace .. 154
9.1.33 writecrlf .. 154
9.1.34 Mouse Control Booleans .. 154

9.1.34.1 lefthandmouse .. 154
9.1.34.2 usemouse .. 154

9.1.35 Window Control Booleans ... 154
9.1.35.1 clock ... 154
9.1.35.2 linenumbers .. 154
9.1.35.3 linenumsonright ... 155
9.1.35.4 marklonglines ... 155
9.1.35.5 menus ... 155
9.1.35.6 repeatinfo ... 155
9.1.35.7 spinning .. 155
9.1.35.8 statusinfo .. 155
9.1.35.9 toolbar .. 155
9.1.35.10 windowgadgets .. 156

9.2 Non-Boolean Settings ... 156
9.2.1 autosaveinterval .. 156
9.2.2 commandcursortype ... 156
9.2.3 endoflinechar .. 156
9.2.4 exitattr ... 156
9.2.5 fileendstring .. 157
9.2.6 grepdefault .. 157
9.2.7 hardtab .. 157
9.2.8 historyfile .. 157
9.2.9 insertcursortype .. 157
9.2.10 magicstring ... 157
9.2.11 maxclhistory ... 158
9.2.12 maxemsk ... 158
9.2.13 maxfilterhistory .. 158
9.2.14 maxfindhistory .. 158
9.2.15 maxlinelen .. 158
9.2.16 maxpush .. 158
9.2.17 maxswapk ... 159
9.2.18 maxxmsk ... 159
9.2.19 pagelinesexposed .. 159
9.2.20 overstrikecursortype ... 159
9.2.21 radix .. 159
9.2.22 shiftwidth .. 159
9.2.23 stackk .. 160
9.2.24 statussections .. 160

ix

Table of Contents

9.2.25 statusstring .. 160
9.2.26 shellprompt ... 161
9.2.27 tabamount ... 161
9.2.28 tagfilename ... 161
9.2.29 tmpdir ... 161
9.2.30 word .. 162
9.2.31 wrapmargin ... 162
9.2.32 Mouse Control Values .. 162

9.2.32.1 mousedclickspeed .. 162
9.2.32.2 mouserepeatdelay ... 162
9.2.32.3 mousespeed .. 162
9.2.32.4 wordalt ... 163

9.2.33 Window Control Values ... 163
9.2.33.1 buttonheight ... 163
9.2.33.2 buttonwidth .. 163
9.2.33.3 clockx ... 163
9.2.33.4 clocky ... 163
9.2.33.5 currentstatuscolumn ... 164
9.2.33.6 cursorblinkrate ... 164
9.2.33.7 gadgetstring .. 164
9.2.33.8 inactivewindowcolor .. 164
9.2.33.9 maxtilecolors .. 165
9.2.33.10 maxwindowtilex ... 165
9.2.33.11 maxwindowtiley ... 165
9.2.33.12 movecolor .. 165
9.2.33.13 resizecolor .. 165
9.2.33.14 spinx ... 165
9.2.33.15 spiny ... 166
9.2.33.16 tilecolor .. 166

10 Regular Expressions ... 167
10.1.1 Regular Expression BNF .. 168

10.2 File Matching Regular Expressions .. 169
10.3 Replacement Strings .. 170
10.4 Controlling Magic Characters ... 171
10.5 Regular Expression Examples ... 171

10.5.1 Matching Examples .. 171
10.5.2 Replacement Examples ... 175

11 Editor Script Language .. 177
11.1 Script Variables ... 178

11.1.1 Pre-defined Global Variables ... 178
11.2 Hook Scripts .. 179
11.3 Script Expressions ... 181

11.3.1 Script Expression BNF ... 183
11.4 Control Flow Commands .. 184

11.4.1 The LOOP Block .. 184
11.4.2 The WHILE Block ... 185
11.4.3 The IF Block ... 185

11.5 Script Commands .. 185
11.5.1 ATOMIC .. 186
11.5.2 ASSIGN .. 186

x

Table of Contents

11.5.3 BREAK ... 187
11.5.4 CONTINUE .. 188
11.5.5 ENDIF .. 188
11.5.6 ENDLOOP ... 188
11.5.7 ENDWHILE ... 188
11.5.8 ELSEIF ... 188
11.5.9 ELSE ... 189
11.5.10 EXPR .. 189
11.5.11 FCLOSE ... 189
11.5.12 FOPEN ... 189
11.5.13 FREAD ... 190
11.5.14 FWRITE ... 191
11.5.15 GET .. 191
11.5.16 GOTO ... 191
11.5.17 IF ... 191
11.5.18 INPUT .. 192
11.5.19 LABEL ... 192
11.5.20 LOOP .. 192
11.5.21 NEXTWORD ... 193
11.5.22 QUIF ... 193
11.5.23 RETURN .. 193
11.5.24 UNTIL .. 193
11.5.25 WHILE ... 194

11.6 Script Examples ... 194
11.6.1 Example - err.vi .. 194
11.6.2 Example - lnum.vi .. 194
11.6.3 Example - qall.vi .. 195
11.6.4 Example - wrme.vi ... 197
11.6.5 Example - proc.vi ... 199

Appendices ... 203

A. Command Mode Key Summary ... 205

B. The Open Watcom Vi Editor Error Messages .. 211

C. CTAGS ... 219

D. Symbolic Keystrokes ... 221
D.1 Symbols and Meaning .. 221

E. Error Code Tokens ... 227

xi

List of Figures

Figure 1. Vi after start-up ... 4
Figure 2. The Vi screen .. 7
Figure 3. The Vi screen .. 9
Figure 4. The Really Exit prompt ... 10
Figure 5. The File Menu ... 11
Figure 6. The Individual Edit Window menu ... 12
Figure 7. Editing the New File "test" ... 14
Figure 8. Editing the File "test" .. 15
Figure 9. Repeat Count Display ... 17
Figure 10. The Individual Edit Window menu ... 22
Figure 11. The Window menu .. 23
Figure 12. The Options menu ... 23
Figure 13. The File menu ... 24
Figure 14. The Edit menu ... 25
Figure 15. The Position menu .. 26
Figure 16. The Help menu .. 27
Figure 17. The Command Entry window ... 29
Figure 18. File Selection display .. 32
Figure 19. Current File List .. 33
Figure 20. "ATEST" File Contents .. 36
Figure 21. Selected Lines menu ... 42
Figure 22. Selected Columns menu .. 42
Figure 23. Double Click Selection ... 43
Figure 24. Search String Entry Window .. 47
Figure 25. FGrep result display .. 60
Figure 26. Search String Entry Window .. 83
Figure 27. File Name Completion Window ... 84
Figure 28. Filter System Command Prompt ... 94
Figure 29. Selected Text Region .. 95
Figure 30. Character Insertion Prompt ... 97
Figure 31. Command Entry Window ... 101
Figure 32. File Name Completion Window ... 103
Figure 33. File Selection Display ... 110
Figure 34. Grep Result display ... 114
Figure 35. Current file list .. 114
Figure 36. Two views of the same file ... 122
Figure 37. Really Exit prompt .. 124
Figure 38. File Selection display .. 126
Figure 39. Vi Settings Selection list ... 148

xii

The Open Watcom Vi Editor User’s
Guide

The Open Watcom Vi Editor User’s Guide

2

1 Introduction to the Open Watcom Vi Editor

Open Watcom Vi Editor (Vi) is a programmer’s editor. It is loosely based on UNIX Vi, but is much more
powerful. This manual may be used by someone without any knowledge of Vi, or by an experienced Vi
user. People familiar with Vi will find the Open Watcom Vi Editor is very similar in its basic behaviour.

An editor is very personal thing. Every person uses an editor in a different way, or wants things to look
slightly different. Vi was designed with this in mind. Most features in Vi are configurable.

Vi has many powerful features. Some of the more significant are:

• fully configurable

• The size of every window can be set by the user
• The color of every window can be set by the user
• A window’s border can be set by the user
• The menu bar may be enabled/disabled
• The menu items in each menu can be set by the user
• Keys can be changed and augmented to suit any configuration

• unlimited undo and redo capability
• unlimited file size
• unlimited number of lines in a file
• edit up to 250 files at the same time
• multiple views on the same file
• full mouse support
• powerful script language

• local and global variables
• structured constructs (loop, while, if/elseif/else)
• arbitrary conditional expressions
• file I/O

• batch edit processing
• regular expression search and replacement
• text marks
• keystroke macros
• block delete, copy, change, case toggle, and shift operations

Open Watcom Vi Editor is available for the following environments:

• DOS (real mode) (286 or higher)
• DOS (protected mode, 386 or higher processors)
• OS/2 1.x
• OS/2 2.x
• Windows NT
• QNX
• Windows 3.x GUI
• Windows NT GUI
• Linux (multiple CPU architectures)

Introduction to the Open Watcom Vi Editor 3

The Open Watcom Vi Editor User’s Guide

1.1 Terms and Notation

1.1.1 The Mouse

If you have a mouse, you may use it with Vi. When you move your mouse, you will see a large block
move around on your screen. This is called the mouse cursor.

These terms are used when referring to things that may be done with the mouse.

click Pressing a mouse button once.

double click Pressing a mouse button twice in rapid succession.

dragging Holding down a mouse button and then moving the mouse.

1.1.2 The Screen

When you start up Vi, you will see something like the following:

Figure 1. Vi after start-up

The Vi screen has several windows.

• The top line of the screen is the menu bar which contains all of the menu choices, the current mode,
and the current time.

• The large window below the menu bar is the edit window. Since Vi is a multiple file editor, you
may have more than one edit window. Other edit windows are usually covered by the current edit
window, unless you change the size and position of the edit windows.

• The lower left corner of the screen contains the status window. This window typically shows the
current row and column.

• The majority of the bottom of the screen contains the message window. This window displays all
errors and informational messages.

4 Terms and Notation

Introduction to the Open Watcom Vi Editor

In the edit window will be a flashing line. This flashing line is the cursor, and it indicates which line you
are on and the position within the line.

On the border of the edit window are a number of special symbols. These special symbols are referred to as
gadgets:

• In the top left corner of the edit window is the gadget character that opens up the menu for the
window.

• In the lower right corner of the edit window is the resize gadget character. When you click on this
gadget character with your mouse and then drag the mouse, you can resize the edit window.

• On the right hand side of the edit window is the scroll bar. The scroll bar has several components:

• The scroll up gadget character. When you click on this with your mouse, the edit window scrolls up
one line.

• The scroll down gadget character. When you click on this with your mouse, the edit window scrolls
down one line.

• The scroll thumb character. The scroll thumb indicates the relative position of the current line in the
file. When you click on the scroll thumb with your mouse and drag it, you can move to a new
position in the file. If you click with your mouse on the scroll bar above the scroll thumb, you move
one page up in the file. If you click on the scroll bar below the scroll thumb, you move one page
down in the file.

Terms and Notation 5

The Open Watcom Vi Editor User’s Guide

6 Terms and Notation

2 Basic Usage

Using any editor as powerful as Vi takes some practice. This chapter will lead you through the basics or
using Vi.

2.1 Starting the Open Watcom Vi Editor

Vi is invoked by typing the command

vi

at the command prompt. Try typing this. You will see something similar to the following:

Figure 2. The Vi screen

Vi also accepts one or more files as an optional parameter. Each file that you specify will be edited by Vi.
For example, typing

vi test.c

will edit the file test.c. Typing

vi test.c other.c

will edit the files test.c and other.c. Typing

vi *.c

will edit all files that have the extension .c.

To exit Vi, use your mouse to select the File menu, and pick the Exit item. If you do not have a mouse,
press ALT_F (hold down the ALT key and press the letter F) and use the down arrow key to highlight the
Exit item. Pressing the ENTER key selects the Exit item.

Starting the Open Watcom Vi Editor 7

The Open Watcom Vi Editor User’s Guide

2.2 What is a Modal Editor?

A modal editor is one where keystrokes have different meaning, depending on what mode you are in. Vi
has two main modes, command mode and text insertion mode.

While in command mode, pressing a key on your keyboard can cause something different to happen. For
example, pressing the letter D (capital ’d’) deletes all characters from the current cursor position to the end
of the line. If the same letter ’D’ (is pressed while in text insertion mode, the letter ’D’ appears in your text
(much as you would expect).

It is easy to tell what mode you are in while using Vi. When you are in command mode, the cursor is a thin
line. When you are in text insertion mode, the cursor is much thicker: if you are inserting text, the cursor
is one half of a full block, and if you are overstriking text, the cursor is a full block.

The mode indicator on the menu bar at the top of your screen shows the current mode. While in command
mode, you will see the following:

Mode: command

While in text insertion mode, you will see either:

Mode: insert

or

Mode: overstrike

depending on whether you are inserting or overstriking text.

Vi is in command mode by default. There are numerous ways to enter text insertion mode, the easiest of
which is to press the INS key on your keyboard.

The ESC key is one of the more important keys in Vi. Pressing ESC once will stop whatever you are
doing and return you to command mode. If you have started a command mode sequence, pressing ESC
will cancel the command and return you to command mode.

Exercises

Start up Vi by typing

vi

at your command prompt.

You will see a screen that looks like the following:

8 What is a Modal Editor?

Basic Usage

Figure 3. The Vi screen

Press the INS key. The cursor will get larger and you will see the mode indicator change from

Mode: command

to

Mode: insert

Try typing some characters. Notice that they appear in the edit window as you type. When you are done,
press the ESC key. The cursor will get smaller and you will see the mode indicator change from

Mode: insert

to

Mode: command

To exit Vi, use your mouse to select the File menu, and pick the Exit item. If you do not have a mouse,
press ALT_F (hold down the ALT key and press the letter F) and use the down arrow key to highlight the
Exit item. Pressing the ENTER key selects the Exit item.

Once you exit, you will be prompted with a message as follows:

What is a Modal Editor? 9

The Open Watcom Vi Editor User’s Guide

Figure 4. The Really Exit prompt

there are still files that have been modified but not saved. Press ’n’ then the ENTER key to exit without
saving your current file.

2.3 Some Basic Commands

To begin editing with Vi, there are only a few basic commands that you need to learn. Once you master
these few commands, you will be able to accomplish all basic editing tasks. In later chapters, more
sophisticated commands will be introduced which allow advanced tasks to be completed more quickly.

2.3.1 Moving Around

When you are in command mode, you may move around in your text using various cursor keys. The basic
keys that you use to move around are:

UP (up arrow key)
Cursor up through the text.

DOWN (down arrow key)
Cursor down through the text.

LEFT (left arrow key)
Cursor left through the text.

RIGHT (right arrow key)
Cursor right through the text.

HOME Move to the start of the current line.

END Move to the end of the current line.

PAGEUP Move up one page in the text.

PAGEDOWN Move down one page in the text.

10 Some Basic Commands

Basic Usage

CTRL_PAGEUP (Ctrl key + Page Up key)
Move to the first character on the first line in the file.

CTRL_PAGEDOWN (Ctrl key + Page Down key)
Move to the last character on the last line in the file.

These same cursor keys may also be used when entering text in text insertion mode.

2.3.2 Saving and Exiting a File

Once you have modified a file, may want to save it and either edit other files or exit the editor. When you
exit a modified file, you may want to either discard your changes or keep them.

You can discard ALL of your files by selecting the Exit item in the File menu. Alternatively, you can
discard or save the changes on an individual file basis.

If you wish to save the current file you are editing and leave that particular edit session, the fastest way to
do it is to use the command ’ZZ’. Press ESC to make sure that you are in command mode, and then type
two capital z’s (’ZZ’) in a row. This saves the file, then exits the edit buffer for the file. If you are editing
any other files, the next one in the list will become the current one. If you are not editing any other files,
then Vi will exit.

You may use certain menu items to save or discard changes to your file. The main menu option File (by
clicking on it with the mouse or by pressing ALT_F) has options for saving the current file. As well, each
edit window has a menu associated with it that you can access by pressing ALT_G. You can also access
this menu by clicking on the gadget character in the top left hand corner of an edit window. This menu has
a number of choices for dealing with the file.

If you activate the File menu item, either with the mouse or by pressing ALT_F, a menu will be displayed
as follows:

Figure 5. The File Menu

If you select the Save current file item, Vi will save the current file you are editing. You will remain
editing the current file.

Some Basic Commands 11

The Open Watcom Vi Editor User’s Guide

If you select the Save current file and close item, Vi will save the current file you are editing, and close the
edit window. If you are editing any other files, the next one in the list will become the current one. If you
are not editing any other files, then Vi will exit.

If you activate the individual file menu either by clicking on the gadget character at the top-left corner of
the edit window with the mouse or by pressing ALT_G, then a menu will pop up as follows:

Figure 6. The Individual Edit Window menu

If you select the Save current file item, Vi will save the current file you are editing. You will remain
editing the current file.

If you select the Save & close item, Vi will save the current file you are editing, and exit that edit buffer. If
you are editing any other files, the next one in the list will become the current one. If you are not editing
any other files, then Vi will exit.

If you select the Close no save item, Vi will discard the current file without saving your modifications. If
you are editing any other files, the next one in the list will become the current one. If you are not editing
any other files, then Vi will exit.

If you select the Close item, Vi will try to discard the current file. However, if the file has been modified,
then the option will fail.

2.3.3 Inputting Text

You have already learned that pressing the INS key while in command mode puts Vi into insert mode.
Once you are in insert mode, you may enter whatever text you like. You may cursor around and modify
your text in whatever way you choose. Once you are done, you may press the ESC key to return to
command mode.

While you are in text insertion mode, the basic keys that allow you to move through the text are:

UP (up arrow key)
Cursor up through the text.

DOWN (down arrow key)
Cursor down through the text.

12 Some Basic Commands

Basic Usage

LEFT (left arrow key)
Cursor left through the text.

RIGHT (right arrow key)
Cursor right through the text.

HOME Move to the start of the current line.

END Move to the end of the current line.

PAGEUP Move up one page in the text.

PAGEDOWN Move down one page in the text.

CTRL_PAGEUP (Ctrl key + Page Up key)
Move to the first character on the first line in the file.

CTRL_PAGEDOWN (Ctrl key + Page Down key)
Move to the last character on the last line in the file.

These keys allow you to manipulate the text while in text insertion mode:

CTRL_DEL (Control-Delete)
Deletes the current line.

BS (Backspace key)
Deletes the character before the cursor, moving the cursor and the rest of the line to the left
one character.

DEL (Delete key)
Delete the character under the cursor. If you are at the end of the line, DEL has the same
effect as pressing BS.

ENTER Start a new line.

INS (Insert key)
Toggles between inserting and overstriking text.

Along with the INS key, there are a number of other keys that you can press in command mode that will
place you in text insertion mode, where you can edit text. The difference between all of these commands is
where the cursor moves to before you start inputting text. The basic set of keys is:

a Starts appending (inserting) text after the current character.
A Starts appending (inserting) text after the last character on the current line.
i Starts inserting text at the current cursor position. This is the same as pressing the INS key.
I Starts inserting text before the first non-white space character on the current line.
o Adds a blank line after the current line, and starts you inserting text on the new line.
O Adds a blank line before the current line, and starts you inserting text on the new line.
R Starts overstriking text at the current cursor position.
INS Start inserting text at the current cursor position.

Remember, while in text insertion mode, the following mode indicator will appear on the menu bar:

Mode: insert

Some Basic Commands 13

The Open Watcom Vi Editor User’s Guide

or

Mode: overstrike

depending on whether you are inserting or overstriking text. As well, the cursor will change to a larger
block cursor to help you remember that you are are inputting text.

To exit text insertion mode at any time, press the ESC key. Your mode indicator will switch to

Mode: command

Exercises

1. Edit a new file (called "test", for example) as follows:

vi test

You will see the following screen:

Figure 7. Editing the New File "test"

Note the message window (the bottom two lines of the screen) contains the message

"test" [new file] line 1 of 1 -- 100% --

This message indicates that you are editing a new file called test, that you are on line 1 of a 1 line
file, and that line 1 is 100% of the way into the file.

You may see that message any time by pressing CTRL_G (hold down the Ctrl key and press the
g key).

Enter text insertion mode by pressing the INS key, and type the following lines:

This is a test line.
This is another test line.

When you are done typing these lines, remember to press the ESC key to return to command
mode.

14 Some Basic Commands

Basic Usage

Press CTRL_G (hold down Ctrl and press the g key). The message window (the bottom two
lines of the screen) will show the message:

"test" [modified] line 2 of 2 -- 100% --

Now, press two capital z’s in a row (’ZZ’). This will save the file and return to the operating
system command prompt.

2. Edit the file you created in the previous example, by typing

vi test

You will see the following screen:

Figure 8. Editing the File "test"

Note the message window (the bottom two lines of the screen) contains the message

"test" line 1 of 2 -- 50% --

This message is different than when you edited "test" for the first time. The "[new file]"
indicator is gone, since you have edited an existing file. This message indicates to you that you
are now editing a file called test, that you are on line 1 of a 2 line file, and that line 1 is 50% of
the way into the file.

Now try to experiment with the different ways of entering insert mode.

1. Try pressing the ’A’(capital ’a’) key. This will move your cursor to the end of the
line, and will put you into insert mode. Try adding some text to this line, and press
the ESC key when you are done.

2. Try pressing the ’I’ key. This will move your cursor to the start of the line, and will
put you into insert mode. Try adding some text to this line, and press the ESC key
when you are done.

3. Try pressing the ’R’ key. This will start you in overstrike mode. Note that the you
have a very large cursor and that the mode indicator says:

Mode: overstrike

Some Basic Commands 15

The Open Watcom Vi Editor User’s Guide

Try typing some characters. As you type, what was there already is replaced by what
you type. Press the ESC key when you are done.

4. Try pressing the ’i’ key. This is the same as pressing the INS key. Now type some
text, then press the INS key. Note that your cursor turned to full height from half
height, and the mode indicator changed from:

Mode: insert

to

Mode: overstrike

Now, when you type, you will replace the existing characters. Try pressing the INS
key again. This time, your cursor will turn from full height to half height, and the
mode indicator will change from:

Mode: overstrike

to

Mode: insert

Remember to press the ESC key when you are done.

5. Try pressing the ’a’ key. This will move the cursor over one character, and put you in
insert mode. Try cursoring around inside your text using the arrow keys. Use the
END key to move to the end of a line, and the HOME key to move to the start of a
line. Press the ESC key when you are done.

You have now made a number of significant modifications to your file. To discard the file
without saving your changes, activate the individual file menu (at the top-left corner of the edit
window) either by clicking on the gadget character with the mouse or by pressing ALT_G.
When the menu is up, try selecting the Close item. You will get the message:

File modified - use :q! to force

The command ":q!" being referred to will be discussed later. The file can be exited without
saving by using the Close no save menu item. Activate the individual file menu again, and select
this item. This will discard your changes to the file, and since you are not editing any other files,
you are returned to the operating system command prompt.

2.4 Cutting and Pasting Text

So far, you have learned how to edit a file, input some text, and save or cancel your changes. Now you will
learn some simple ways of deleting text and moving it elsewhere.

16 Cutting and Pasting Text

Basic Usage

2.4.1 Lines

The section "Inputting Text" on page 12 noted that pressing CTRL_DEL (control-delete) deleted a line
when inputting text. This same command can be used while in command mode.

If you want to delete more than one line at once, you may precede this delete command with a repeat
count. You enter a repeat count simply by typing numbers before you press CTRL_DEL. As you type a
number in command mode, it will appear in a special window, as follows:

Figure 9. Repeat Count Display

The number that you are typing is displayed in the repeat count window. As with all command mode
commands, if you decide that you have made a mistake, just press the ESC key and the count you have
been typing will be cancelled.

So, if you type a repeat count of 5 and then press CTRL_DEL, five lines will be deleted. If you do not
type a repeat count, then one line will be deleted.

You can also delete a line by pressing the ’d’ key twice in a row (’dd’). This has the exact same effect as
pressing the CTRL_DEL key. You may precede this command by a repeat count as well. For example,
typing

12dd

deletes the next 12 lines in your file.

Once you have deleted some lines, you might want to paste them back in. If you press SHIFT_INS (shift
insert), the line(s) you deleted will be pasted in after the current line. If you press CTRL_INS (control
insert), the line(s) you deleted will be pasted in before the current line (which reverses the action of
CTRL_DEL).

There are two other keys for pasting, the letters ’p’ and ’P’ (small p and capital p). Small ’p’ pastes the
line(s) you deleted after the current line, just like SHIFT_INS. Capital p (’P’) pastes the line(s) you
deleted before the current line, just like CTRL_INS.

If you do not wish to delete some lines, but you do wish to copy them so you can paste them somewhere
else, then you may use the "yank" command. If you press the letter ’Y’, or type the letters ’yy’, you will
"yank" (make a copy of) the current line. Just like ’dd’ or CTRL_DEL, you can precede these commands
with a repeat count. For example, typing

Cutting and Pasting Text 17

The Open Watcom Vi Editor User’s Guide

6Y

or

6yy

will copy 6 lines in your file.

Once you have yanked the lines, you may paste them in, as discussed above.

2.4.2 Characters

To delete characters while in command mode, you can press the DEL key or the ’x’ key. The current
character under the cursor will be deleted. You may type a repeat count before you type DEL or ’x’, and
that will delete a number of characters. For example, typing 3x when the cursor is on ’T’ in the line

Delete Test.

will leave you with

Delete t.

and the cursor will be on the ’t’ just before the period.

If you wish to delete the character before the cursor, you may press the letter ’X’ (capital x). This will
delete the character before the cursor, and move the cursor back one (i.e. the cursor stays on the character
that it was on before you pressed the ’X’). You may use a repeat count with this command. For example,
typing 3X when the cursor is on ’T’ in the line

Delete Test.

will leave you with

DeleTest.

and the cursor will still be on the ’T’.

Once you have deleted some characters, you might want to paste them back in. The keys involved are the
exact same keys for pasting lines. The difference is that when you paste characters, the characters are
pasted into the current line, whereas when you paste lines, the lines are pasted above or below the current
line.

If you press SHIFT_INS (shift insert), the character(s) you deleted will be pasted in after the current cursor
position on the current line. If you press CTRL_INS (control insert), the character(s) you deleted will be
pasted in before the current cursor position on the current line.

There are two other keys for pasting, the letters p and P (small p and capital p). Small p pastes the
character(s) you deleted after the current cursor position on the current line, just like SHIFT_INS. Capital
p (’P’) pastes the character(s) you deleted before the cursor position on the current line, just like
CTRL_INS.

Exercises

18 Cutting and Pasting Text

Basic Usage

Edit the file "test" created in the previous examples by typing:

vi test

You should see the lines:

This is a test line.
This is another test line.

The following examples are meant to be tried in sequence. Each example builds on the previous one.

1. Copy the first line by pressing the ’Y’ (capital ’y’) while the cursor is on the first line.

2. Now press the ’p’ key to paste the line after the current line. You should see the lines:

This is a test line.
This is a test line.
This is another test line.

3. Now, go to the second line and yank 2 lines, by pressing the number ’2’ followed by the letters
’yy’.

4. Cursor up to the top line, and press the capital p (’P’) key to paste the lines above the current
line. You will see:

This is a test line.
This is another test line.
This is a test line.
This is a test line.
This is another test line.

5. Now, move to the top line in the file and delete the first 3 lines by press the number ’3’ followed
by the letters ’dd’. You will now have the following lines:

This is a test line.
This is another test line.

6. Delete the first line by pressing CTRL_DEL or by typing ’dd’. You will be left with a single
line:

This is another test line.

7. Paste the line you deleted back in. If you press the letter ’p’ or SHIFT_INS, the line you deleted
will appear after the first line:

This is another test line.
This is a test line.

8. Paste the line above the current line by pressing capital p (’P’) or CTRL_INS. The line should
appear above the first line:

This is a test line.
This is another test line.
This is a test line.

Cutting and Pasting Text 19

The Open Watcom Vi Editor User’s Guide

9. Delete all 3 lines of text. Make sure your cursor is on the first line in the file, and type 3dd.
This will delete all three lines, and you will have an empty edit buffer.

10. Paste the lines back in by typing ’p’. The three lines will be pasted in:

This is a test line.
This is another test line.
This is a test line.

11. Go to the first line in the file, and to the first column (try pressing CTRL_PAGEUP). Then
press the ’x’ key. The first line should become:

his is a test line.

Your cursor should be on the letter ’h’ in column 1.

12. Type the letter ’p’. The ’T’ that you deleted will appear after the ’h’ in column 1:

hTis is a test line.

13. Type capital p (’P’). The ’T’ that you deleted will appear before the ’i’ and after the ’T’ you just
pasted in.

hTTis is a test line.

14. Cursor to the first column and type 6x. This will delete the first word and the space:

is a test line.

15. Move the cursor over to the ’t’ in ’test’. Press capital x (’X’), and you will see:

is atest line.

The cursor will remain on the ’t’.

16. Type 3X. You will now see

itest line.

and the cursor will still be on the ’t’.

You have now made a number of significant modifications to your file. To discard the file without saving
your changes, activate the individual file menu (at the top-left corner of the edit window) either by clicking
on the gadget character with the mouse or by pressing ALT_G. When the menu is up, try selecting the
Close item. You will get the message:

File modified - use :q! to force

The command ":q!" being referred to will be discussed later. The file can be exited without saving by using
the Close no save menu item. Activate the individual file menu again, and select this item. This will
discard your changes to the file, and since you are not editing any other files, you are returned to the
operating system command prompt.

20 Cutting and Pasting Text

Basic Usage

2.5 Using the Menus

Vi comes with a default set of menus that have the following items

File Edit Position Window Options Help

The first letter of each word is highlighted, indicating that that key is the hot key to activate the menu.

To use a hot key, hold down the ALT key and press the highlighted key. This will display the menu.

There is also a menu associated with each edit window. You can activate this window by pressing ALT_G
or by clicking on the gadget character in the upper left hand corner of the edit window.

You may activate a menu on the menu bar by pressing the appropriate hot key or by clicking on the word
with the mouse. When you press down with the left mouse button, the menu is activated. If you keep the
button down and move the mouse from right to left across the menu bar, the other menus will activate as
the mouse cursor sweeps across the word.

Once a menu is activated, a selection list appears. An item in the selection list may be chosen by doing one
of the following:

1. Cursoring up or down to the item and pressing the ENTER key.

2. Typing the hot key for the menu item.

3. Clicking on an item with the mouse.

4. Dragging the mouse and releasing the mouse button on an item.

Once a menu is activated, it may be cancelled by pressing the ESC key, or by clicking the mouse
somewhere outside the menu. If you press the cursor right key, the menu to the right of the menu currently
selected will activate. If you press the cursor left key, the menu to the left of the menu currently selected
will activate.

The following sections describe each of the menus, and how each menu item is used.

2.5.1 Edit Window Menu

This menu is selected by pressing ALT_G or by clicking on the gadget character in the upper left hand
corner of an edit window with the mouse. Once you have done one of these, the following menu appears:

Using the Menus 21

The Open Watcom Vi Editor User’s Guide

Figure 10. The Individual Edit Window menu

Maximize Causes the window to become as large as possible.

Minimize Causes the window to become as small as possible.

Open another view
Creates a separate window that is editing the same copy of the current file. This is useful if
you wish to be able to look at one part of a file while editing another part.

Save Saves the current file. You remain editing the current file.

Save and close Saves the current file and closes the window.

Close no save Closes the window, discarding the current file and any changes you may have made.

Close Closes the window. If the file has been modified, then the close will fail.

2.5.2 Window Menu

This menu is selected by pressing ALT_W or by clicking on word Window on the menu bar with the
mouse. Once you have done one of these, the following menu appears:

22 Using the Menus

Basic Usage

Figure 11. The Window menu

Tile windows Tile all edit windows in a grid pattern, so that each window is displayed without
overlapping any other.

Cascade windows
Causes all edit windows to cascade (overlap each other with the top border of each visible).

Reset windows Resets all edit buffer windows to be full size (the same as maximizing each window
individually).

2.5.3 Options Menu

This menu is selected by pressing ALT_O or by clicking on word Options on the menu bar with the mouse.
Once you have done one of these, the following menu appears:

Figure 12. The Options menu

Settings This brings up a list of all settings for Vi. For more information on settings, see the chapter
"Editor Settings" on page 147.

Using the Menus 23

The Open Watcom Vi Editor User’s Guide

2.5.4 File Menu

This menu is selected by pressing ALT_F or by clicking on the word File in the menu bar with the mouse.
Once you have done one of these, the following menu appears:

Figure 13. The File menu

Open new file Displays a list of all files and directories in the current directory, along with all drives that
are available. If you pick a file, you will edit that file. If you pick a directory, Vi will
display all the files in that directory. If you pick a drive, Vi will display all files in the
current directory on that drive.

Next file Flip to the next file in the list of files that you are editing.

Read file Displays a list of all files and directories in the current directory, along with all drives that
are available. If you pick a file, that file will be read into the current edit buffer, after the
current line. If you pick a directory, Vi will display all the files in that directory. If you
pick a drive, Vi will display all files in the current directory on that drive.

File list When selected, a list of all files that you are editing is displayed. Any modified files have
an asterisk (’*’) before their name. By picking a file from this list, you move to that file.

Save current file
Vi will save the current file you are editing. You will remain editing the current file.

Save current file and close
Vi will save the current file you are editing, and close the edit window. If you are editing
any other files, the next one in the list will become the current one. If you are not editing
any other files, then Vi will exit.

Enter command
Allows you to enter a command line command. The command line is discussed in the next
chapter "Intermediate Usage" on page 29.

System Starts an operating system command shell. You exit the command shell by typing ’exit’.

Exit Exits all edit sessions, as long as no files have been modified.

24 Using the Menus

Basic Usage

2.5.5 Edit Menu

This menu is selected by pressing ALT_E or by clicking on word Edit on the menu bar with the mouse.
Once you have done one of these, the following menu appears:

Figure 14. The Edit menu

Delete region Deletes the selected (highlighted) region.

Copy (yank) region
Makes a copy of the selected (highlighted) region.

Paste (put) Pastes the last deleted or copied text into the current edit buffer. The text is pasted after the
current position in the file.

Insert text Causes Vi to enter insert mode at the current cursor position.

Overstrike text Causes Vi to enter overstrike mode at the current cursor position.

Undo Undoes the last change that you made to the current edit buffer. If you keep selecting this
item, you will undo more and more of your changes. If you select this item enough times,
your file will be restored to the state when it was first opened or created.

Redo Redoes the last undo that you did in the current edit buffer. If you keep selecting this item,
you will redo more and more of your undos. If you select this item enough times, your file
will return to the state when you made your last change.

2.5.6 Position Menu

This menu is selected by pressing ALT_P or by clicking on word Position on the menu bar with the mouse.
Once you have done one of these, the following menu appears:

Using the Menus 25

The Open Watcom Vi Editor User’s Guide

Figure 15. The Position menu

Start of file Moves to the start of the current edit buffer.

End of file Moves to the end of the current edit buffer.

Line number Prompts for a specific line number. Once you enter the number, you are placed at that line.

Start of line Moves to the start of the current line.

End of line Moves to the end of the current line.

Search forwards
Prompts for some search text. Once you type some text and press ENTER, Vi searches
forwards through the current edit buffer for the text. If the text is found, it is highlighted
and the cursor is placed on the first character of the text.

Search backwards
Prompts for some search text. Once you type some text and press ENTER, Vi searches
backwards through the current edit buffer for the text. If the text is found, it is highlighted
and the cursor is placed on the first character of the text.

Last search Repeats the last search that you typed, in the same direction as the initial search request.

Reverse last search
Repeats the last search that you typed, but the searches occurs in the opposite direction of
the initial search request.

2.5.7 Help Menu

This menu is selected by pressing ALT_H or by clicking on word Help on the menu bar with the mouse.
Once you have done one of these, the following menu appears:

26 Using the Menus

Basic Usage

Figure 16. The Help menu

Command line Gives help on all command line commands.

Keystrokes Gives help on command mode and text insertion mode.

Regular expressions
Gives help on the search and replace abilities of Vi’s regular expressions.

Scripts Gives help on Vi’s script language.

Starting up Gives help on the various command line parameters for Vi.

Using the Menus 27

The Open Watcom Vi Editor User’s Guide

28 Using the Menus

3 Intermediate Usage

This chapter discusses a number of the commonly used features of the Open Watcom Vi Editor. The
knowledge of the information in the chapter "Basic Usage" is assumed.

3.1 The Command Line

The Open Watcom Vi Editor has a powerful set of commands that are entered in a special command
window. These commands are referred to as command line commands. You can activate the command
window in two ways:

1. Select the Enter command item under the File menu.

2. Press the colon (’:’) key when in command mode. Remember to press the ESC key to ensure
that you are in command mode before pressing ’:’.

Once you have done one of the previous things, the following window will appear on your screen:

Figure 17. The Command Entry window

You may enter a command in this window (for example: quit). If you wish to cancel the command that
you are typing, just press the ESC key and the window will disappear.

You may cursor back and forth in the command window, and use the backspace and delete keys to change
mistakes. Once you press ENTER, the command will be processed.

If you cursor up, you will go through a list of commands that you have entered at the command window
(newest to oldest). This is your command history. Cursoring down will take you through the history from
oldest to newest. This is very useful if you have typed a complicated command and did not get it quite
right or if you just wish to execute the command again.

The chapter "Editor Commands" on page 101 describes the command line commands in more detail.

The Command Line 29

The Open Watcom Vi Editor User’s Guide

3.1.1 Line Numbers

Some command line commands accept a line address or a line range as a parameter. For example, when
specifying the write command, you may specify

:write

or you may specify

:1,10 write

A line address is a number or a sum of numbers. As well, some special symbols may be used:

. (dot) Represents the current line number.

$ (dollar) Represents the last line number.

’a (front quote) Indicates the line with the mark ’a’ set; marks ’a’ through ’z’ may be used. Marks are
discussed later in this chapter.

A line range is two line addresses separated by a comma.

Some examples of line addresses and line ranges are:

.+5 - five lines past the current line.

’a - the line with mark a.

$ - the last line

1,5 - lines 1 to 5

.,$ - current line in file to end line of file

.-3,100 - the line 3 before the current to line 100

Line addresses are discussed in greater detail in the section "Line Addresses" on page 103.

If you just enter a line address on its own on the command line, then you will go directly to that line.

Exercises

1. Start up Vi, and try selecting the File menu, and then selecting the Enter command item. Notice
how the window pops up. Try typing and cursoring around. When you are done, press the ESC
key to cancel the command.

2. Make sure that you are in command mode, then press the colon (’:’) key. Once again, the
command window pops up. Try typing and cursoring around. When you are done, press the
ESC key to cancel the command.

3. Add 10 lines to your file. Then press the colon (’:’) key and enter the number 5. You will go to
line 5. Try entering different numbers and see what happens. If you enter a line number that
does not exist, you will see the message:

30 The Command Line

Intermediate Usage

No such line

4. Now that you have a number of commands entered, try cursoring up and down in the command
window. You will see all the commands that you have typed.

3.2 Getting a File for Editing

In the chapter "Basic Usage", you saw that you could edit a file by either specifying the name on the
command line when invoking Vi, or by selecting the File menu and picking the Edit new file option.

The general way to edit a new file is to use the command line command edit. To enter this command,
make sure that you are in command mode and press the colon (’:’) key. Once the command prompt is
displayed, then simply type edit (optionally followed by a file name or a list of files), and then press
ENTER.

If you do not specify a file, then a directory listing is displayed. From this listing, you may pick a file,
another directory, or another drive (the available drives are at the end of the listing). A directory is
indicated by the leading backslash (’\’). If a directory is chosen in this window, then the list of files in that
directory is displayed. This list also contains all the drives available (which are enclosed in square
brackets, e.g. [c:]). If you select a drive, the list of files in the current directory on that drive is displayed.

For files and directories, each line indicates the file name, the various attributes of the file ([d]irectory,
[a]rchive, [h]idden, [s]ystem, [r]eadable, [w]riteable, e[x]ecutable), the file size in bytes, the date and time
of the last file update. Some sample lines are:

test.c -a--rw- 25586 08/16/92 08:14
bar.c -a--r-- 639 02/27/92 13:25

\tmpdir d---rw- 0 08/16/92 19:05
[c:]

You may also specify one or more files after the edit command. If a file you specify is the same as one
already being edited, then control is simply transferred to the window with that file.

Exercises

1. Start up Vi without any files specified. Then try entering the command line command edit
without any parameters (remember to press the colon (’:’) key first). You will see a screen
similar to the following:

Getting a File for Editing 31

The Open Watcom Vi Editor User’s Guide

Figure 18. File Selection display

Try changing to other directories or drives with this list. When you are done, press the ESC key
to cancel the selection list.

2. Try entering the following command line command

:e afile

This will cause Vi to start editing a new file called "afile".

3. Try entering the command line command

:e bfile cfile

This will cause Vi to edit two new files, one named "bfile" and one named "cfile".

4. Enter the command line command

:e afile

This returns you to the first file ("afile") that you were already editing.

5. Press CTRL_C, and Vi will quit all the files that you have started editing.

3.3 Moving Between Files

There are a number of ways to move between files that you are editing. As you have seen in the previous
section, you can move to a file that you are already editing by using the command line command edit and
specifying the name of the file you wish to move to.

You may press the F1 key while in command mode or text insertion mode. This function key moves you
to the next file in the list of files that you are editing.

You may press the F2 key while in command mode or text insertion mode. This function key moves you
to the previous file in the list of files that you are editing.

32 Moving Between Files

Intermediate Usage

The previous two function keys that you may use also have command line command equivalents. The
command line command next moves you to the next file in the list of files that you are editing.

The command line command prev moves you to the previous file in the list of files that you are editing.

It is also possible to display a list of all files that you are currently editing. You may press the F7 key in
either command mode or text insertion mode, or enter the command line command files. Doing any one
of these things will cause a list of all files currently being edited to appear. An asterisk (’*’) will precede
files that have been modified. From this list, you may go to one of the files, quit one of the files, or save
one of the files then quit it.

Exercises

1. Start up Vi in the following way:

vi a b c

This will cause you to edit three new files. Now, press the F7 key. The following will appear:

Figure 19. Current File List

Select the file b. That file will become the current file being edited.

2. Type the command line command

:files

You will see the same result as you saw in the previous example. Press the ESC key to cancel
this display.

3. Press the F1 key several times. You will rotate through the three files that you are editing.

4. Press the F2 key several times. You will rotate through the three files that you are editing, but in
the opposite order than when you were pressing the F1 key.

5. Use the command line commands next and prev to move through the files. These commands
behave the same as pressing F1 and F2.

Moving Between Files 33

The Open Watcom Vi Editor User’s Guide

3.4 Moving Around in a File

You have already learned to use the cursor keys to move around through a file. When you are in command
mode, there are a number of keys that also cause movement through the file. Many of these keys may be
preceded with a repeat count. You enter the repeat count by typing a number (which will be echoed in a
special window on the screen).

Once you have entered the repeat count, you may cancel it by pressing the ESC key, or you may follow it
with a movement command. For example, if you type:

3<Down Arrow Key>

you will move down three lines instead of one.

The basic command mode movement commands are:

UP (up arrow key)
Cursor up through the text.

DOWN (down arrow key)
Cursor down through the text.

LEFT (left arrow key)
Cursor left through the text.

RIGHT (right arrow key)
Cursor right through the text.

HOME Move to the start of the current line.

END Move to the end of the current line.

PAGEUP Move up one page in the text.

PAGEDOWN Move down one page in the text.

CTRL_PAGEUP (Ctrl key + Page Up key)
Move to the first character on the first line in the file.

CTRL_PAGEDOWN (Ctrl key + Page Down key)
Move to the last character on the last line in the file.

There are additional commands that move you around the file which do not require your fingers to move
off the home row of your keyboard. For a touch typist, this is a great advantage. For a list of all of the
movement commands, see the section "Movement" on page 72 in the chapter "Modes". The following list
of movement commands move you around on the current line:

$ (dollar sign) Move to the end of the current line.

0 (zero) Move to the start of the current line.

b Move backwards to the previous word on the current line. If preceded with a repeat count,
you move back that many words.

34 Moving Around in a File

Intermediate Usage

h Move right through the text. If preceded with a repeat count, then you move right that
many characters.

l Move left through the text. If preceded with a repeat count, then you move left that many
characters.

w Move forward to the next word on the current line. If preceded with a repeat count, you
move forward that many words.

B Move backwards to the previous whitespace delimited word on the current line. If
preceded with a repeat count, you move back that many words.

W Move forward to the next whitespace delimited word on the current line. If preceded with
a repeat count, you move forward that many words.

The following list of movement commands move you to other lines:

CTRL_B Move back one page in the text. If preceded with a repeat count, you will move back that
many pages.

CTRL_D Move down one half page in the text. If preceded with a repeat count, then you move
forward that many lines. As well, any future CTRL_D or CTRL_U commands issued will
move that many lines, instead of a half page.

CTRL_F Move forward one page in the text. If preceded with a repeat count, you will move forward
that many pages.

CTRL_U Move up one half page in the text. If preceded with a repeat count, then you move
backwards that many lines. As well, any future CTRL_U or CTRL_D commands issued
will move that many lines, instead of a half page.

j Move down through the text. If preceded with a repeat count, then you move down that
many lines.

k Move up through the text. If preceded with a repeat count, then you move up that many
lines.

G Moves to the last line in the file. If preceded with a repeat count, then you move to that
line in the file.

H Move to the top of the current edit window. If preceded with a repeat count, you move that
many lines from the top of the edit window.

L Move to the bottom of the current edit window. If preceded with a repeat count, you move
that many lines from the bottom of the edit window.

M Move to the middle of the current edit window.

Exercises

1. Edit a new file, "atest". Once you have edited this file, add the line:

This is a test line.

Moving Around in a File 35

The Open Watcom Vi Editor User’s Guide

Once you have done this, copy this line by pressing ’Y’. Press ’p’ to paste in the copy. Press ’p’
28 more times, so that you create a file with 30 lines in it (all just like the first line).

2. So that we can more easily see the results, type the following command line command:

:%s/^/\# /

This is a substitution command. It will replace the start of each of your lines with the line
number. We will learn about the substitution command in the next chapter. When you are done,
you should see a screen similar to the following:

Figure 20. "ATEST" File Contents

3. Press the ’G’ key. You will move to the last line of the file.

4. Type the following:

15G

This will move you to line 15.

5. Try using CTRL_F and CTRL_B. Notice that they behave just like PAGEUP and
PAGEDOWN.

6. Try using ’w’ and ’b’ to move forward and backwards through words in the file.

7. Try using ’j’ and ’k’ to cursor up and down in the file.

8. Try using ’l’ and ’h’ to cursor left and right in the file.

9. Press the ’H’ key. The cursor will move to the top line in the edit window.

10. Press the ’L’ key. The cursor will move to the bottom line in the edit window.

11. Try typing some numbers before pressing the ’H’ and ’L’ keys. For example, typing

3H

will move your cursor to the 3rd line from the top of the edit window.

36 Moving Around in a File

Intermediate Usage

12. Press the ’M’ key. The cursor will move to the middle of edit window.

13. Press the ’$’ key. The cursor will move to the end of the current line.

14. Press the ’0’ (zero) key. The cursor will move to the start of the current line.

15. Press CTRL_D. You will move down half a page

16. Type the number ’2’ and then press CTRL_D. Notice that you only move down 2 lines.

17. Press CTRL_D. You will move down 2 lines.

18. Press CTRL_U. You will move up 2 lines.

19. Press ’ZZ’ to save the file. This file will be used in later exercises.

3.5 Saving and Exiting a File Revisited

We have already seen in the section "Saving and Exiting a File" on page 11 a number of ways to save and
exit your files. These methods included typing ’ZZ’ and using the menus.

There are a number of different command line commands that can be used for saving and/or quitting your
files.

1. quit ("!") or q ("!")

2. quitall

3. write ("!") or w ("!")

4. wq

5. xit

The quit command is used to exit a file without saving it. If the file has been modified, the command will
fail and the message:

File modified - use :q! to force

will be displayed. To quit a modified file, the exclamation point (’!’) is used:

:quit!

or

:q!

This discards the contents of the current edit buffer.

To quit every file that you are editing, the quitall command is used. If no files have been modified, then
you will immediately exit Vi. If files have been modified, you will be asked to verify whether or not you
really want to exit the editor.

Saving and Exiting a File Revisited 37

The Open Watcom Vi Editor User’s Guide

The write command is used to write the current file. If you specify a file name, the edit buffer will be
written to a file with that name.

:write new.txt

writes out a new file with the name new.txt.

If the file name you specify already exists, you will see the message:

File exists - use w! to force

To overwrite an existing file, use the exclamation point (’!’):

write! new.txt

or

w! new.txt

If you are specifying a new file name, you may also specify a line range to write to that new file. Some
examples are:

:1,100 write new.txt - write the first 100 lines to "new.txt".
:50 write a.txt - write line 50 to "a.txt"

The wq (write and quit) and the xit (exit) commands both do the same thing. They write out the current file
if it has been modified, and then exit the file. This is the exact same as typing ’ZZ’ in command mode.

Exercises

1. Edit a file as follows:

vi abc

Add the lines:

Line 1.
Line 2.
Line 3.

2. Enter the command line command quit (remember to press the colon (’:’) key to bring up the
command window). You will see the message:

File modified - use :q! to force

Press CTRL_G. The message window will indicate the following:

"abc" [modified] line 3 of 3 -- 100% --

As you can see, the file has been modified, so you are not allowed to quit.

3. Enter the command line command write. You will see the message:

"abc" 3 lines, 27 bytes

38 Saving and Exiting a File Revisited

Intermediate Usage

This indicates that the file has been written. Now press CTRL_G, and you will see:

"abc" line 3 of 3 -- 100% --

Notice that the file no longer is marked as modified once it is written.

4. Try the command line command quit again. This time, you will be able to quit the file, since
the file has been written, and is no longer marked as modified.

5. Re-edit the file "abc". Enter command:

:1,2 w def

This will write out a new file called "def". Now quit Vi.

6. Edit the file "def". Notice that it contains the lines

Line 1.
Line 2.

These are the first two lines of "abc", that you wrote to this file. Try entering the command:

:write abc

You will see the message

File exists - use w! to force

Since "abc" already exists, you are not allowed to overwrite it, unless you specify the
exclamation point, as follows:

:write! abc

7. Re-edit the file "abc". Delete the last line. Press CTRL_G, and you will see that the file is
modified. Now, enter the command line command (remembering to press ’:’):

:q!

You will exit the file, even though it has been modified.

8. Re-edit the file "abc", and delete the last line. Enter the command line command xit. This will
save the file and exit it, and because you are not editing any other files, you will exit Vi. You
could also use the command wq to do the same thing. Both of these commands do the same
thing as pressing ’ZZ’ while in command mode.

9. Start up Vi as follows:

vi abc def

This will edit two files, "abc" and "def". Enter the command line command quitall and you will
exit Vi.

10. Repeat the previous example, but add a line to one of the two files. Now enter the command
line command quitall. In this case, you will be prompted with

Saving and Exiting a File Revisited 39

The Open Watcom Vi Editor User’s Guide

Files are modified, really exit?

Reply with a ’y’, and you will exit Vi, even though files are modified.

3.6 Using the Mouse

You may use the mouse for many things. You may select text, relocate the cursor, resize a window, move a
window, use the scroll bar, or use the menus.

Text selection will be discussed in the next section. Using menus with the mouse was discussed in the
previous chapter, in the section "Using the Menus" on page 21.

By simply moving your mouse cursor to a location in an edit window and clicking the left mouse button,
the cursor will move to that position.

By moving your mouse to the top border of an edit window and pressing down the left mouse button, you
can move the window around by moving your mouse. When you release the button, the window will move
to the new position.

By moving your mouse to the bottom right hand corner of an edit window (to the vertical two-headed
arrow) and pressing down the left mouse button, you can resize the window by moving your mouse. When
you release the left button, the window will be redrawn in its new size.

Edit windows have scroll bars which indicate the position in the file and allow you to position to different
portions of the file. The scroll thumb (the solid block on the scroll bar) indicates the relative location of
your current cursor position in the file. If the scroll thumb is at the top, then you are on the top line of the
file. If it is at the bottom, then you at the end of the file.

By left-clicking on the single arrows at the top or the bottom of the scroll bar, the edit window will scroll
up or down a single line. If you hold the left mouse button down, then the window will scroll continuously.

If you click the left mouse button in the scrollbar region between the thumb and the top arrow, you will
move up a page in the file you are editing. If you click the left mouse button below the scroll thumb, you
will move down a page in the file you are editing. If you hold the left mouse button down, then you will
page continuously.

By pressing and holding down the left mouse button on the scroll thumb, you can set the edit position
yourself. As you drag the scroll thumb up and down, the edit window will be redrawn to show you the
corresponding portion of your file.

3.7 Selecting Text

Vi has the ability to highlight (select) text, either on an individual line or a group of lines, and then do
various actions on the highlighted (selected) text.

You may select text with either the keyboard or the mouse. The keyboard interface is as follows:

SHIFT_UP (shifted cursor up key)
Starts or continues selection and moves up to the previous line. The new line is selected.

40 Selecting Text

Intermediate Usage

SHIFT_DOWN (shifted cursor down key)
Starts or continues selection and moves down to the next line. The new line is selected.

SHIFT_LEFT (shifted cursor left key)
Starts or continues selection and moves left to the next character. The new character is
selected.

SHIFT_RIGHT (shifted cursor right key)
Starts or continues selection and moves right to the previous character. The new character
is selected.

CTRL_R Starts text selection, if no text is selected. The current character is highlighted. If a region
is already selected, then this cancels the selected region.

ESC Cancels the current selection.

Once text selection has been started, then any movement command may be used to expand or shrink the
selected region. Multiple line selections always select complete lines. A portion of a single line can be
selected (i.e. a word) by growing the selection left or right. A portion of a line is called a column region
and a multiple line selection is called a line region.

You can select text with the mouse by holding down the right or left mouse button, and moving the mouse
up and down or left and right. When using the right button, a selection menu will appear after the mouse
button is released, from which you choose what you wish to do with the selected text.

If you highlight a region by holding down the left button and moving the mouse, then releasing the button
has no effect (the region simply remains highlighted). This region may then be operated on from the
command line, using different command mode commands, or by right-clicking the mouse in the selected
region.

If you click the right mouse button (right-click) while the mouse cursor is in a highlighted (selected) set of
lines, then a selection menu for the lines appears. If you right-click in a selected group of characters on a
single line (a column region) then a selection menu for that column region appears. The two menus are
different. You may also bring up these menus by pressing the underscore (’_’) key.

If you click the right mouse button (right-click) in an unselected region, the current word will be
highlighted and the selection menu will appear. This can also be accomplished by pressing the underscore
(’_’) key.

If you double click the left mouse button, the current word will be highlighted and the selection menu will
appear. However, the word selected here is slightly different than the word selected by clicking the right
mouse button. This word is defined to include the characters ’.’, ’:’ and ’\’, so that double clicking the left
mouse button on a file name will select the entire path.

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34.
Click the left mouse button when the mouse cursor is on the top line, and drag your mouse down
until the first 10 lines are selected. If you do not have a mouse, then press the shift key and
cursor down until the first 10 lines are selected.

Selecting Text 41

The Open Watcom Vi Editor User’s Guide

Now, click the right mouse button somewhere inside the selected region. If you do not have a
mouse, press the underscore (’_’) key. A menu will appear. The selected region and the menu
will appear as follows:

Figure 21. Selected Lines menu

From this menu, you can either delete or yank (copy) the lines. You may cancel the menu by
pressing ESC (the region remains highlighted). You can cancel the selected region by pressing
ESC again.

If you click your left mouse button somewhere outside the selected region, both the menu and
the selected region will be cancelled.

2. Make sure the selected region is cancelled (press ESC until it is gone). Now press the right
mouse button on the word "This" in the first line of the file. If you do not have a mouse, then
position the cursor somewhere in the word "This" and press the underscore (’_’) key. You will
see the following menu appear:

Figure 22. Selected Columns menu

You may do a number of things from the popup menu:

42 Selecting Text

Intermediate Usage

Open Open (edit) the file indicated by the highlighted (selected) text. The selected text
is treated like a file name, and an edit session for that file is started. The file will
be given the name of the highlighted text.

Change Change the selected word.

Delete Delete the selected word.

Yank Yank (copy) the selected word.

Fgrep Search the current directory for any files containing the selected word. See the
command line command fgrep in the chapter "Editor Commands" on page 101
for more information.

Tag Search your tags file for the selected word. See the command line command tag
in the chapter "Editor Commands" on page 101 for more information.

3. Make sure the selected region is cancelled. Then add the following line to the start of the file
(use the command mode key capital o (’O’) to open a line above the first line):

#include <c:\h\test.h>

Now, try right mouse clicking on parts of the file name. Notice how only individual pieces of
the file name are selected. Now, try double clicking the left mouse button somewhere on the file
name. The menu from the previous example will appear, selecting the entire file name as shown
below:

Figure 23. Double Click Selection

4. Try using CTRL_R to start a selection and then move around in your file. Use the ESC key to
cancel your selection.

5. Try using the shifted cursor keys to select lines. Use the ESC key to cancel your selection.

Selecting Text 43

The Open Watcom Vi Editor User’s Guide

3.8 Joining Text

Vi has the ability to join two lines together. If you press the letter ’J’ (capital ’j’) while in command mode,
then the next line will join to the end of the current line. All white space except for a single space will be
removed. For example, typing ’J’ while on the first line in these two lines:

This is a line.

This is another line.

produces the line:

This is a line.
This is another line.

If you precede ’J’ with a repeat count, then that many lines after the current line will be joined to the
current line. For example, typing

4J

while on the first line of:

Line 1.

Line 2.
Line 3.

Line 4.
Line 5.
Line 6.

will produce the result:

Line 1. Line 2. Line 3. Line 4. Line 5.

Line 6.

There is also a command line command called join that is used to join lines of text together. This
command is used as follows:

<line_range> join

The lines in the specified range <line_range> are joined together. If a single line number is specified, then
the line after that line is joined to the specified line. If no line number is specified, then the line after the
current line is joined to the current line. For example, the command:

:1,5 join

will cause the lines 1 through 5 of the file to be joined into a single line.

3.9 Using Marks

Text marks are used to memorize a position in the edit buffer that you may want to return to later. Each file
may have up to 26 marks in it (identified via the letters ’a’ through ’z’). Marks may also be set with the
command line command mark.

44 Using Marks

Intermediate Usage

A mark is useful in that you do not have to remember a specific line number, you just need to remember the
letter that you picked for the mark name. You can then return to the line or even the exact position on the
line easily.

You may set a mark by pressing the letter ’m’ (in command mode) and pressing one of the letters from ’a’
to ’z’. For example, if you type

ma

you will set the mark ’a’ at the current position in the file, and you will see the following message appear:

Mark ’a’ set

You can set a mark with the command line command mark. The syntax of the command is

<line> mark <letter>

You specify which line the mark is to be set on with <line>. If no line is specified, the current line is
assumed. You specify the mark id (’a’-’z’) with <letter>.

For example, the following command line commands may be used to set marks:

mark a - sets the mark ’a’ on the current line.
5 mark b - sets the mark ’b’ on line 5.

Once you have set a mark, you may return to the mark by pressing either the front quote (apostrophy) (’) or
the back quote (‘), followed by the letter of the mark you wish to return to. Using the back quote causes
you to return to the row and column position of the mark. Using the front quote (apostrophy) causes you to
return to the line with the mark (the cursor moves to the first column on the line).

For example, after setting the mark ’a’, you can return to it by typing:

’a - return to the line with the mark ’a’.
‘a - return to the exact position with the mark ’a’.

Marks are useful when you need to go searching a file for something, but you want to be able to return to a
specific position. They are also useful when deleting and copying text (see the section "Deleting, Copying,
and Pasting Text" on page 48 later on in this chapter).

For more information on marks, see the section "Marks" on page 79 in the chapter "Modes".

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34.
Cursor to the letter ’i’ in the word ’is’ on the first line, and type

ma

This will set the mark ’a’ at that position.

2. Page down twice. Now, type

‘a

You will be moved to the ’i’ in the word ’is’ on the first line.

Using Marks 45

The Open Watcom Vi Editor User’s Guide

3. Page down twice. Now, type

’a

You will be moved to the first column of the first line.

4. Go to the bottom of the file. Now, enter the command line command mark as follows
(remember to press colon (’:’) to bring up the command window)

:mark z

5. Go to the top of the file (using CTRL_PAGEUP), and enter the command line command

:’z

This will return you to the last line of the file

6. Now, type the following command line command

:’a

This will take you back to line 1, where you set the mark ’a’.

3.10 Searching for Text

You can search a file for a string in either a forwards or backwards direction. By using the command mode
key ’/’, you are prompted for a string to search for in the forwards direction. By using the command mode
key ’?’, you are prompted for a string to search for in the backwards direction.

When the string is found, your cursor is moved to the first character of the string, and the string is
highlighted.

If the string (for example, "abc") is not found, you will see the message:

String ’abc’ not found

When you press ’/’ (forward search), the following window will appear:

46 Searching for Text

Intermediate Usage

Figure 24. Search String Entry Window

This window behaves just like the command window: you may cursor back and forth in the command
window, and use the backspace and delete keys to change mistakes. Once you press ENTER, the
command will be processed. If you press ESC, the search in cancelled.

If you press ’?’ (backwards search), you will be able to enter a backwards search string.

If you press ’n’, Vi will take you to the next occurrence of the last search string, searching in the same
direction as the last search command.

If you press ’N’, Vi will take you to the next occurrence of the last search string, only it will search in the
opposite direction as the last search command.

You can use complex search strings known as regular expressions. Certain characters have special
meaning in a regular expression, they are:

^ $. [() | ? + * \ @

If you wish to search for any of these special characters, you must place a backslash (’\’) before the
character. For example, to search for:

ab.c$

you have to enter:

ab\.c\$

For information on regular expressions, see "Regular Expressions" on page 167.

The section "Searching" on page 82 in the chapter "Modes" describes the searching in more detail.

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34.
Press the forward slash (’/’) key, and enter the string "this". The word "This" on the first line
will be highlighted, and your cursor will be on the ’T’ (notice that the search is case insensitive).

2. Now press, the ’n’ key. You will move to the word "This" on the second line.

Searching for Text 47

The Open Watcom Vi Editor User’s Guide

3. Press ’n’ two more times. You will now be on the word "This" on the fourth line.

4. Press ’N’. You will move to the word "This" on the third line.

5. Press the question mark (’?’) key, and enter the string "1". You will move to the ’1’ on the first
line.

6. Press ’n’. The search will wrap around to the end of the file, and search backwards until the ’1’
on line 21 is encountered.

7. Press ’n’. You will move to the ’1’ on line 19.

8. Press ’N’. You will move back to the ’1’ on line 21.

3.11 Deleting, Copying, and Pasting Text

There are two useful commands in Vi for deleting and copying text. In command mode, you press the ’d’
key to start the delete sub-mode. You press the ’y’ key to start the yank (copy) sub-mode. Each of these
sub-modes is indicated on the mode indicator on the menu bar:

Mode: delete

or

Mode: yank

Once you have entered the sub-mode, you can then specify one of the following operations:

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

2. A search command:

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

Some examples are:

48 Deleting, Copying, and Pasting Text

Intermediate Usage

dw - delete a word
yr - yank (copy) highlighted region
d/text - delete up to the word "text"

These commands can be preceded by an optional repeat count. This repeat count specifies the number of
times that the command will be executed. If the repeat count is not specified, the command is executed
once. For example:

3dw - delete 3 words
2yy - copy 2 lines

A copy buffer can be specified between the repeat count and the command. The buffer is identified by
preceding it with double quotes ("). For example:

3"ayy - copy 3 lines into buffer ’a’
"zdd - delete 3 lines into buffer ’z’

The optional copy buffer is a place where deleted or yanked text resides. If you do not specify a buffer,
then the active copy buffer is assumed. There are 9 numbered buffers (1-9) that may be selected as the
active copy buffer (buffer 1 is the default active copy buffer). When text enters the active copy buffer, the
old contents of the active copy buffer spills into the next copy buffer. The contents of each copy buffer
spills into the next, with the end copy buffer (9) losing its contents.

The active copy buffer may be selected by pressing CTRL_F1 through CTRL_F9 in command mode.
When you do this, a message appears showing you which buffer has been selected, how many
lines/characters are in the buffer, and the first line of the buffer.

There are also 26 named buffers, ’a’ through ’z’. The contents of these buffers is constant over the life of
your editing session. They retain their contents until you update them.

For more information on copy buffer, see the section "Copy Buffers" on page 81 in the chapter "Modes".

There is also a delete command line command and a yank command line command for deleting and
yanking text. These commands only operate on line ranges. Their syntax is:

<range> delete <"?>
<range> yank <"?>

The <"?> indicates a copy buffer, and <range> indicates a line range. If no line range is specified, then
the current line is assumed. Some examples are:

:1,5 delete - delete lines 1 to 5
:1,$ yank "a - copy all lines into buffer ’a’
:d - deletes the current line

In the section "Cutting and Pasting Text" on page 16 in the previous chapter, you learned about the small
’p’ and the capital ’p’ (’P’) command mode commands to put (paste) copied or deleted text into the edit
buffer. Remember, small ’p’ is used to paste after the current cursor position, and capital ’p’ (’P’) is use to
paste before the current cursor position.

If what you deleted or yanked was a sequence of characters on a single line, then these characters are
inserted into the current line when you paste. If you deleted or yanked whole lines, then those lines are
inserted around the current line when you paste.

Deleting, Copying, and Pasting Text 49

The Open Watcom Vi Editor User’s Guide

The put (paste) command line commands accept a copy buffer as the buffer to paste out of. The default is
the active copy buffer, but any buffer can be specified. Once again, <"?> indicates a copy buffer:

<"?>p
<"?>P

As well, there is a command line command for pasting text: the put command. The syntax is:

<line> put <!> <"?>

If the line <line> is specified, then the buffer is pasted around the specified line instead of the current line.

If the exclamation mark is specified, then contents of the copy buffer are pasted before the specified line.
Otherwise, the contents of the copy buffer are pasted after the specified line.

The <"?> is an optional copy buffer. If it is not specified, then the active copy buffer is used. The double
quotes (") must be specified.

Deleting text is discussed in more detail in the section "Deleting Text" on page 86 in the chapter "Modes".

Copying text is discussed in more detail in the section "Copying Text" on page 88 in the chapter "Modes".

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34.
Press ’dd’. This will delete the first line of the file.

2. Press ’dw’. This will delete the first word of the line.

3. Press ’d$’. This will delete to the end of the line.

4. Press ’dj’. This will delete the current line and the next line.

5. Press ’2dw’. This will delete the first two words of the current line:

04 This is a test line.

leaving you with

is a test line.

6. Press ’2w’. This will move you to the letter ’t’ in "test". Press capital p (’P’). The 2 words you
deleted will be inserted before the ’t’:

is a 04 This test line.

7. Type the following command mode keys:

"add

You will see the message:

1 lines deleted into buffer a

8. Press ’p’. Note that you inserted the two words you deleted before into the current line.

50 Deleting, Copying, and Pasting Text

Intermediate Usage

9. Type:

"ap

This will insert the contents of buffer ’a’ (line line you deleted) after the current line.

10. Type the following:

2"byy

This will copy the next two lines into buffer "b". You will see the message

2 lines yanked into buffer b

11. Type:

"bP

This will insert the two lines you yanked before the current line.

12. Type

3"zyw

This will yank three words into copy buffer ’z’.

13. Make sure you are in command mode and enter the command line command:

:q!

to exit without saving your changes.

3.12 Altering Text

You could change text by deleting the text and then entering insert mode. However, Vi provides a special
method for doing both of these things at once. By pressing the ’c’ key in command mode, you enter the
change sub-mode. You will see the mode line indicate:

Mode: change

If you are changing characters on a line, the characters will be highlighted. If you press the ESC key, the
change will be cancelled. Once you type a character, the characters will be deleted and you will enter text
insertion mode.

If you are changing whole lines, the lines are deleted and you enter text insertion mode.

Once you have entered the change sub-mode, you can then specify one of the following operations:

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

Altering Text 51

The Open Watcom Vi Editor User’s Guide

2. A search command:

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

Some examples are:

cw - change current word
c$ - change to the end of the current line

You can also specify an optional repeat count before the change command. This will cause the change
command to be repeated that many times. For example:

2cw - change two words
3cc - change three lines

The changing of text is discussed in greater detail in the section "Changing Text" on page 89 of the chapter
"Modes".

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34.
Type ’cw’. This first word "01" will be highlighted. Press ESC. The word will return to
normal, and nothing will happen.

2. Type ’cw’ again. This time, type the following:

This is new text.

and press the ESC key to exit text insertion mode. Your original line:

01 This is a test line.

will now be:

This is new text.
This is a test line.

3. Type ’2cc’. The first two lines will be deleted, and you will enter text insertion mode. Type the
following:

This is more new text.

52 Altering Text

Intermediate Usage

4. Return to command mode by pressing the ESC key. Cursor to the letter ’i’ in the word "is" and
type ’c$’. This will highlight from the letter ’i’ to the end of line. Enter the text:

This is more new text.

5. Make sure you are in command mode and enter the command line command:

:q!

to exit without saving your changes.

3.13 Undo and Redo

Vi has an unlimited undo capacity (constrained only by memory and disk space). Every change that you
make to a file is remembered, and can be undone in the reverse order that you made the changes.

A change can be undone by pressing the letter ’u’ while in command mode. You can undo further changes
by pressing ’u’ repeatedly.

If you undo a change you wanted to keep, you can redo it by pressing capital ’u’ (’U’). Each time you
press ’U’, an undo is re-done. Once you undo changes, you cannot redo them after you modify the file.

The command line command for undoing changes has the following syntax:

undo

If you specify an exclamation point (’!’) after the undo keyword, then you will do a redo instead of an
undo:

undo!

See the section "Undoing Changes" on page 79 in the chapter "Modes" for more information.

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34.
Delete the first line, delete the second line, then delete the third line (one at a time). Then, press
’u’ in command mode. The third line will come back.

2. Press ’u’ again. The second line will come back.

3. Enter the command line command:

:undo

The first line will come back.

4. Enter the command line command

:undo

again. This undo command cannot do anything, since you have already undo all the changes to
your file. You will see the message

Undo and Redo 53

The Open Watcom Vi Editor User’s Guide

No more undos

appear.

5. Press the capital u (’U’) key in command mode. The first line will now disappear, as you are
undoing your undo.

6. Press ’U’ again. The second line will disappear.

7. Enter the command line command (remember to press ’:’):

undo!

The third line will disappear.

8. Enter the command line command:

undo!

You will see the message:

No more undos

3.14 Repeating Edit Operations

When you enter a command mode command to modify your file you can re-execute the sequence by
pressing the dot (’.’) key.

For example, suppose you entered the command mode command:

3dd

to delete 3 lines. If you press ’.’ after this, you will delete another 3 lines.

There are two useful extension to this as well. Vi has concepts known as memorize mode and alternate
memorize mode. You enter memorize mode by pressing the letter ’m’ (also used to set a mark) followed by
a dot (’.’). You will then see the message

Memorize Mode started

From this point forward, every key that you type is memorized. When you are done memorizing, you can
then press the dot (’.’) key while in command mode, and this ends memorize mode. You will see the
message:

Memorize Mode ended

Once you have memorized a key sequence, you can re-execute it by pressing dot (’.’). This will cause Vi to
behave as if all the keys you memorized were being typed by you again.

The memorized sequence will be lost the next time you change the text other than with ’.’. To memorize a
sequence that will always be remembered, you can use alternate memorize mode. This mode is used the
same way as memorize mode, only you use an equals sign (’=’) instead of a dot (’.’).

54 Repeating Edit Operations

Intermediate Usage

Exercises

1. Edit the file "atest" from the Exercises section of "Moving Around in a File" on page 34. Delete
the first two lines by typing the command mode command:

2dd

Now press the dot (’.’) key. Two more lines will be deleted.

2. Move to the first column of the first line. Type the command mode command:

m.

This will start you in memorize mode. Now, type:

dwjdwj.

This deletes the word on the first line, goes down to the next line, deletes another word on the
next line, and goes down one more line. The final dot (’.’) terminates memorize mode.

3. Now, press dot (’.’). This will delete the first word of the next two lines.

4. Make sure you are in command mode and enter the command line command:

:q!

to exit without saving your changes.

Repeating Edit Operations 55

The Open Watcom Vi Editor User’s Guide

56 Repeating Edit Operations

4 Advanced Usage

This chapter discusses a number of the less commonly used features of the Open Watcom Vi Editor. The
knowledge of the information in the chapter "Basic Usage" and "Intermediate Usage" is assumed.

4.1 The Substitute Command

The command line command substitute is a powerful mechanism for changing text in your file. For every
match of a string, the string can be replaced with something else.

You can use complex search strings known as regular expressions. Certain characters have special
meaning in a regular expression, they are:

^ $. [() | ? + * \ @

If you wish to search for any of these special characters, you must place a backslash (’\’) before the
character. For example, to search for:

ab.c$

you have to enter:

ab\.c\$

For information on regular expressions, see "Regular Expressions" on page 167.

The syntax of the substitute command is:

<line_range> substitute /<string>/<subs>/"g""i"

The line range <line_range> specifies the lines that the substitute command is to work on. If no line range
is specified, then the current line is assumed.

The first occurrence of the search string <string> on each line is replaced with the string <subs>.

If the letter ’g’ is specified at the end, then every occurrence of the search string <string> on each line is
replaced with the string <subs>.

If the letter ’i’ is specified at the end, then the substitution is interactive. You will be prompted before each
replacement to verify that you want it to be done.

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34 in
the previous chapter "Intermediate Usage". Enter the command line command (remember to
press colon (’:’) to bring up the command window):

The Substitute Command 57

The Open Watcom Vi Editor User’s Guide

:1,$s/This/This This/

All lines will have the word "This" replaced with "This This".

2. Enter the command line command:

:1,$s/This/Change/

Notice that only the first occurrence of the word "This" was replaced.

3. Type the letter ’u’ in command mode to undo the change you just made. Then enter the
command line command:

:1,$s/This/Change/g

Now all of the occurrences of "This" were replaced.

4. Make sure you are in command mode and enter the command line command:

:q!

to exit without saving your changes.

4.2 The Global Command

The command line command global is a method of executing a command on every line that has (or does
not have) a specific string.

You can use complex search strings known as regular expressions. Certain characters have special
meaning in a regular expression, they are:

^ $. [() | ? + * \ @

If you wish to search for any of these special characters, you must place a backslash (’\’) before the
character. For example, to search for:

ab.c$

you have to enter:

ab\.c\$

For information on regular expressions, see "Regular Expressions" on page 167.

The syntax of the global command is:

<line_range> global "!" /<string>/ <cmd>

The line range <line_range> specifies the lines that the global command is to work on. If no line range is
specified, then all the lines in the file is assumed.

The command line command <cmd> will be executed on every line that has the string <string>.

58 The Global Command

Advanced Usage

If the exclamation mark (’!’) is used, then the command line command <cmd> will be executed on every
line that does not have the string <string>.

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34 in
the previous chapter "Intermediate Usage". Enter the command line command (remember to
press colon (’:’) to bring up the command window):

:g/This/delete

Each line that contains the word "This" on it will have the delete command executed on it.

2. Press the ’u’ key to undo the previous global command, then enter the command line command:

:g/1/delete

All lines with the character ’1’ in them will be deleted.

3. Press the ’u’ key to undo the previous global command, then enter the command line command:

:g!/1/delete

All lines without the character ’1’ in them will be deleted.

4. Make sure you are in command mode and enter the command line command:

:q!

to exit without saving your changes.

4.3 Searching Files For Text

There are command line commands provided to search through all files for some text. These commands
differ from the search commands outlined in the section "Searching for Text" on page 46 in the previous
chapter in that they search files in directories rather than files that are being edited. These file search
commands are fgrep and egrep.

The fgrep command is a fast search for a specified string. The syntax of this command is:

fgrep "-c" "-i" <string> <files>.

The file list <files> is searched for the string <string>. The file list may contain wild cards.

If you wish to have spaces in your string, then you can enclose the string in either double quotes (’"’) or
forward slashes (’/’).

If -c is specified, then the search is made case sensitive. If -i is specified, then the search is made case
insensitive. If neither of these options is specified, then case sensitivity is determined by the current
caseignore setting (for more information about caseignore, see the section "Boolean Settings" on page 148
in the chapter "Editor Settings").

Searching Files For Text 59

The Open Watcom Vi Editor User’s Guide

The egrep command searches for regular expressions, and is slower than the fgrep command. The syntax
of this command is:

egrep <regexp> <files>.

The file list <files> is searched for the regular expression <regexp>. The file list may contain wild cards.

If you wish to have spaces in your regular expression, then you can enclose the string in either double
quotes (’"’) or forward slashes (’/’).

For example, entering the following command:

:fgrep window *.c

searches all files in the current directory ending in the extension .c for the string window. While searching
for the item, Open Watcom Vi Editor displays a window that shows all files being searched.

When all matches are found, a selection window is presented with all the files that contained the search
string.

The selection window appears as follows:

Figure 25. FGrep result display

4.4 Mapping Keys

A powerful feature in Open Watcom Vi Editor is the ability to change the meaning of any key in command
mode or text insertion mode. Using this feature, you can configure the editor any way which suits your
needs.

The command line commands map and mapbase are used to remap the definition of a key. The syntax of
these commands is as follows:

map "!" <key> <string>
mapbase <key> <string>

Both commands remap the specified key <key> to execute the characters in <string>. Whenever the
specified key is pressed while in command mode, it is equivalent to typing the characters in <string>.

60 Mapping Keys

Advanced Usage

In the map command, specifying the exclamation point (’!’) causes the map to be for text insertion mode,
rather than command mode.

It is possible for <string> to contain keys that are mapped themselves. If you want to do a key mapping
that is in terms of the base definitions of the keys, then you should use the mapbase command.

To remove the mapping of a key, the command line command unmap is used. The syntax of this
command is:

unmap <key>

If you need to specify a special key (e.g. ENTER, F1, etc) for <key> you specify a symbolic name for it.
There are a number of pre-defined key symbols that are recognized when specifying which key is being
mapped or unmapped. These are described in the Appendix "Symbolic Keystrokes" on page 221.

If you need to use one or more special keys (e.g. ENTER, F1, etc) in <string> then you may enter:

\<"key"> Any special key may be inserted for "key". The angle brackets are required. There are a
number of pre-defined keys symbols that are recognized. These are described in the
Appendix "Symbolic Keystrokes" on page 221.

\e Short form for the escape key (rather than \<ESC>).

\n Short form for the enter key (rather than \<ENTER>).

\h If a command line command is used in the sequence, and it follows the colon (’:’), the
command is not added to the history. For example:

:\hdate\n

will display the current date and time, but the command will not enter the command
history.

\x If a command line command is used in the sequence, then this stops the command window
from opening. This prevents the "flashing" of the command window as it is opened then
closed. For example:

\x:date\n

will display the current date and time, but the command window will not be displayed.

Exercises

1. Edit the file "atest" created in the Exercises section of "Moving Around in a File" on page 34 in
the previous chapter "Intermediate Usage". Enter the following command line command:

:map F5 dd

Now, whenever you press F5, a line will be deleted. Try pressing F5 a few times to verify this.

2. Enter the command line command

:unmap F5

Mapping Keys 61

The Open Watcom Vi Editor User’s Guide

and try pressing F5 again. It will no longer delete lines.

3. Enter the command line command

:map F6 :date\n

Press F6. The time and date will be displayed in the message window. You will notice that the
command window flashes as you push F6.

4. Enter the command line command

:map F6 \x:date\n

Press F6. The time and date will be displayed in the message window. You will notice that the
command window no longer flashes.

5. Bring up the command window (press ’:’) and press cursor up. You will notice that the date
commands are in your history. Now, enter the command line command:

:map F6 \x:\hdate\n

Press F6 a few times. Bring up the command window again and cursor up. You will see that the
date commands did not get added to the history.

6. Enter the command line command:

:map! F6 \edwi

Whenever you press F6 in text insertion mode, you will exit insert mode (the \e is like pressing
the ESC key), delete the current word, and then re-enter insert mode. Try entering text insertion
mode and pressing F6.

7. Exit text insertion mode and press F6. You will notice that the date is still displayed, since the
text insertion mode and command mode mappings for F6 are different.

8. Make sure you are in command mode and enter the command line command:

:q!

to exit without saving your changes.

62 Mapping Keys

The Open Watcom Vi Editor Reference

The Open Watcom Vi Editor Reference

64

5 The Open Watcom Vi Editor Environment

Along with the Open Watcom Vi Editor executable, there are a number of files that are needed:

ed.cfg The configuration script (contains editor setup)

keys.dat Symbolic key names used by the command line commands map, mapbase, unmap,
execute and keyadd.

error.dat Symbolic names for errors that can occur. These are used for testing return codes in editor
scripts.

The editor searches for its special files as follows:

1. The editor executable itself (if the files are bound).

2. The current directory.

3. Directories in the EDPATH environment variable.

4. Directories in the PATH environment variable.

The environment variable EDPATH is used so that the support files for Vi do not have to be in your
PATH. Only Vi itself has to be in your PATH.

5.1 Using Edbind

Edbind is a utility designed to place any specified files onto the end of the editor executable. The file
edbind.dat contains the list of all files to bind. This would normally include ed.cfg and all the .dat
files. This eliminates the need to have these files in your path, and allows Vi to locate the files faster.

Note that your configuration file must be the FIRST FILE in the edbind.dat file. The first file is
designated to be the file containing the configuration script, the name is irrelevant.

The contents of edbind.dat might be as follows:

Using Edbind 65

The Open Watcom Vi Editor Reference

ed._vi
rdme._vi
wrme._vi
rcs._vi
qall._vi
proc._vi
err._vi
chkout._vi
forceout._vi
unlock._vi
mcsel._vi
mlsel._vi
lnum._vi
keys.dat
error.dat

In this example, edbind.dat contains the special files ed.cfg, all the .dat files, and a number of
compiled editor scripts (the files with the ._vi extension).

Usage is as follows:

edbind <editor exe name> (-s)

Options -s: strip info from executable

The files in edbind.dat files are searched for in the following order:

1. The current directory.

2. The directories in the environment variable EDPATH.

3. The directories in the environment variable PATH

5.2 Invoking the Open Watcom Vi Editor

Vi is invoked from the command prompt with the following possible set of parameters:

vi [-?-dinqrvz] +<n> -k "keys" [-s <scr> [-p "parm"]] [-t <tag>]

[-c <cfg>] files

The files specified may contain regular expressions.

The parameters cause the following:

-? Displays the possible options, and what they do.

-- Starts Vi in stdio mode. In this mode, Vi reads from standard in to get the file to edit.
When the file is written, the lines are written to standard out. This is useful for including
Vi in a pipe.

-d Use default configuration. Vi will not invoke ed.cfg when it starts up.

66 Invoking the Open Watcom Vi Editor

The Open Watcom Vi Editor Environment

-i Ignore lost files. Vi will not let you start if there are files to be recovered. This option will
cause Vi to get rid of its checkpoint file, so that it will no longer complain about files that
have not been recovered.

-n This option will cause Vi to read a file as it needs the data, instead of reading the file all at
once. It is useful if you wish to look at the first lines of a huge file. This option overrides
any setting of readentirefile in your configuration.

-q Causes Vi to run in quiet mode (no screen usage). This is useful for using Vi as a batch
script processor.

-r Recover lost files, if there are any. If this option is specified, files specified on the
command line are ignored.

-v Causes file edited to be a "view only" file.

-z Causes Vi not to terminate a file read when finding a ctrl-z in a file. This option is the
same as the ignorectrlz setting.

+<n> Cause Vi set the edit buffer to line <n> in the file edited.

-k "keys" Execute the string keys as if they were typed from the keyboard. These keystrokes are
processed once Vi is initialized and all files have been read in.

-s <scr> Runs the startup script <scr> once Vi is initialized and all files have been read in. Up to 10
startup scripts may be specified.

-p "parms" Specify the parameters parms for each startup script. Multiple parms may be specified as
long as they are in double quotes. The parameters are associated with the most recently
specified startup script.

-t <tag> Edits the file containing the tag <tag>.

-c <cfg> Runs the configuration script <cfg>, instead of the default ed.cfg.

5.3 Lost File Recovery

Vi has an autosave feature that periodically makes a backup copy of the current edit buffer. This backup is
kept in the directory specified by the tmpdir setting.

The autosaveinterval setting is used to specify the number of seconds between backups of the current edit
buffer. If autosaveinterval is set to 0, then the autosave feature is disabled.

Vi keeps a lock file called alock_?.fil in its tmpdir. The question mark (’?’) will be a letter. There may be
more than one lock file, if more than one copy of Vi is running on the current machine.

Vi keeps a checkpoint file called asave_?.fil. The question mark (’?’) will be a letter. Once a file is
autosaved, its name is added to this checkpoint file. When the file is discarded, its name is removed from
this checkpoint file. So, if for any reason, you lose your editing session, this checkpoint file will contain
information about what files were being edited at the time. Assuming tmpdir has been set to D:\TMP, then
a example of what asave_?.fil could contain is:

Lost File Recovery 67

The Open Watcom Vi Editor Reference

d:\tmp\aaaaa23j.tmp e:\c\test.c
d:\tmp\baaaa23j.tmp e:\h\test.h
d:\tmp\caaaa23j.tmp c:\autoexec.bat

The file e:\c\test.c was being edited, and its backup is stored in d:\tmp\aaaaa23j.tmp.

The file e:\h\test.c was being edited, and its backup is stored in d:\tmp\baaaa23j.tmp.

The file c:\autoexec.bat was being edited, and its backup is stored in d:\tmp\caaaa23j.tmp.

You do not need use this information in order to recover lost files, however, this is useful to know if you
wish to look at the files before recovering them.

If a checkpoint file exists when Vi is started, then the following message will appear:

Files have been lost since your last session, use -r to recover or
-i to ignore

Vi cannot be invoked until either -i or -r is specified.

If -i is specified, then the checkpoint files are erased and Vi starts up normally. The .tmp files that contain
the lost files still remain in the backup directory, however.

If -r is specified, then Vi recovers the lost files. Note that the recovered files must be saved in order to
overwrite the original copy.

68 Lost File Recovery

6 Modes

The Open Watcom Vi Editor is a modal editor. When you are in command mode (the default mode), there
are a number of valid keys that may be pressed. To ensure that you are in command mode, press the ESC
key until the mode indicator on the menu bar displays:

Mode: command

When in text insertion mode, text may be entered. There are two aspects to text insertion mode: insert
and overstrike. text insertion mode is entered via a number of different commands from command mode,
and is indicated by a larger cursor, along with a mode line indication. The types of cursor are controlled
with the commandcursortype, insertcursortype, and overstrikecursortype settings.

When Vi is in a text insertion mode, the mode indicator on the menu bar displays one of:

Mode: insert

or

Mode: overstrike

6.1 Text Insertion Mode

When in text insertion mode (either inserting or overstriking), you may enter text and freely cursor about
through the file. When you are finished adding text, the ESC key returns you to command mode.

It should be remembered that an undo applies to changes caused by commands; so all changes made while
in text insertion mode are part of a single undo record. For more information on undos, see the section
"Undoing Changes" on page 79 later on in this chapter.

The following keys, when pressed in command mode, place you into text insertion mode:

a Starts appending (inserting) text after the current character in the edit buffer.

A Starts appending (inserting) text after the last character on the current line in the edit buffer.

C Changes text from the current position to the end of the current line. Deletes the text, and
enters text insertion mode.

<n>c<oper> Change command. Deletes the text in the range specified by <oper>, and enters text
insertion mode.

g Starts inserting or overstriking text at the current cursor position, depending on how you
were adding text the last time you were in text insertion mode.

i Starts inserting text at the current cursor position.

I Starts inserting text before the first non-white space character on the current line.

Text Insertion Mode 69

The Open Watcom Vi Editor Reference

o Opens a line after the current line, and enters text insertion mode.

O Opens a line before the current line, and enters text insertion mode.

R Starts overstriking text at the current character in the edit buffer.

<n>s Substitute <n> characters. The first <n> characters from the current cursor position are
deleted, and text insertion mode is entered.

<n>S Substitute lines of text. <n> lines from the current line forward are deleted, and text
insertion mode is entered.

INS Start inserting text at the current cursor position.

6.1.1 Special Keys

While in text insertion mode, certain keys do special things. These keys are:

Arrow Keys

UP Cursor up through the text.

DOWN Cursor down through the text.

LEFT Cursor left through the text.

RIGHT Cursor right through the text.

Text Selection Keys

SHIFT_UP (shifted cursor up key)
Starts or continues selection and moves up to the previous line. The new
line is selected.

SHIFT_DOWN (shifted cursor down key)
Starts or continues selection and moves down to the next line. The new
line is selected.

SHIFT_LEFT (shifted cursor left key)
Starts or continues selection and moves left to the next character. The new
character is selected.

SHIFT_RIGHT (shifted cursor right key)
Starts or continues selection and moves right to the previous character. The
new character is selected.

CTRL_R Starts text selection, if no text is selected. The current character is
highlighted. If a region is already selected, then this cancels the selected
region.

ESC Cancels the current selection.

70 Text Insertion Mode

Modes

CTRL_PAGEUP
Moves to the first non-white space character on the first line of the current edit buffer.

CTRL_PAGEDOWN
Moves to the last character on the last line of the current edit buffer.

SHIFT_DEL Deletes the currently selected region into the active copy buffer.

SHIFT_INS Pastes the active copy buffer into the text after the current position.

SHIFT_TAB Move back to the previous tab stop, deleting the characters before the cursor.

CTRL_DEL (ctrl-delete)
Delete the current line into the active copy buffer.

CTRL_INS (ctrl-insert)
Pastes the active copy buffer into the text before the current position.

CTRL_D Move backwards shiftwidth spaces, deleting the characters before the cursor. A
shiftwidth is a number that you may set, its default value is 4.

CTRL_T Insert shiftwidth spaces. If realtabs is set, then once tabamount spaces are inserted, the
spaces are replaced with a tab character.

CTRL_V The next key typed is inserted directly, without any interpretation.

CTRL_Q The next key typed is inserted directly, without any interpretation.

BS Backspace one on the current line, deleting the character before the cursor.

DEL Delete the character under the cursor. If you are at the end of the line, DEL has the same
effect as pressing BS.

ENTER Start a new line.

END Move to the end of the current line.

HOME Move to the start of the current line.

INS Toggles between insert and overstrike mode.

PAGEUP Move up one page in the text.

PAGEDOWN Move up down one page in the text.

TAB Move forward to the next tab stop. If realtabs is set, a tab character is inserted into the file.
Otherwise, spaces are inserted.

Text Insertion Mode 71

The Open Watcom Vi Editor Reference

6.2 Command Mode

The following command mode command descriptions show items within angle brackets (<>). The angle
brackets are there to indicate items that you may supply. You are not required to type the brackets. For
example, <n> simply means that in the corresponding place in the command you can enter a number.

Many commands may be preceded with a repeat count, which is indicated by a <n> before a command.
The number is not required; if it is not supplied, it is usually assumed that a 1 was entered for the repeat
count. As long as the setting repeatinfo is enabled, the number that is typed appears in a special window
called the countwindow.

Other commands may be preceded with a copy buffer name, which is indicated with a <"?>. If you do not
want the result of the operation to be copied into the active copy buffer, then an alternate buffer may be
specified. The double quotes (") are required (this indicates that an alternate buffer is being specified), and
then a buffer ’1’-’9’ or ’a’-’z’ is specified. See the section "Copy Buffers" on page 81 for more
information.

6.2.1 Movement

The following are command mode commands that cause movement in the current edit buffer.

<n>| (or bar)
Move to the column number specified by <n>.

Example(s):
|

Move to column 1 of the current line.

15|
Move to column 15 of the current line.

‘<?> (back quote)
Moves to the mark position (line and column) specified by <?> See the section "Marks" on
page 79 for more information.

Also see the command line command mark.

Example(s):
‘a

Move to the line and column with mark a.

’<?> (front quote)
Move to the start of line with the mark <?>. See the section "Marks" on page 79 for more
information.

Also see the command line command mark.

Example(s):
’z

Move to the start of the line with mark z.

72 Command Mode

Modes

% (percent) Moves to matching brace or other defined match string. Defaults are "{","}" and "(",")".
For example, by pressing % while on the first opening brace (’(’) on the line:

if((i=foo(x))) return;

moves the cursor to the last closing brace (’)’) on the line. It is possible to set arbitrary
pairs of match strings using the command line command match.

$ (dollar) Moves the cursor to the last character on the current line.

^ (caret) Moves the cursor to the first non-whitespace character on the current line.

; (semi-colon)
Repeats the last f, F, t or T movement commands.

, (comma) Repeats the last f, F, t or T movement commands, but the search is done in the opposite
direction.

If the last movement command was an F then an f movement command is executed. If the
last movement command was a t then a T movement command is executed.

Similarly, if the last movement command was an f then an F movement command is
executed. If the last movement command was a t then a T movement command is
executed.

<n>- (dash)
Moves the cursor to the start of the previous line. If a repeat count <n> is specified, then
you are moved up <n> lines.

<n>+ (plus)
Moves the cursor to the start of the next line. If a repeat count <n> is specified, then you
are moved down <n> lines.

0 Moves the cursor the first character of the current line.

CTRL_PAGEUP
Moves to the first non-white space character on the first line of the current edit buffer.

CTRL_PAGEDOWN
Moves to the last character on the last line of the current edit buffer.

<n>DOWN
Move the cursor down one line. <n> is specified, the cursor moves down <n> lines.

END Moves the cursor to the last character on the current line.

<n>ENTER
Moves the cursor to the start of the next line. If a repeat count <n> is specified, then the
cursor is moved down <n> lines.

HOME Moves the cursor the first character of the current line.

<n>LEFT Move the cursor left one character. If <n> is specified, the cursor moves left <n>
characters.

Command Mode 73

The Open Watcom Vi Editor Reference

<n>PAGEDOWN
Moves forwards one page. If a repeat count <n> is specified, then you are moved ahead
<n> pages. The number of lines of context maintained is controlled by the
pagelinesexposed setting.

<n>PAGEUP
Moves backwards one page. If a repeat count <n> is specified, then you are moved back
<n> pages. The number of lines of context maintained is controlled by the
pagelinesexposed setting.

<n>RIGHT
Move the cursor right one character. If <n> is specified, the cursor moves right <n>
characters.

<n>SHIFT_TAB
Moves the cursor left by tabamount characters. A repeat count <n> multiplies this.

<n>TAB Moves the cursor right by tabamount characters. A repeat count <n> multiplies this.

<n>UP Move the cursor up one line. <n> is specified, the cursor moves up <n> lines.

<n>CTRL_B
Moves backwards one page. If a repeat count <n> is specified, then you are moved back
<n> pages. The number of lines of context maintained is controlled by the
pagelinesexposed setting.

<n>CTRL_D
Move down a certain number of lines. The default is to move down half a page. If the
repeat count <n> is specified, then that becomes the number of lines moved from then on.
Also see the CTRL_U key.

<n>CTRL_E
Expose the line below the last line in the current edit window, leaving the cursor on the
same line if possible. If a repeat count <n> is specified, then that many lines are exposed.

<n>CTRL_F
Moves forwards one page. If a repeat count <n> is specified, then you are moved ahead
<n> pages. The number of lines of context maintained is controlled by the
pagelinesexposed setting.

<n>CTRL_N
Move the cursor to the next line. If a repeat count <n> is specified, then you are moved
down <n> lines.

<n>CTRL_P
Move the cursor to the previous line. If a repeat count <n> is specified, then you are
moved up <n> lines.

<n>CTRL_U
Move up a certain number of lines. The default is to move up half a page. If the repeat
count <n> is specified, then that becomes the number of lines moved from then on. Also
see the CTRL_D key.

74 Command Mode

Modes

<n>CTRL_Y
Expose the line above the first line in the current edit window, leaving the cursor on the
same line if possible. If a repeat count <n> is specified, then that many lines are exposed.

<n>B Moves the cursor backwards to the start of previous space delimited word on the current
line.

Example(s):
B

If the cursor was on the right parenthesis (’)’) of

x = foo(abc) + 3;

then the cursor moves to the f in foo.

2B
If the cursor was on the right parenthesis (’)’) of

x = foo(abc) + 3;

then the cursor moves to the = sign.

<n>b Moves the cursor backwards to the start of the previous word on the current line. A word is
defined using the word setting. The default is that any characters in the set (_, a-z, A-Z,
0-9) are considered part of a word, and all other characters (except for whitespace) are
delimiters. Groups of delimiters are considered to be a word as well.

Example(s):
b

If the cursor was on the right parenthesis (’)’) of

x = foo(abc) + 3;

then the cursor moves to the letter a in abc.

2b
If the cursor was on the right parenthesis (’)’) of

x = foo(abc) + 3;

then the cursor moves to left parenthesis (.

<n>E Moves the cursor to the end of the next space delimited word on the current line.

Example(s):
E

If the cursor was on the letter f in

x = foo(abc) + 3;

then the cursor moves to the right parenthesis).

2E
If the cursor was on the letter f in

Command Mode 75

The Open Watcom Vi Editor Reference

x = foo(abc) + 3;

then the cursor moves to the + sign.

<n>e Moves the cursor to the end of the next word on the current line. A word is defined using
the word setting. The default is that any characters in the set (_, a-z, A-Z, 0-9) are
considered part of a word, and all other characters (except for whitespace) are delimiters.
Groups of delimiters are considered to be a word as well.

Example(s):
e

If the cursor was on the letter f in

x = foo(abc) + 3;

then the cursor moves to the second letter o in foo.

2e
If the cursor was on the letter f in

x = foo(abc) + 3;

then the cursor moves to the left parenthesis (.

<n>F<?> Moves the cursor backwards from its current position to the character <?> on the current
line. If a repeat count <n> is specified, then the nth occurrence of the character <?> is
moved to.

Example(s):
F+

If the cursor is on the semi-colon (’;’) in

x = foo(abc) + 3;

The the cursor is moved to the + sign.

2Fo
If the cursor is on the semi-colon (’;’) in

x = foo(abc) + 3;

The the cursor is moved to the first o in foo.

<n>f<?> Moves the cursor forwards from its current position to the character <?> on the current line.
If a repeat count <n> is specified, then the nth occurrence of the character <?> is moved to.

Example(s):
f+

If the cursor is on the character x in

x = foo(abc) + 3;

The the cursor is moved to the + sign.

76 Command Mode

Modes

2fo
If the cursor is on the character x in

x = foo(abc) + 3;

The the cursor is moved to the second o in foo.

<n>G Goes to the line specified by the repeat count <n>. If no repeat count is specified, you
move the the last line in the current edit buffer.

Example(s):
100G

Moves to line 100 in the current edit buffer.

G
Moves to the last line in the current edit buffer.

<n>h Move the cursor left one character. If <n> is specified, the cursor moves left <n>
characters.

<n>H Moves to the line at the top of the current file window. If a repeat count is specified, then
you are moved to that line relative to the top of the current file window.

Example(s):
2H

Moves to the second line from the top of the current file window.

H
Moves to the line at the top of the current file window.

<n>j Move the cursor down one line. <n> is specified, the cursor moves down <n> lines.

<n>k Move the cursor up one line. <n> is specified, the cursor moves up <n> lines.

<n>L Moves to the line at the bottom of the current file window. If a repeat count is specified,
then you are moved to that line relative from the bottom of the current file window.

Example(s):
2L

Moves to the second line from the bottom of the current file window.

L
Moves to the line at the bottom of the current file window.

<n>l Move the cursor right one character. If <n> is specified, the cursor moves right <n>
characters.

M Moves the cursor to the line in the middle of the current file window.

<n>T<?> Moves the cursor backwards from its current position to the character after the character
<?> on the current line. If a repeat count <n> is specified, then the the character after the
nth occurrence of the character <?> is moved to.

Example(s):
T+

Command Mode 77

The Open Watcom Vi Editor Reference

If the cursor is on the semi-colon (’;’) in

x = foo(abc) + 3;

The the cursor is moved to the space after the + sign.

2To
If the cursor is on the semi-colon (’;’) in

x = foo(abc) + 3;

The the cursor is moved to the second o in foo.

<n>t<?> Moves the cursor forwards from its current position to the character before the character
<?> on the current line. If a repeat count <n> is specified, then the the character before the
nth occurrence of the character <?> is moved to.

Example(s):
t+

If the cursor is on the character x in

x = foo(abc) + 3;

The the cursor is moved to the space before + sign.

2to
If the cursor is on the character x in

x = foo(abc) + 3;

The the cursor is moved to the first o in foo.

<n>W Moves the cursor forward to the start of the next space delimited word on the current line.

Example(s):
W

If the cursor was on the letter f in

x = foo(abc) + 3;

then the cursor moves to the + sign.

2W
If the cursor was on the letter f in

x = foo(abc) + 3;

then the cursor moves to the number 3.

<n>w Moves the cursor forward to the start of the next word on the current line. A word is
defined using the word setting. The default is that any characters in the set (_, a-z, A-Z,
0-9) are considered part of a word, and all other characters (except for whitespace) are
delimiters. Groups of delimiters are considered to be a word as well.

Example(s):

78 Command Mode

Modes

w
If the cursor was on the letter f in

x = foo(abc) + 3;

then the cursor moves to the left parenthesis (.

2w
If the cursor was on the letter f in

x = foo(abc) + 3;

then the cursor moves to the letter a in abc.

6.2.2 Undoing Changes

Vi keeps an undo history of all changes made to an edit buffer. There is no limit on the number of undos,
as long as there is enough memory to save the undo information. If there is not enough memory to save
undo information for the current action, then the oldest undo information is removed until enough memory
has been released.

There is also an undo-undo (redo) history: as you issue undo commands, the information to redo the undo
is kept. However, once you modify the file other than by doing an undo, the redo history is lost.

As you issue undo commands, a message indicating how many undos are remaining. The message could
look like:

16 items left on undo stack

This lets you know how many undos it would take to restore the edit buffer to its original condition. Once
there are no more undos, you will see the message:

undo stack is empty

Once you undo all changes, then the file changes state from modified to unmodified. However, if some
undo changes have had to be discarded because of low memory, the file will still be in a modified state.

The keystrokes for doing undo and redo are:

u Undo last change.

U Redo last undo.

Also see the command line command undo (command).

6.2.3 Marks

Text marks are used to memorize a position in the edit buffer that you may want to return to later. Each file
may have up to 26 marks in it (identified via the letters ’a’ through ’z’). Marks may also be set with the
command line command mark.

Mark commands are:

Command Mode 79

The Open Watcom Vi Editor Reference

m<?> Allows the setting of mark <?>.

If <?> is an exclamation mark (’!’) instead of a letter, it clears all marks on the current line.

If <?> is a dot (’.’) instead of a letter, it puts Vi in memorize mode. All characters typed
are memorized until another dot (’.’) is pressed. The memorized keystrokes may be
repeated by pressing a dot (’.’). See the dot (’.’) command mode command later in this
chapter.

If <?> is an equals sign (’=’) instead of a letter, it puts Vi in alternate memorize mode. All
characters typed are memorized until another equals sign (’=’) is pressed. The memorized
keystrokes may be repeated by pressing an equals sign (’=’). See the equals sign (’=’)
command mode command later in this chapter.

Also see the command line command mark.

Example(s):
ma

Sets the mark a at the current cursor position

m.
Enter memorize mode

m!
Clear any marks set on the current line.

’<?> (front quote)
Move to the start of the line with the mark <?>.

Example(s):
’a

Moves to the first column of the line with mark a.

’’
Moves to the first column of line of the last position before the last
non-linear movement command was issued.

‘<?> (back quote)
Move to the position in the edit buffer with the mark <?>.

Example(s):
‘a

Moves to the column and line with mark a.

‘‘
Moves to the last position before the last non-linear movement command was
issued.

Pressing ‘‘ and ’’ take you to the last position you were at before you used a non-linear movement
command (’, ‘, ?, /, G, n, and N commands). So, if you are at line 5 column 10 and type /foo, pressing ‘‘
will first move you back to line 5 column 10. Pressing ‘‘ again will move you to the occurrence of foo,
since the previous ‘‘ command was a non-linear movement command.

80 Command Mode

Modes

6.2.4 Copy Buffers

A copy buffer is a buffer where copied or deleted data is kept. There are a number of these buffers
available. There are 9 default buffers that text is placed into when it is deleted/yanked (see the command
line commands delete and yank, along with the sections "Deleting Text" on page 86 and "Copying Text"
on page 88 later in this chapter). These buffers are numbered 1 through 9, and any of these buffers may be
the active copy buffer.

The active copy buffer may be selected using function keys. CTRL_F1 through CTRL_F9 select buffers 1
through 9 respectively. When a buffer is selected, information about its contents is displayed in the
message window. This buffer becomes the active copy buffer. All yanked/deleted text is copied into this
buffer.

When text is yanked/deleted into the active copy buffer, the contents of the the buffers are cascaded
forward from the active buffer into the next one, with the last numbered copy buffer losing its contents.
Any buffers that are before the active copy buffer have their contents preserved. For example, if buffer 3 is
the active copy buffer, then a deletion will cascade buffer 3 to buffer 4, buffer 4 to buffer 5, and so on, with
the contents of buffer 9 being lost. Buffers 1 and 2 remain untouched, and buffer 3 gets a copy of the
deleted text.

There are several command mode commands that add text to buffers; they are

<"?><n>d<oper>
Deletes text in various ways.

<n>DEL Deletes the character at the current cursor position.

D Deletes text from the current cursor position to the end of the current line.

<n>x Deletes the character at the current cursor position.

<n>X Deletes the character before the current cursor position.

<"?><n>y<oper>
Yanks (copies) text in various ways.

<n>Y Yanks (copies) the current line.

There is more information on these command mode commands later in this chapter.

Text may be yanked/deleted into a specific copy buffer by typing "[1-9] before the appropriate command.
As well, there are 26 named buffers that may be used, ’a’-’z’. When text is yanked or deleted into a named
buffer, it remains there for the life of the editing session (or until replaced).

To retrieve the contents of a buffer, use:

<"?>SHIFT_INS
Puts (pastes) the contents of the active copy buffer after the cursor position in the current
edit buffer.

Also see the command line command put.

Example(s):

Command Mode 81

The Open Watcom Vi Editor Reference

"aSHIFT_INS
Copy the data in the named buffer a after the current position in the file.

SHIFT_INS
Copy the data in the active copy buffer after the current position in the file.

<"?>p Puts (pastes) the contents of the active copy buffer after the cursor position in the current
edit buffer.

Also see the command line command put.

Example(s):
p

Copies the data in the active copy buffer after the current position in the file.

"5p
Copies the data in the numbered buffer 5 after the current position in the file.

<"?>P Puts (pastes) the contents of the active copy buffer before the cursor position in the current
edit buffer.

Also see the command line command put.

Example(s):
"aP

Copy the data in the named buffer a before the current position in the file.

P
Copy the data in the active copy buffer before the current position in the file.

Without a "? prefix, these commands retrieve the contents of the active copy buffer.

The contents of a copy buffer may be executed, as if the contents were typed from the keyboard. See the @
command mode command later in this chapter.

6.2.5 Searching

The following command mode commands are used for searching for text:

/ (forward slash)
Enter a regular expression to search for from current position forwards.

? (question mark)
Enter a regular expression to search for from current position backwards.

n Repeat last search command, in the direction of the last search.

N Repeat last search command, in the opposite direction of the last search.

For more information on regular expressions, see "Regular Expressions" on page 167.

Once you press the / or the ? keys, a search string entry window will appear:

82 Command Mode

Modes

Figure 26. Search String Entry Window

This position and size of the search string entry window are controlled using the commandwindow
windowing command. Search strings may be up to 512 bytes in length; the search string window scrolls.

The search string window has a history associated with it; the size of this search string history is controlled
using the maxfindhistory setting. As well, the search string history is preserved across sessions of Vi if
the historyfile parameter is set.

If the first letter of a search string is a CTRL_A (entered by typing a CTRL_V followed by a CTRL_A)
then that search string will not be added to the search string history.

6.2.5.1 Special Keys In The Search String Window

Once in the search string window, a number of keys have special meaning:

CTRL_V Insert next keystroke directly; do not process as a special character.

CTRL_Q Insert next keystroke directly; do not process as a special character.

CTRL_O Insert the current input string after current line in the edit buffer.

ALT_O Insert the current input string before current line in the edit buffer.

ALT_L Adds the current line in the current edit buffer, from the current column to the end of the
line, to the input string.

CTRL_E Adds the current space delimited word in the current edit buffer to the input string.

CTRL_L Adds the current line in the current edit buffer to the input string.

CTRL_R Adds the currently selected column range in the current edit buffer to the input string.

CTRL_W Adds the current word in the current edit buffer to the input string.

CTRL_INS Restores last thing typed in the input window (one level undo).

UP Scroll backwards through the history.

Command Mode 83

The Open Watcom Vi Editor Reference

DOWN Scroll forwards through the history.

ALT_TAB Command completion. Looks backwards through the history for first item starting with
what is already entered. Subsequent presses of ALT_TAB get the 2nd last matching item,
and so on.

RIGHT Move cursor right through input string.

LEFT Move cursor left through input string.

CTRL_END Delete to end of the input string.

END Move to end of the input string.

HOME Move to start of the input string.

INSERT Toggle between insertion and overstrike of text.

BS Backspace in the input string, deleting the previous character.

DELETE Delete current character.

ENTER Do the search.

ESC Cancel the search request.

TAB Try to complete the file name based on the current string.

The first match is completed, and a window with possible choices is displayed. Subsequent
presses of TAB will scroll forward through the list of possible matches, and pressing
SHIFT_TAB will scroll backwards through the list of possible matches. Cursor keys may
also be used, and so may the mouse.

Figure 27. File Name Completion Window

84 Command Mode

Modes

6.2.6 Inserting Text

The following commands cause Vi to go from command mode directly into text insertion mode:

INS Starts inserting text before the current character in the edit buffer.

a Starts appending (inserting) text after the current character in the edit buffer.

A Starts appending (inserting) text after the last character on the current line in the edit buffer.

g Enters text insertion mode at the current cursor position. This sets you up in overstrike or
insert mode, depending on the mode you were in last time you were in text insertion mode.

This key is useful to keyadd in a script, to return to the exact same type of text insertion
mode the user was in before leaving text insertion mode.

i Starts inserting text before the current character in the edit buffer.

I Starts inserting text before the first non-white space character in the edit buffer.

o Opens a line after the current line, and enters text insertion mode.

O Opens a line before the current line, and enters text insertion mode.

Once you are in text insertion mode, you can toggle back and forth between insert and overstrike using the
INS key. You exit text insertion mode by pressing the ESC key. See the previous section, "Text Insertion
Mode" on page 69, for more information on manipulating text in text insertion mode.

6.2.7 Replacing Text

The following commands are used to replace text:

g Enters text insertion mode at the current cursor position. This sets you up in overstrike or
insert mode, depending on the mode you were in last time you were in text insertion mode.

This key is useful to keyadd in a script, to return to the exact same type of text insertion
mode the user was in before leaving text insertion mode.

R Starts overstriking text at the current character in the edit buffer. Once you are overstriking
text, you can toggle back and forth between overstrike and insert using the INS key. You
exit text insertion mode by pressing the ESC key. See the previous section, "Text Insertion
Mode" on page 69, for more information on manipulating text in text insertion mode.

<n>r<?> Replaces the current character with the next character typed, <?>. If a repeat count is
specified, then the next <n> characters are replaced with the character <?>.

Example(s):
ra

Replaces the current character with the letter a.

10rZ
Replaces the next 10 characters with the letter Z.

Command Mode 85

The Open Watcom Vi Editor Reference

6.2.8 Deleting Text

The commands in this section are for deleting text in an edit buffer. All deleted text is copied into a copy
buffer for later use, see the section "Copy Buffers" on page 81.

<"?>D Deletes the characters from the current position to the end of line.

Example(s):
"aD

Deletes characters from current position to the end of line into the named
buffer a.

<n><"?>X
Delete the character before the current cursor position.

Example(s):
X

Delete the previous character.

10X
Delete the 10 previous characters.

"z5X
Delete the 5 previous characters into the named buffer z.

<n><"?>x Delete the character at the current cursor position.

Example(s):
x

Delete the current character.

3x
Delete the next 3 characters.

"217x
Delete the next 17 characters into the numbered buffer 2.

<n><"?>DEL
Delete the character at the current cursor position. This behaves the same as the command
mode command x.

Example(s):
DEL

Delete the current character.

12DEL
Delete the next 12 characters.

"a5DEL
Delete the next 5 characters into the named buffer a.

The <oper> notation in the following command indicates some sort of operator that the command will act
on. <oper> may be one of:

86 Command Mode

Modes

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

2. A search command:

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

<n><"?>d<oper>
Delete text from the current position in the file to the position specified by <oper>. A copy
of the text is placed into the specified copy buffer <"?>. If no buffer is specified, then the
text is placed into the active buffer. A repeat count <n> may precede the command, this
causes <n> units of the <oper> command to be deleted.

<oper> may be specified as d, which causes a single line to be deleted.

Also see the command line command delete.

Example(s):
dr

Deletes the current selected (highlighted) region in the edit buffer. A copy is
placed into the active copy buffer.

"zdd
Deletes the current line. A copy is placed into the named copy buffer z.

95dd
Deletes 95 lines, starting at the current. A copy of the lines is placed into the
active copy buffer.

"cdfa
Deletes the characters from the current column up to and including the first a
on the current line. A copy of the text is placed in the named buffer c.

"5d’a
Deletes the lines from the current line to the line with mark m into the
numbered buffer 5.

dG
Deletes all lines from the current line to the end of the current edit buffer.

Command Mode 87

The Open Watcom Vi Editor Reference

6.2.9 Copying Text

This section describes commands that are for yanking (copying) text. This text is placed into a copy buffer,
see the section "Copy Buffers" on page 81 for more information.

<n>Y Yank (copy) the current line. If a repeat count <n> is specified, then <n> lines are copied.

This command is the same as typing yy.

The <oper> notation in the following command indicates some sort of operator that the command will act
on. <oper> may be one of:

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

2. A search command:

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

<n><"?>y<oper>
Yanks (copies) text from the current position in the file to the position specified by <oper>.
Text is placed into the specified copy buffer <"?>. If no buffer is specified, then the text is
placed into the active buffer. A repeat count <n> may precede the command, this causes
<n> units of the <oper> command to be copied.

<oper> may be specified as y, which causes a single line to be yanked.

Also see the command line command delete.

Example(s):
yy

Yanks (copies) the current line into the active copy buffer.

10yy
Copies 10 lines, starting at the current, into the active copy buffer.

y$
Copies the characters from the current column to the end of the current line
into the active copy buffer.

88 Command Mode

Modes

"ay’m
Yanks the lines from the current line to the line with mark m into the named
buffer a.

y/foo
Copies:

• the part of the current line from the current position to the end of the
line

• all lines between the current line and the first line containing the string
foo

• the part of the line containing foo from the start of the line to the first
letter in the string foo

6.2.10 Changing Text

The following commands are for changing text. If a range of lines is being changed, the lines are deleted
and Vi enters text insertion mode.

If the change is taking place on the single line, the range of characters being changed is highlighted, and the
last character in the range is indicated with a dollar sign (’$’). If the ESC key is pressed, and changelikevi
is not set, then the change command is cancelled. If changelikevi is set, then the highlighted area is
deleted. If anything other than the ESC key is pressed, the highlighted area is deleted and Vi enters text
insertion mode.

C This command changes the characters on the current line from the current character to the
end of the line. The character range is highlighted, and once a character is typed, the
highlighted text is deleted, and text insertion mode is entered.

This command is the same as typing c$.

<n>S This command substitutes the current line with text. The text on the current line is deleted,
and text insertion mode is entered. If a repeat count <n> is specified, then <n> lines are
deleted.

This command is the same as typing cc.

<n>s This command substitutes the current character with text. If <n> is specified, then <n>
characters are substituted.

This command is the same as typing cl, cRIGHT, or cSPACE.

The <oper> notation in the following command indicates some sort of operator that the command will act
on. <oper> may be one of:

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

2. A search command:

Command Mode 89

The Open Watcom Vi Editor Reference

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

<n>c<oper>
Change text from the current position in the file to the position specified by <oper>. A
repeat count <n> may precede the command, this causes <n> units of the <oper>
command to be changed.

<oper> may be specified as c, which causes a single line to be changed.

Example(s):
cr

Changes the current selected (highlighted) region in the edit buffer.

cc
Change the current line. The current line is deleted, and text insertion mode
is entered.

95cc
Changes 95 lines, starting at the current. The lines are deleted, and text
insertion mode is entered.

cw
Change the current word. The current word is highlighted, and once a
character other than ESC is typed, the word is deleted and text insertion
mode is entered.

c$
Changes from the current column to the end of the current line. The column
range is highlighted, and once a character other than ESC is typed, the
column range is deleted and text insertion mode is entered.

2cfa
Changes from the current column to the second letter a on the current line.
The column range is highlighted, and once a character other than ESC is
typed, the column range is deleted and text insertion mode is entered.

90 Command Mode

Modes

6.2.11 Shifting Text

The following commands are used to shift lines to the right or left, inserting or deleting leading whitespace.
The <oper> notation in the following commands indicates some sort of operator that the command will act
on. <oper> may be one of:

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

2. A search command:

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

<n>><oper> (right angle bracket)
This is the shift right command. It shifts the specified lines to the right shiftwidth spaces,
inserting necessary leading tabs if realtabs is specified.

A repeat count <n> may precede the command, this causes <n> units of the <oper>
command to be shifted to the right.

<oper> may be specified as >, which causes a single line to be shifted to the right.

Also see the command line command >.

Example(s):
10>>

Shifts the current line and the next 9 lines to the right shiftwidth spaces.

>’a
Shifts all lines from the current line to the line with mark a to the right
shiftwidth spaces.

>r
Shifts all lines in the selected (highlighted) region to the right shiftwidth
spaces.

<n><<oper> (left angle bracket)
This is the shift left command. It shifts the specified lines to the left shiftwidth spaces.

Command Mode 91

The Open Watcom Vi Editor Reference

A repeat count <n> may precede the command, this causes <n> units of the <oper>
command to be shifted to the left shiftwidth spaces.

<oper> may be specified as <, which causes a single line to be shifted to the left shiftwidth
spaces.

Also see the command line command <.

Example(s):
<<

Shifts the current line to the left shiftwidth spaces.

<G
Shifts all lines from the current line to the last line in the edit buffer to the
left shiftwidth spaces.

10<j
Shifts the current line and the next 10 lines to the left shiftwidth spaces.

6.2.12 Case Toggling

The case toggle command mode command switches upper case letters to lower case, and lower case letters
to upper case. An example of its behaviour is changing the line

This Is A Line Of Text.

to

tHIS iS a lINE oF tEXT.

The <oper> notation in the following command indicates some sort of operator that the command will act
on. <oper> may be one of:

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

2. A search command:

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

92 Command Mode

Modes

<n>~<oper> (tilde)
This is the case toggle command. This command only works if the togglecaselikevi setting
is not turned on. If togglecaselikevi is set, then pressing ~ only changes the case of the
current character, and advances the cursor to the next character.

However, if togglecaselikevi is not set, then this command toggles the case of the
characters over the range specified by <oper>

A repeat count <n> may precede the command, this causes <n> units of the <oper>
command to be case toggled.

<oper> may be specified as ~, which causes a single line to be have its case toggled.

Example(s):
~r

Toggles the case of the currently selected (highlighted) range.

~$
Toggles the case of all characters from the current column of the current line
to the last character of the current line.

~w
Toggles the case of the current word.

10~~
Toggles the case of the current line and the 9 lines following.

6.2.13 Filters

The command mode filter command has the same functionality as the command line command filter. The
<oper> notation in the following command indicates some sort of operator that the command will act on.
<oper> may be one of:

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

2. A search command:

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

Command Mode 93

The Open Watcom Vi Editor Reference

<n>!<oper> (exclamation mark)
Filter text. The line range specified by <oper> are run through a specified filter. A repeat
count <n> may precede the command, this causes <n> units of the <oper> command to be
run through the filter.

<oper> may be specified as !, which causes a single line to be run through the filter.

The lines specified are run through a specified system command (filter). Once the filter
range has been specified, a window is displayed, prompting for a system command:

Figure 28. Filter System Command Prompt

The system command must take input from standard in and put its output to standard out.
The lines specified are replaced with the output of the the command.

There is a filter command history in the filter command prompt, the size of which is
controlled with the maxfilterhistory setting.

Also see the command line command !.

Example(s):
!r

Runs the current selected (highlighted) region in the edit buffer through a
specified filter.

!!
Runs the current line through a specified filter

!G
Runs all lines from the current line to the end of the edit buffer through a
specified filter.

6.2.14 Text Selection

Text may be selected with the mouse. However, if you do not wish to use the mouse, there is a keyboard
interface to allow you to accomplish the same thing.

94 Command Mode

Modes

Once text selection has been started, any movement command adds to the selected region. The selected
region may be cleared, and text selection ended, by pressing the ESC key.

A selected region is highlighted by exchanging the foreground and background the colors of the line. A
selected region could look as follows:

Figure 29. Selected Text Region

The following are the command mode commands for selecting text and manipulating selected text.

CTRL_R Starts text selection, if no text is selected. The current character is highlighted.

If region is already selected, then cancel the selected region.

<n>SHIFT_UP
Starts selection (if not already started) and moves up to the previous line. The previous line
and the current line are selected. If a repeat count <n> is specified, then the cursor moves
up <n> lines, and all the lines between the starting and ending position are selected.

<n>SHIFT_DOWN
Starts selection (if not already started) and moves down to the next line. The next line and
the current line are selected. If a repeat count <n> is specified, then the cursor moves down
<n> lines, and all the lines between the starting and ending position are selected.

<n>SHIFT_LEFT
Starts selection (if not already started) and move left to the previous character. The current
character and the previous character are selected. If a repeat count <n> is specified, then
the cursor moves left <n> characters, and all the characters between the starting and ending
position are selected.

<n>SHIFT_RIGHT
Starts selection (if not already started) and move right to the next character. The current
character and the next character are selected. If a repeat count <n> is specified, then the
cursor moves right <n> characters, and all the characters between the starting and ending
position are selected.

<"?>SHIFT_DEL
Deletes the currently selected region. If the copy buffer <"?> is specified, the region is
copied into that buffer, otherwise the data is copied into the active copy buffer.

Command Mode 95

The Open Watcom Vi Editor Reference

_ (underscore)
Simulates the right mouse being clicked at the current cursor position. If a region is not
selected, then the current word will be selected. The word is defined using the command
line command word.

6.2.15 Miscellaneous Keys

CTRL_C Exits the editor if no files have been modified. If files have been modified, a prompt is
displayed asking you to verify that you really want to discard the modified file(s). If you
do not respond with a ’y’, then the command is cancelled.

Also see the command line command quitall.

CTRL_G Display information about the current file in the edit window. The information includes:

• the file name.
• a special indicator if the file is read-only.
• a special indicator if the file is view-only.
• a special indicator if the file has been modified.
• the current line number, and the last line number.
• The percentage of the way through the file.

Some sample results are:

"test.c" [modified] line 5 of 100 -- 5% --

"..\c\file.c" [read only] line 100 of 100 -- 100% --

"\autoexec.bat" line 1 of 100 -- 1% --

CTRL_L Redraws the current screen.

CTRL_V Displays the current version of Vi in the message window.

Also see the command line command version.

CTRL_X Displays the hex value (and the decimal value) of the current character. A sample of the
output in the message window is:

Char ’e’: 0x65 (101)

CTRL_] (control right square bracket)
Go to the tag given by the current word. The word is defined using the command line
command word.

Also see the command line command tag.

See the appendix "CTAGS" on page 219 for more information.

ALT_W Activates the current edit window’s menu. This menu is defined using the windowgadget
menu. See the chapter "Windows and Menus" on page 135 for more information on setting
this menu.

96 Command Mode

Modes

ALT_X Insert a character, at the current cursor position. When ALT_X is pressed, a prompt is
displayed:

Figure 30. Character Insertion Prompt

Enter either a decimal or a hex number. That character will be inserted directly into the
edit buffer.

: (colon) Allows entry of a command line. See the chapter "Editor Commands" on page 101 for full
details on command line commands.

@<?> (at sign)
This command executes the copy buffer <?>. Vi behaves as if the contents of the buffer
were being typed at the keyboard.

<n>J Joins the next line to the current line. If a repeat count <n> is specified, the next <n> lines
are joined to the current line. (lines are concatenated one after another).

Also see the command line command join.

Example(s):
J

Joins the next line to the current line.

3J
Joins the next 3 lines to the current line.

Q Enters EX mode. EX mode is a line-oriented mode of Vi. To exit EX mode, use the visual
command.

Z<Z> Used when you are finished with the current edit buffer. If the current edit buffer has been
modified, it is saved.

Example(s):
ZZ

Finished with current edit buffer.

<n>z<?> Reorients the current screen position. The current line moves as follows, depending on the
value of <?>:

Command Mode 97

The Open Watcom Vi Editor Reference

ENTER Moves the current line to the top of the screen.

. (dot) Moves the current line to the center of the screen.

- (dash) Moves the current line to the bottom of the screen.

If a repeat count <n> is specified, then <n> is made the current line.

Example(s):
z-

Move the current line to the bottom of the screen.

100zENTER
Makes line 100 the current line, and puts line 100 at the top of the screen.

25z.
Makes line 25 the current line, and puts line 25 at the center of the screen.

F1 Move forward through the file list to the next file.

Also see the command line command next.

F2 Move backwards through the file list to the previous file.

Also see the command line command prev.

F11 Push the current file and position. If you press F12, you will be restored to this position.
These positions are stacked up, up to a maximum of maxpush.

Also see the command line command push.

F12 Restore the last pushed file and position.

Also see the command line command pop.

. (dot) Repeat the last command mode command that changed text in the edit buffer. It is also
possible to memorize more than just one command for ’.’ by using memorize mode:

1. Type "m." (Vi enters memorize mode).

2. Enter keystrokes.

3. Type "."

Now, whenever you press dot (’.’), all the entered keystrokes will be executed.

= (equals sign)
Performs the last alternate memorized command sequence. The alternate memorize mode
is used as follows:

1. Type "m=" (Vi enters alternate memorize mode).

2. Enter keystrokes.

98 Command Mode

Modes

3. Type "="

Now, whenever you press the equals sign (’=’), all the entered keystrokes will be executed
as if you typed them again from the keyboard.

This memorized keystroke sequence will last until you memorize another, unlike using
"m.".

ALT_M Display current memory state. Shows the total amount of memory, the amount of memory
for use by Vi, and how much extended memory and/or disk space is available.

Command Mode 99

The Open Watcom Vi Editor Reference

100 Command Mode

7 Editor Commands

This chapter describes the various editor commands that may be entered. A command is entered by
pressing the colon (’:’) key while in command mode, or by selecting the Enter command option in the File
menu.

To ensure that you are in command mode, press ESC until the mode indicator says

Mode: command

Once you press the ’:’ key, the command entry window will appear:

Figure 31. Command Entry Window

This position and size of the command entry window are controlled using the commandwindow
windowing command (character mode versions of the editor only). Commands may be up to 512 bytes in
length; the command window scrolls.

There are a special set of commands that may be entered at the command line for controlling the various
windows and menus of Vi. These commands are discussed in the next chapter, "Windows and Menus" on
page 135.

The command line has a command history associated with it; the size of this command history is controlled
using the maxclhistory setting. As well, the command history is preserved across sessions of Vi if the
historyfile parameter is set.

If a command is being executed through a mapped key (see the map and mapbase commands later in this
chapter), then it can be useful to keep the command from being added to the history. By having a "\h" as
the first characters after the ’:’ character, the command will not be added to the command history.

Editor Commands 101

The Open Watcom Vi Editor Reference

7.1 Special Keys In The Command Window

Once in the command window, a number of keys have special meaning:

CTRL_V Insert next keystroke directly; do not process as a special character.

CTRL_Q Insert next keystroke directly; do not process as a special character.

CTRL_O Insert the current input string after current line in the edit buffer.

ALT_O Insert the current input string before current line in the edit buffer.

ALT_L Adds the current line in the current edit buffer, from the current column to the end of the
line, to the input string.

CTRL_E Adds the current space delimited word in the current edit buffer to the input string.

CTRL_L Adds the current line in the current edit buffer to the input string.

CTRL_R Adds the currently selected column range in the current edit buffer to the input string.

CTRL_W Adds the current word in the current edit buffer to the input string.

CTRL_INS Restores last thing typed in the input window (one level undo).

UP Scroll backwards through the history.

DOWN Scroll forwards through the history.

ALT_TAB Command completion. Looks backwards through the history for first item starting with
what is already entered. Subsequent presses of ALT_TAB get the 2nd last matching item,
and so on.

RIGHT Move cursor right through input string.

LEFT Move cursor left through input string.

CTRL_END Delete to end of the input string.

END Move to end of the input string.

HOME Move to start of the input string.

INSERT Toggle between insertion and overstrike of text.

BS Backspace in the input string, deleting the previous character.

DELETE Delete current character.

ENTER Process the command.

ESC Cancel the command.

102 Special Keys In The Command Window

Editor Commands

TAB Try to complete the file name based on the current string.

The first match is completed, and a window with possible choices is displayed. Subsequent
presses of TAB will scroll forward through the list of possible matches, and pressing
SHIFT_TAB will scroll backwards through the list of possible matches. Cursor keys may
also be used, and so may the mouse.

Figure 32. File Name Completion Window

7.2 Line Addresses

Some commands take a line address range and/or a line address. A line address is composed of a line
number or a special symbol. As well, ’+’ and ’-’ may be used to add or subtract from the current address;
e.g.:

5+7 Indicates line 13

100-5 indicates line 95

99-11+6 indicates line 94

Special symbols are:

. (dot) Represents the current line number.

$ (dollar) Represents the last line number.

% (percent) Represents the address range 1,$ (the entire file)

(pound) Represents the current selected region

’a (front quote) Indicates the line with the mark ’a’ set; marks ’a’ through ’z’ may be used.

/regexp/ Indicates the first line following the current line that has the regular expression regexp. If
regexp is not specified, then the last regular expression search is used.

?regexp? Indicates the first line previous to the current line that has the regular expression regexp. If
regexp is not specified, then the last regular expression search is used.

Line Addresses 103

The Open Watcom Vi Editor Reference

For more information on regular expressions, see the chapter "Regular Expressions" on page 167.

If a line address is not specified, then the current line is assumed. If + or - are the first character, then they
are assumed to operate on the current line number; e.g. specifying +1 takes you forward one line in the file.

A line address range is two line addresses separated by a comma; these indicate the start and end of the line
address range.

7.2.1 Line Address Examples

.-5 5 lines before the current line

1,5 lines 1 to 5.

.-10,.+10 10 lines before the current line to 10 lines past the current line

$-5 5 lines before the last line in the file

% all lines

all lines in the currently selected region

’a,. line with mark ’a’ to current line.

/foo/ the first line after the current line containing ’foo’

’z+5,$-10 5 lines past line with mark ’z’ to 10 lines before the end of the file.

/foo/+5,/bar/-1 5 lines past line next line containing ’foo’ to 1 line before the line containing ’bar’.

7.3 Commands

The following command descriptions show items within angle brackets (<>). The angle brackets are there
to indicate items that you may supply. You are not required to type the brackets. For example, <filename>
simply means that in the corresponding place in the command you should enter the name of a file. For
example, <filename> may be replaced with

test.c

and the brackets are not entered.

The command descriptions also show items inside double quotes ("). The double quotes are used to
indicate a literal option that you may supply. You are not required to type the quotes. For example, "-c"
indicates that in the corresponding place in the command you may enter -c.

In the syntax model for each command, the upper-case characters represent the minimal truncation of the
command. For example, in its syntax model, the edit command is specified as "Edit", indicating that the
"e", "ed", "edi", and "edit" are acceptable abbreviations (and that "e" is the shortest of them).

104 Commands

Editor Commands

Some commands are noted as "EX mode only". This means that the command is not available from the
normal command line it may only be used from an editor script or from EX mode (which is entered by
pressing ’Q’ in command mode).

7.3.1 >

Syntax: <line_range> >

Description: This command shifts the specified line range <line_range> to the right shiftwidth spaces,
inserting necessary leading tabs if realtabs is specified.

Example(s):
1,. >

Shifts from first line to current line to the right shiftwidth spaces.

See Also: <

7.3.2 <

Syntax: <line_range> <

Description: This command shifts the specified line range <line_range> to the left shiftwidth spaces.

Example(s):
.,$ <

Shifts entire file shiftwidth spaces to the left.

See Also: >

7.3.3 !

Syntax: <line_range> ! <cmd>

Description: If <line_range> is specified, then the lines are run through the specified system command
<cmd> (the command must get its input from standard in and write its output to standard
out) and replaces the lines with the output of the command.

If no range is specified, then the system command <cmd> is run. If <cmd> is not
specified, then an operating system shell is started.

The global variable %(Sysrc) contains the return code from the last system command, and
%(Syserr) contains the errno value.

Example(s):
1,$! sort

Takes all lines in the current edit buffer and runs them through the sort command. The lines
are then replaced with the output of the sort command.

! dir
Executes the system dir command. After dir is finished executing, you are prompted to
press a key before returning to the editor.

Commands 105

The Open Watcom Vi Editor Reference

!
Temporarily leaves Vi and enters an operating system command shell.

See Also: shell

7.3.4 ABBREV

Syntax: ABbrev <short> <long>

Description: Create an abbreviation of <short> for <long>. Whenever <short> is typed as a word
during text insertion mode, it is expanded to <long>. unabbrev is used to remove the
abbreviation.

Example(s):
abbrev wh while(

Whenever wh is entered as a word, the word while(is substituted.

See Also: unabbrev

7.3.5 ALIAS

Syntax: ALias <alias> <data>

Description: Creates an command line alias of <alias> for <data>. Whenever <alias> is typed on the
command line, the full command <data> is substituted. unalias is used to remove the
abbreviation.

Example(s):
alias ai set autoindent

Whenever ai is entered on the command line, the command set autoindent is executed.

See Also: unalias

7.3.6 APPEND

Syntax: <line_num> Append

Description: Appends source lines after line <line_num>. Append is terminated when a line with
nothing but a dot (’.’) is entered.

Notes: Only valid in EX mode.

See Also: change, insert

7.3.7 CASCADE

Syntax: CASCADE

Description: Causes all edit buffer windows to cascade (overlap each other with top border of each
visible).

106 Commands

Editor Commands

See Also: maximize, minimize, movewin, resize, size, tile

7.3.8 CD

Syntax: CD <dir>

Description: Changes current working directory to <dir>. If <dir> is not specified, then the current
directory is displayed in the message window. <dir> may be specified with drive and path.

Example(s):
cd c:\tmp

Changes to the \tmp directory of the c drive

cd
Display the current working directory

7.3.9 CHANGE

Syntax: <line_range> Change

Description: Deletes the line range <line_range>, and replaces the range with inputted source lines.
The input of text is terminated when a line with nothing on it but a dot (’.’) is entered.

Notes: Only valid in EX mode.

See Also: append, insert

7.3.10 COMPILE

Syntax: COMPile "-a" "-A" <script> <result>

Description: Compiles the editor script <script>.

If -a is specified, all local variables are translated at compile time (rather than at run time) -
this is useful for the configuration script.

If -A is specified, all variables (both local and global) are translated at compile time.

The file will be compiled into a file with the same name as the script and the extension ._vi,
unless <result> is specified.

For information on editor scripts, see the chapter "Editor Script Language" on page 177.

Example(s):
comp -a ed.cfg

Compiles the default configuration script ed.cfg and expands all local variables to any
values assigned to them in the script. The compiled script file ed._vi is generated.

If any errors occur while compiling, a file with the the same name as the script and the
extension .err is created.

Commands 107

The Open Watcom Vi Editor Reference

comp test.vi test.out
Compiles the script test.vi and generates the compiled script file test.out.

See Also: load, source

7.3.11 COMPRESS

Syntax: COMpress

Description: Replaces spaces in the current edit buffer with tabs. Single spaces are not replaced with a
tab, and spaces inside a quoted string are not replaced with a tab.

7.3.12 COPY

Syntax: <line_range> COpy <line_number>

Description: Copies the specified range of lines <line_range> after the line <line_number>.

Example(s):
% copy $

Copies the entire file and places the lines after the last line in the file.

1,. copy .
Copies all lines from the beginning of the file to the current line and places the lines after the
current line.

7.3.13 DATE

Syntax: DAte

Description: Display the current time and date in the message window.

7.3.14 DELETE

Syntax: <line_range> Delete <buffer>

Description: Deletes the specified line range <line_range>.

If <buffer> is not specified, the text is deleted into the active copy buffer.

If <buffer> (’1’-’9’, or ’a’-’z’) is specified, the text is deleted into that copy buffer.

The put command may be used to place contents of a copy buffer into the file.

Example(s):
% d

Deletes all lines into the active copy buffer.

1,10 d a
Deletes lines 1 to 10 into the named copy buffer a.

108 Commands

Editor Commands

See Also: move, put, yank

7.3.15 ECHO

Syntax: ECHO <line> <msg>

Description: Echos the message <msg> on line <line> of the message window.

If <line> is specified as off, then nothing is echoed into the message window from then on.

If <line> is specified as on, messages will start to appear in the message window again.

<msg> may be surrounded by double quotes (") or a forward slash (/) if it contains any
spaces.

Example(s):
echo 1 "hello world"

The words hello world will appear on line 1 of the message window.

echo off
Disables output to the message window.

echo on
Enables output to the message window.

echo 2 /Line 2 message/
The words Line 2 message will appear on line 2 of the message window.

7.3.16 EDIT

Syntax: Edit "!" <files>

Description: Edits the specified files <files>. <files> may be a single file or a list of files.

Each file name may contain file regular expressions, see the section "File Matching Regular
Expressions" on page 169 in the chapter "Regular Expressions" for more information.

If "!" is specified, then the current file is discarded before editing the new file(s).

If a file is already being edited, then control is simply transferred to the window with that
file. If the file is already being edited and you specified a different path, then a new copy
of the file is read from the disk and is edited, unless samefilecheck is set. If samefilecheck
is set, then control is transferred to the window with the original copy of the file.

If you wish to have have multiple views on the same file, the open command is available.

If <files> is not specified, then a window containing a list of files in the current directory is
opened. From this listing, you may pick a file, another directory, or another drive (the
available drives are at the end of the listing). A directory is indicated by the leading
backslash (’\’). If a directory is chosen in this window, then the list of files in that directory
is displayed. This list also contains all the drives available (which are enclosed in square

Commands 109

The Open Watcom Vi Editor Reference

brackets, e.g. [c:]). If you select a drive, the list of files in the current directory on that
drive is displayed.

For files and directories, each line indicates the file name, the various attributes of the file
([d]irectory, [a]rchive, [h]idden, [s]ystem, [r]eadable, [w]riteable, e[x]ecutable), the file
size in bytes, the date and time of the last file update. Some sample lines are:

test.c -a--rw- 25586 08/16/92 08:14
bar.c -a--r-- 639 02/27/92 13:25

\tmpdir d---rw- 0 08/16/92 19:05
[c:]

Example(s):
edit test.c

Edits the file test.c.

edit! test2.c
Discards the current file, and edits test2.c.

edit test.(c|h)
Edits the file test.c if it exists, and the file test.h if it exists.

edit ([a-c])*.c
Edits all files in the current directory that start with the letters a, b or c and have the extension
.c.

edit *
Edits all files in the current directory.

edit
Gives a file selection display:

Figure 33. File Selection Display

See Also: open, read, view, visual

110 Commands

Editor Commands

7.3.17 EGREP

Syntax: EGRep <regexp> <files>

Description: Searches the file list <files> for the regular expression <regexp>.

<regexp> may be surrounded by double quotes (") or a forward slash (/) if it contains any
spaces.

<files> may be a single file, a directory, or a list of files. <files> may contain file regular
expressions, see the section "File Matching Regular Expressions" on page 169 in the
chapter "Regular Expressions" for more information.

If <files> is not specified, it defaults to the setting of grepdefault. If a directory is
specified for <files>, then the files in that directory are searched, based on the setting of
grepdefault.

When all matches are found, a selection window is presented with all the files that
contained <regexp>.

If you are not using regular expressions, the fgrep command is much faster. For more
information on regular expressions, see the chapter "Regular Expressions" on page 167.

Example(s):
egrep ((if)|(while)) *.c

Searches all files in the current directory ending in the extension .c for the regular expression
((if)|(while)).

egrep [a-z]a+
Searches all files specified by grepdefault for the regular expression [a-z]a+.

egrep [a-z]a+ ..\c
Searches all files in the directory ..\c specified by grepdefault for the regular expression
[a-z]a+.

See Also: fgrep

7.3.18 EVAL

Syntax: EVAL <expr>

Description: Evalutes a given mathematical expression, and displays the result on line 1 of the message
window. For a full explanation of the rules for formulating the expression <expr>, see the
chapter "Editor Script Language" on page 177.

Example(s):
eval 5+7*3

Evaluates 5+7*3 and displays the result (26) in the message window.

eval (5+7)*3
Evaluates (5+7)*3 and displays the result (36) in the message window.

eval ((12+3)*100)/50-3

Commands 111

The Open Watcom Vi Editor Reference

Evaluates ((12+3)*100)/50-3 and displays the result (27) in the message window.

7.3.19 EXECUTE

Syntax: EXECUTE <str>

Description: Execute the string <str>. This causes the editor to behave as if the string <str> was typed
at the keyboard.

Special keys in the string are indicated as follows:

\<"key"> Any special key may be inserted for "key". The angle brackets are
required. There are a number of pre-defined keys symbols that are
recognized. These are described in the Appendix "Symbolic Keystrokes"
on page 221.

\e Short form for the escape key (rather than \<ESC>).

\n Short form for the enter key (rather than \<ENTER>).

\h If a command line command is used in the sequence, and it follows the
colon (’:’), the command is not added to the history. For example:

:\hdate\n

will display the current date and time, but the command will not enter the
command history.

\x If a command line command is used in the sequence, then this stops the
command window from opening. This prevents the "flashing" of the
command window as it is opened then closed. For example:

\x:date\n

will display the current date and time, but the command window will not be
displayed.

Example(s):
execute dd

Acts as if dd were typed, and the current line gets deleted.

execute :eval 5*3\n
Acts as if :eval 5*3<ENTER> was typed, and the number 15 gets displayed in the message
window.

See Also: keyadd, map, mapbase

112 Commands

Editor Commands

7.3.20 EXITALL

Syntax: EXITALL

Description: Exits all files. For each file that has been modified, you are prompted as to whether you
want to save the file or not.

See Also: quitall

7.3.21 EXPAND

Syntax: EXPAND

Description: Replaces all tabs in the current edit buffer with spaces.

7.3.22 FGREP

Syntax: FGRep "-c" "-i" <string> <files>

Description: Searches the file list <files> for the string <string>.

If -c is specified then the search to be case sensitive or if -i is specified then the search to be
case insensitive otherwise the setting of caseignore to determine whether or not to be case
sensitive in the search.

<string> may be surrounded by double quotes (") or a forward slash (/) if it contains any
spaces.

<files> may be a single file or a list of files. Each file name may contain file regular
expressions, see the section "File Matching Regular Expressions" on page 169 in the
chapter "Regular Expressions" for more information.

If <files> is not specified, it defaults to the setting of grepdefault.

While searching for the item, Vi displays a window that shows all files being searched.
When all matches are found, a selection window is presented with all the files that
contained <files>.

Example(s):
fgrep window *.c

Searches all files in the current directory ending in the extension .c for the string window.
This will produce out similar to the following:

Commands 113

The Open Watcom Vi Editor Reference

Figure 34. Grep Result display

See Also: egrep

7.3.23 FILES

Syntax: Files

Description: Opens a window with the a list of all files current being edited. Files that have been
modified will have a ’*’ beside them. A file may be selected from this list either with the
keyboard or with the mouse.

Example(s):
files

Displays following screen

Figure 35. Current file list

114 Commands

Editor Commands

7.3.24 FLOATMENU

Syntax: FLOATMENU <id> <slen> <x1> <y1>

Description: Activates the floating (popup) menu <id> (<id> may be 0, 1, 2 or 3).

The floating menus are defined using the command line command menu (See the section
"Menu Commands" on page 142).

<x1>, <y1> specify the coordinates of the upper left hand corner of the floating menu.
(0,0) specifies the upper left hand corner of the screen.

<slen> defines the length of a string that the menu is around the floating menu will try to
appear around the string (<id> may be 0). This is useful if you wish to pop up a menu
around some selected characters on a line, for example.

If <slen> is non-zero, then the coordinates is assumed to be the lower right-hand side of the
string that the menu is popping up around.

Example(s):
float 0 0 10 10

Bring up floating menu 0 at location (10,10) on the screen. There is no string, so the menu
position will simply cycle around (10,10) in an attempt to position itself.

float 0 6 50 20
Bring up floating menu 0 at location (50,20) on the screen. This is assumed to be on the
lower right hand side of a string of length 5 (i.e., it is assumed that the string is on line 19 and
starts at column 45). If the menu cannot fit by opening at (50,20), it will try to open at all
other corners of the string.

See Also: menu, input, get

7.3.25 GENCONFIG

Syntax: GENCONFIG <filename>

Description: Writes the current editor configuration out to the file <filename>. If <filename> is not
specified, then the file name "ed.cfg" is assumed.

7.3.26 GLOBAL

Syntax: <line_range> Global ’"!"’ /<regexp>/ <cmd>

Description: For each line in the range <line_range> that matches the regular expression <regexp>, the
editor command <cmd> is executed. <cmd> may contain replacement expressions, see the
chapter "Regular Expressions" on page 167 for more information.

If "!" is specified, then the command <cmd> is executed on every line that does NOT
match the regular expression <regexp>.

If <line_range> is not specified, then the global command operates on the entire line range
of the current edit buffer.

Commands 115

The Open Watcom Vi Editor Reference

Example(s):
g/printf/d

Deletes all lines in the current edit buffer that have the word printf.

g!/[a-c]123/ d
Deletes all lines in the current edit buffer that DO not match the regular expression [a-c]123.

g/(abc)*/ execute Iabc\e
For every line that matches the regular expression (abc)*, execute the keystrokes
Iabc<ESC> (this will insert the characters abc at the start of the line).

See Also: substitute

7.3.27 HELP

Syntax: HELP <topic>

Description: Starts a view-only edit buffer on help for a specified topic. Possible topics are:

COMmandline All command line commands.

KEYS What different keystrokes do in command mode.

REGularexpressions
How to use regular expressions.

SETtings Everything that can be modified with the set command line command.

SCRipts Vi script guide.

STARTing How to start the editor: switches, required files.

Example(s):
help com

Gives help on command line commands.

help
Gives list of help topics.

7.3.28 INSERT

Syntax: <line_number> Insert

Description: Inserts text after a the specified line number <line_number>. Insert is terminated when a
line with nothing but a ’.’ is entered.

Notes: Only valid in EX mode.

See Also: append, change

116 Commands

Editor Commands

7.3.29 JOIN

Syntax: <line_range> Join

Description: Joins the lines in the specified range <line_range> into a single line (lines are concatenated
one after another).

Example(s):
.,.+2 join

Joins the current line and the next 2 lines into a single line.

7.3.30 KEYADD

Syntax: KEYAdd <string>

Description: Adds a set of keystrokes <string> to the key buffer just as if they were typed by the user.
The processing of these keystrokes is deferred until Vi finishes its current processing, and
is ready to process keystrokes again. This is different than the execute command, which
processes the keystrokes immediately.

Keyadd is useful in a script, because it allows keystrokes to be executed after the script is
exited. This prevents re-entrance of a script that is being executed by a mapped key in
input mode, for example.

Keys are processed in FIFO order. Multiple keyadd commands cause more keys to queue
up for processing.

If you need to use one or more special keys (e.g. ENTER, F1, etc) in <string>, they may
specified as follows:

\<"key"> Any special key may be inserted for "key". The angle brackets are
required. There are a number of pre-defined keys symbols that are
recognized. These are described in the Appendix "Symbolic Keystrokes"
on page 221.

\e Short form for the escape key (rather than \<ESC>).

\n Short form for the enter key (rather than \<ENTER>).

\h If a command line command is used in the sequence, and it follows the
colon (’:’), the command is not added to the history. For example:

:\hdate\n

will display the current date and time, but the command will not enter the
command history.

\x If a command line command is used in the sequence, then this stops the
command window from opening. This prevents the "flashing" of the
command window as it is opened then closed. For example:

\x:date\n

Commands 117

The Open Watcom Vi Editor Reference

will display the current date and time, but the command window will not be
displayed.

Example(s):
keyadd dd

Acts as if dd were typed, and the current line gets deleted.

keyadd :eval 5*3\n
Acts as if :eval 5*3<ENTER> was typed, and the number 15 gets displayed in the message
window.

See Also: execute, map, mapbase

7.3.31 LIST

Syntax: <line_range> List

Description: Lists lines in the specified line range <line_range>.

Notes: Only valid in EX mode.

7.3.32 LOAD

Syntax: LOAD <script>

Description: Loads a script into memory for the life of the edit session. This allows for much faster
access to the script, since the data structures for the script do not have to be built every time
the script is invoked. This is especially important for a hook script.

For information on editor scripts, see the chapter "Editor Script Language" on page 177.

Example(s):
load rdme._vi

Loads the script rdme._vi and makes it resident.

See Also: compile, source

7.3.33 MAP

Syntax: MAP "!" <key> <string>

Description: Tells the editor to run the string of keys <string> whenver the key <key> is pressed in
command mode.

If "!" is specified, then the string of keys <string> is executed whenever <key> is pressed
in text insertion mode.

When a mapped key is pressed, it acts is if the characters in <string> are being typed at the
keyboard. Recursion does not occur; if a key that is mapped is executed after it has been
executed as a mapped key, then the default behaviour for that key is used, e.g.:

118 Commands

Editor Commands

map a 0a

will cause the editor to move to column 1, and then start appending after the character in
column 1.

If you need to specify a special key (e.g. ENTER, F1, etc) in <key>, you specify a
symbolic name for that key. There are a number of pre-defined keys symbols that are
recognized when specifying which key is being mapped/unmapped. These are described in
the Appendix "Symbolic Keystrokes" on page 221.

If you need to use one or more special keys (e.g. ENTER, F1, etc) in <string>, then you
may enter:

\<"key"> Any special key may be inserted for "key". The angle brackets are
required. There are a number of pre-defined keys symbols that are
recognized. These are described in the Appendix "Symbolic Keystrokes"
on page 221.

\e Short form for the escape key (rather than \<ESC>).

\n Short form for the enter key (rather than \<ENTER>).

\h If a command line command is used in the sequence, and it follows the
colon (’:’), the command is not added to the history. For example:

:\hdate\n

will display the current date and time, but the command will not enter the
command history.

\x If a command line command is used in the sequence, then this stops the
command window from opening. This prevents the "flashing" of the
command window as it is opened then closed. For example:

\x:date\n

will display the current date and time, but the command window will not be
displayed.

To remove a mapping, use the unmap command.

Example(s):
map K \x:next\n

Whenever K is pressed in command mode, the next command is executed. The command
window will not be displayed, because of the \x.

map CTRL_T \x:\hda\n
Whenever CTRL_T is pressed in command mode, the current date is displayed. The
command window will not be displayed, because of the \x. The command will not be added
to the command history, because of the \h.

map CTRL_W \x:fgrep \<CTRL_W>\n

Commands 119

The Open Watcom Vi Editor Reference

Whenever CTRL_W is pressed in command mode, an fgrep command, searching for the
current word, is executed. The \x keeps the command window from opening. \<CTRL_W>
simulates CTRL_W being pressed, so the current word is inserted into the command line.

map! CTRL_W \edwi
Whenever CTRL_W is pressed in text insertion mode, text insertion mode is exited (\e
simulates the ESC key being pressed), the current word is deleted, and text insertion mode is
re-entered. This has the effect of deleting the current word in text insertion mode and
appearing to remain in text insertion mode.

See Also: execute, keyadd, unmap

7.3.34 MAPBASE

Syntax: MAPBASE <key> <string>

Description: Tells the editor to run the string of keys whenver the key <string> is pressed in command
mode.

This works the same as the map command, only all characters in <string> work as their
base meaning that is, all key mappings are ignored and the keys have their default
behaviour.

See Also: execute, keyadd, map, unmap

7.3.35 MARK

Syntax: <line_number> MArk <markname>

Description: Sets the text mark <markname> on the line <line_number>. The mark name is a single
letter from a to z. This mark may then be referred to on the command line or in command
mode by using a front quote (’) before the mark name, e.g.:

’a

Example(s):
mark a

Sets the mark a on the current line. Typing the command ’a will return you to that mark.

100 mark z
Sets the mark z on line 100.

7.3.36 MATCH

Syntax: match /<rx1>/<rx2>/

Description: Set what is matched by the ’%’ command mode command. Defaults are "{","}" and
"(",")". For example, by pressing the percent key (’%’) when the cursor is on the first open
bracket (’(’) in the line:

if((i=foo(x))) return;

120 Commands

Editor Commands

moves the cursor to the last ’)’ in the line.

This command allows you to extend what is matched to general regular expressions. <rx1>
is the regular expression that opens a match, <rx2> is the regular expression that closes a
match.

Note that in the matching regular expressions, magic is set (special characters
automatically have their meaning, and do not need to be escaped).

For more information on regular expressions, see the chapter "Regular Expressions" on
page 167.

Example(s):
match /# *if/# *endif/

This adds the matching of all #if and #endif commands (an arbitrary number of spaces is
allowed to occur between the ’#’ sign and the if or endif words. If ’%’ is pressed while over
a #if statement, the cursor is moved to the corresponding #endif statement.

7.3.37 MAXIMIZE

Syntax: MAXimize

Description: Maximizes the current edit buffer window.

See Also: cascade, minimize, movewin, resize, size, tile

7.3.38 MINIMIZE

Syntax: MINimize

Description: Minimizes the current edit buffer window.

See Also: cascade, maximize, movewin, resize, size, tile

7.3.39 MOVE

Syntax: <line_range> Move <line_number>

Description: Deletes the specified range of lines <line_range> and places them after the line
<line_number>.

Example(s):
1,10 move $

Moves the first 10 lines of the file after the last line in the file.

1,. move .+1
Deletes all lines from the beginning of the file to the current line and places the lines one line
after the current line.

See Also: delete

Commands 121

The Open Watcom Vi Editor Reference

7.3.40 MOVEWIN

Syntax: MOVEWin

Description: Enter window movement mode. The cursor keys are then used to move the current edit
buffer window.

See Also: cascade, maximize, minimize, resize, size, tile

7.3.41 NEXT

Syntax: Next

Description: Moves to the next file in the list of files being edited.

See Also: prev

7.3.42 OPEN

Syntax: Open <file>

Description: Opens a new window on the specified file. If no file is specified, then a new window is
opened on the current edit buffer. These new windows are different views on the same edit
buffer.

Once multiple views on an edit buffer are opened, the window border contains a number
indicating which view of the edit buffer is associated with that file:

Figure 36. Two views of the same file

See Also: edit, view, visual

122 Commands

Editor Commands

7.3.43 POP

Syntax: POP

Description: Restores the last pushed file position.

The setting maxpush controls the maximum number of push commands that will be
remembered.

See Also: push, tag

7.3.44 PREV

Syntax: Prev

Description: Moves to the previous file in the list of files being edited.

See Also: next

7.3.45 PUSH

Syntax: PUSH

Description: Saves the current file position. The next pop command will cause a return to this position.

The setting maxpush controls the maximum number of push commands that will be
remembered.

The tag command does an implicit push.

See Also: pop, tag

7.3.46 PUT

Syntax: <line_number> PUt ’"!"’ <buffer>

Description: Puts (pastes) the copy buffer <buffer> (’1’-’9’, or ’a’-’z’) after the line <line_number>.

If <buffer> is not specified, the active copy buffer is assumed.

If "!" is specified, then the lines are put before the line <line_number>.

Example(s):
put

Pastes the active copy buffer after the current line.

1 put!
Pastes the active copy buffer before the first line in the edit buffer.

$ put a
Pastes named copy buffer a after the last line in the file.

Commands 123

The Open Watcom Vi Editor Reference

put! 4
Pastes numbered copy buffer before the current line.

See Also: delete, yank

7.3.47 QUIT

Syntax: Quit "!"

Description: Quits the current file. Quit will not quit a modified file, unless "!" is specified, in which
case all changes are discarded and the file is exited.

Example(s):
q!

Quits the current file, discarding all modifications since the last write.

See Also: write, wq, xit

7.3.48 QUITALL

Syntax: QUITAll

Description: Exits the editor if no files have been modified. If files have been modified, a prompt is
displayed asking to you verify that you really want to discard the modified file(s). If you
do not respond with a ’y’, then the command is cancelled.

Example(s):
quitall

If files have been modified, the following prompt is displayed:

Figure 37. Really Exit prompt

See Also: exitall

124 Commands

Editor Commands

7.3.49 READ

Syntax: <line_number> Read <file_name>

Description: Reads the text from file <file_name> into the current edit buffer. The lines are placed after
line specified by <line_number>. If <line_number> is not specified, the current line is
assumed.

Line 0 may be specified as <line_number> in order to read a file in before the first line of
the current edit buffer.

Each file name <file_name> may contain file regular expressions, see the section "File
Matching Regular Expressions" on page 169 in the chapter "Regular Expressions" for more
information.

If <file_name> is not specified, then a window containing a list of files in the current
directory is opened, from which a file may be selected.

If the first character of <file_name> is a dollar sign (’$’), then this indicates that a directory
is to be read in. If nothing follows, then the current directory is read. Otherwise, all
characters that follow the dollar sign are treated as a file regular expression, which is used
to read in the directory.

Example(s):
0 read test.c

Reads the file test.c into the current edit buffer and places the text before the first line of the
file.

r test.c
Reads the file test.c into the current edit buffer and places the text after the current line.

r $
Reads the current directory and places the data after the current line.

r $*.c
Reads the current directory, matching only files with .c extensions, and places the data after
the current line.

r $..\c*.*
Reads the ..\c directory, and places the data after the current line.

read
Gives a file selection display:

Commands 125

The Open Watcom Vi Editor Reference

Figure 38. File Selection display

7.3.50 RESIZE

Syntax: RESize

Description: Allows resizing of the current edit window with the keyboard. The cursor keys are used as
follows:

UP move top border up

DOWN move top border down

LEFT move right border left

RIGHT move right border right

SHIFT_UP move bottom border up

SHIFT_DOWN move bottom border down

SHIFT_LEFT move left border left

SHIFT_RIGHT move left border right

See Also: cascade, maximize, minimize, movewin, size, tile

7.3.51 SET

Syntax: SEt <variable> <value>

Description: Certain variables within Vi may be changed after Vi is executing. <value> is assigned to
<variable>.

If <variable> and <value> are not specified, the a window containing a list of all boolean
values is displayed.

126 Commands

Editor Commands

If <variable> is specified as a 2, then a window containing all other values is displayed.

From the selection window, a variable may be selected (with ENTER or double clicking the
mouse), and a new value entered. If the variable was boolean, then pressing ENTER or
double clicking toggles the value.

If a variable is a boolean variable, then it is be set via

set var - set var to TRUE
set novar - set var to FALSE

Variables other than boolean variables are set via

set var = test - set var to ’test’
set var test - set var to ’test’

Note that the ’=’ operator is optional.

For information on all the different settable options, see the chapter "Editor Settings" on
page 147.

7.3.52 SETCOLOR

Syntax: SETCOLOR <c> <r> <g>

Description: Set the color number <c> to have the RGB value <r>, <g>, . <c> may have a value of
0 to 15. <c>, <r>, and <g> may have values from 0 to 63.

This command only has an affect under operating systems where it is possible to remap the
colors in some way (DOS).

Example(s):
setcolor 1 63 0 38

This remaps color number 1 to a pink color.

setcolor 15 25 40 38
This remaps color number 15 to a pale green color.

7.3.53 SHELL

Syntax: SHell

Description: Escapes to an operating system shell.

See Also: !

7.3.54 SIZE

Syntax: SIZE <x1> <y1> <x2> <y2>

Description: Resizes the current edit buffer window to have upper left-hand corner at (<x1>,<y1>) and
lower right-hand corner at (<x2>,<y2>).

Commands 127

The Open Watcom Vi Editor Reference

Example(s):
SIZE 0 0 10 10

Changes the size of the current edit buffer window to have upper left-hand corner at (0,0) and
lower right-hand corner at (10,10).

See Also: cascade, maximize, minimize, movewin, resize, tile

7.3.55 SOURCE

Syntax: SOurce <script> <p1> <p2> ... <pn>

Description: Execute Vi source script file <script>. Optional parameters <p1> to <pn> may be
specified, these are passed to the specified script.

If "." is specified as the script name, the current file being edited is run as a script.

For information on editor scripts, see the chapter "Editor Script Language" on page 177.

Example(s):
source foo.vi abc

Executes the script foo.vi, passing it the parm abc.

source .
Executes the current edit buffer as a script.

See Also: compile, load

7.3.56 SUBSTITUTE

Syntax: <line_range> Substitute /<regexp>/<replexp>/<g><i>

Description: Over the line range <line_range>, replace each occurrence of regular expression <regexp>
with the replacement expression <replexp>.

Only the first occurrence on each line is replaced, unless <g> is specified, in which case all
occurrences on a line are replaced.

If <i> is specified, each replacement is verified before it is performed.

See the chapter "Regular Expressions" on page 167 for more information on regular
expression matching and substitution.

Example(s):
%s/foo/bar/

Changes the first occurrence of foo to bar on each line of the entire file.

1,.s/(([a-z]bc)*)/Abc\2/g
Changes all occurrences of the regular expression (([a-z]bc)*) to the substitution expression
Abc\2. The changes are only applied on lines 1 to the current line of the current edit buffer.

’a,’b/^abc//i

128 Commands

Editor Commands

Any line that starts with abc has the abc changed to the null string. The user is prompted
before each change. The changes are only applied from the line containing mark a to the line
containing mark b.

See Also: global

7.3.57 TAG

Syntax: TAG <tagname>

Description: Searches for the tag <tagname>. Tags are kept in a special file, which must be located
somewhere in your path. This file is controlled with the tagfilename setting; the default
for this setting is tags. The tags file contains a collection of procedure names and typedefs,
along with the file in which they are located and a search command/line number with which
to exactly locate the tag.

See the appendix "CTAGS" on page 219 for more information.

Example(s):
tag MyFunc

Locates the tag MyFunc in the tags file, edits the source file that contains the function
MyFunc, and moves the cursor to the definition of the function in the source file.

7.3.58 TILE

Syntax: TILE "h" | "v" | <x> <y>

Description: Tile all current file windows. The tiling layout is specified as an <x> by <y> grid. The or
bars (’|’) in the command syntax indicate that only one of the options may be used.

If no parameters are specified, maxwindowtilex and maxwindowtiley are used (this is the
default tile grid).

If "h" is specified, then files are tiled horizontally (as many as will fit).

If "v" is specified, then files are tiled vertically (as many as will fit).

Specifying <x><y> overrides the default tile grid. As a special case, specifying <x><y> as
1 1 causes all windows to be restored.

Example(s):
tile 3 5

Tile windows 3 across and 5 high.

tile 1 1
Untile windows.

tile h
Tile windows horizontally.

tile
Tile windows according to default tile grid.

Commands 129

The Open Watcom Vi Editor Reference

See Also: cascade, maximize, minimize, resize, size, movewin

7.3.59 UNABBREV

Syntax: UNABbrev <abbrev>

Description: Removes the abbreviation <abbrev>. See the abbrev command for how to set an
abbreviation.

Example(s):
unabbrev wh

Remove the abbreviation wh.

See Also: abbrev

7.3.60 UNALIAS

Syntax: UNALias <alias>

Description: Removes the command line alias <alias>. See the alias command for how to set a
command line alias.

Example(s):
unalias ai

Remove the command line alias ai.

See Also: alias

7.3.61 UNDO (command)

Syntax: Undo "!"

Description: Undo the last change. There is no limit on the number of undo’s that can be saved, except
for memory. Continuing to issue undo commands walks you backwards through your edit
history.

Specifying "!" undoes the last undo (redo). Again, there are no restrictions on this.
However, once you modify the file, you can longer undo the last undo.

7.3.62 UNMAP

Syntax: UNMAP "!" <key>

Description: Removes the mapping of the key <key> for command mode. If "!" is specified, then the
key mapping is removed for text insertion mode. See the map command for details on
mapping keys.

There are a number of pre-defined symbols that are recognized for "!". These are
described in the Appendix "Symbolic Keystrokes" on page 221.

130 Commands

Editor Commands

Example(s):
unmap CTRL_W

Removes the mapping of CTRL_W for command mode. Pressing CTRL_W in command
mode will now do the default action.

unmap! F1
Removes the mapping of F1 for text insertion mode. Typing F1 in text insertion mode will
now do the default action.

See Also: map, mapbase

7.3.63 VERSION

Syntax: VERsion

Description: Displays the current version of Vi in the message window.

7.3.64 VIEW

Syntax: VIEw "!" <file_name>

Description: Functions the same as the edit command, except that it causes the file edited to be a "view
only" file (no modification commands work).

Example(s):
view test.c

Edits the file test.c in view-only mode.

See Also: edit, open, visual

7.3.65 VISUAL

Syntax: VIsual <file_name>

Description: Causes Vi to re-enter visual mode (full screen editing mode) if Vi is in EX mode. If the
filename <file_name> is specified, this functions just like the edit command.

Example(s):
vi test.c

Return to full screen editing mode (if in EX mode) and edit the file test.c

vi
Return to full screen editing mode (if in EX mode).

See Also: edit, open, view

Commands 131

The Open Watcom Vi Editor Reference

7.3.66 WRITE

Syntax: <line_range> Write ’"!"’ <file_name>

Description: Writes the specified range of lines <line_range> to the file <file_name>.

If no line range is specified, then all lines are written.

If <file_name> is not specified, then the current file is written. If <file_name> exists, and
is not the name of the file that you are writing, then the write will fail.

Specifying "!" forces an overwrite of an existing file.

Example(s):
1,10 w! test.c

Write the first 10 lines of the current file to the file test.c, and overwrite test.c if it already
exists.

w
Write out the current file.

See Also: quit, wq, xit

7.3.67 WQ

Syntax: WQ

Description: Writes current file, and exits.

See Also: quit, write, xit

7.3.68 YANK

Syntax: <line_range> Yank <buffer>

Description: Yank (make a copy of) the specified line range <line_range>.

If <buffer> is not specified, the text is yanked (copied) into the active copy buffer.

If <buffer> (’1’-’9’, or ’a’-’z’) is specified, the text is yanked into that copy buffer.

The put command may be used to place the contents of a copy buffer into the file.

Example(s):
% y

Yanks (copies) all lines into the active copy buffer.

.,$ y z
Yanks the lines from the current line to the last line in the file into the copy buffer z.

See Also: delete, put

132 Commands

Editor Commands

7.3.69 XIT

Syntax: Xit

Description: Exits the current file, saving it if it has been modified.

See Also: quit, write, wq

Commands 133

The Open Watcom Vi Editor Reference

134 Commands

8 Windows and Menus

This chapter describes the command line commands devoted to configuring the Open Watcom Vi Editor’s
windows and menus. All windows are fully configurable: dimension, colors, existence of borders. The
menus are fully configurable: all menu topics and menu items are user settable.

A window is configured first by specifying a window. Once the a window is specified, a number of
properties may be set. These properties are described in the following section.

8.1 Window Properties

Some of the following command line commands accept colors as parameters. These colors may be
numbers in the range 0 through 15. As well, Vi has symbolic names for these colors, they are:

• black
• blue
• green
• cyan
• red
• magenta
• brown
• white
• dark_gray
• light_blue
• light_green
• light_cyan
• light_red
• light_magenta
• yellow
• bright_white

8.1.1 BORDER

Syntax: BORDER <hasbord> <fg_clr> <bg_clr>

Description: This command specifies the type of border and its colors.

<hasbord> describes the type of border: if <hasbord> is set to -1, there is no border, if
<hasbord> is set to 1, there is a border.

<fg_clr> is used to specify the foreground color of the border (0-15). It is ignored for
<hasbord> of -1.

<bg_clr> is used to specify the background color of the border (0-15). It is ignored for
<hasbord> of -1.

Window Properties 135

The Open Watcom Vi Editor Reference

Example(s):
border -1

The currently selected window has no border.

border 1 yellow black
The currently selected window has a yellow border with a black background.

8.1.2 DIMENSION

Syntax: DIMENSION <x1> <y1> <x2> <y2>

Description: (<x1>,<y1>) specifies the coordinates of the upper left-hand corner of the window, and
(<x2>,<y2>) specifies the coordinates of the lower right-hand corner of the window.

Open Watcom Vi Editor editor automatically senses the number of lines and columns
available. The global variables %(SW) (screen width) and %(SH) (screen height) are
always set. These are useful for coding dimensions that are relative to the size of the
screen. All parameters may be coded as expressions.

All coordinates are 0-based. The top left corner of the screen is (0,0). The bottom right
corner of the screen is (%(SW)-1,%(SH)-1).

Example(s):
dimension 0 1 %(SW)-1 %(SH)-3

Makes the currently selected window the full width of the screen. Its y dimensions are from
the second line of the screen and to the third last line of the screen.

dimension %(SW)-10 5 %(SW)-1 10
Makes the currently selected window’s x dimension start at the tenth column from the right
of the screen and end at the rightmost column of the screen. Its y dimensions range from the
fifth line to the tenth line of the screen.

8.1.3 ENDWINDOW

Syntax: ENDWindow

Description: Ends entry of properties for the currently selected window. The currently selected window
is then redrawn with the new properties, if it was previously visible.

8.1.4 HILIGHT

Syntax: HILIGHT <fg_clr> <bg_clr>

Description: <fg_clr> sets the foreground color and <bg_clr> sets the background color of highlighted
text in the currently selected window.

Example(s):
hilight bright_white black

Sets the highlighted color of the currently selected window to be bright white text with a
black background.

136 Window Properties

Windows and Menus

8.1.5 TEXT

Syntax: TEXT <fg_clr> <bg_clr>

Description: <bg_clr> sets the foreground color and sets the background color of text in the currently
selected window.

Example(s):
text white black

Sets the text color of the currently selected window to be white text with a black background.

8.2 Window Types

This section describes all possible windows that may be selected. These command line commands select
the window to start setting properties. See the previous section for properties that may be set.

8.2.1 COMMANDWINDOW

Syntax: COMMANDWindow

Description: This is the window that is displayed whenever Open Watcom Vi Editor is prompting for a
command line, a search string, a filter command or any other command or data.

8.2.2 COUNTWINDOW

Syntax: COUNTWindow

Description: Window that opens when repeat counts are entered. This window is disabled if repeatinfo
is not set.

8.2.3 DEFAULTWINDOW

Syntax: DEFAULTWindow

Description: When the defaultwindow is selected, all windows get the properties that are set. Note that
this is best defined first to provide the default behaviour, and all other windows that you
want to be different from the default can be specified after.

8.2.4 DIRWINDOW

Syntax: DIRWindow

Description: This is the window that you select a file from whenever no file is specified from the
command line commands edit or read.

Window Types 137

The Open Watcom Vi Editor Reference

8.2.5 EDITWINDOW

Syntax: EDITWindow

Description: This is the window that files are edited from.

8.2.6 EXTRAINFOWINDOW

Syntax: EXTRAINFOWindow

Description: This window contains extra information about possible things that may be done. It is
displayed when selecting results from the command line commands fgrep, egrep, and
files.

8.2.7 FILEWINDOW

Syntax: FILEWindow

Description: The window in which list of files currently being edited is displayed. This is displayed
when the command line command files is executed.

8.2.8 FILECWINDOW

Syntax: FILECWindow

Description: This window contains list of possible file choices when file completion cannot match one
specific file. It is displayed whenever the TAB key is pressed in a command window.

8.2.9 LINENUMBERWINDOW

Syntax: LINENUMBERWindow

Description: This is the window that line numbers are displayed in. The dimension of this window is
ignored, the absolute position of the window is decided by the position of the edit window
that it is associated with.

This window is disabled if linenumbers is not set.

8.2.10 MENUWINDOW

Syntax: MENUWindow

Description: This sets the properties of the windows that open whenever a menu is activated. Any
dimension given with this window is ignored; the position of each menu is variable.

138 Window Types

Windows and Menus

8.2.11 MENUBARWINDOW

Syntax: MENUBARWindow

Description: This window is the menu bar. This is where all menus set up with the command line menu
are displayed.

8.2.12 MESSAGEWINDOW

Syntax: MESSAGEWindow

Description: The window in which all all editor feedback is reported. The hilight color is the color that
errors are reported in.

This window needs to have two lines in order to view Open Watcom Vi Editor feedback;
however, very few messages use two lines, so you can get by with a message window that
is only one line high.

8.2.13 SETWINDOW

Syntax: SETWindow

Description: The window in which Open Watcom Vi Editor settings are displayed. This window is
displayed when the command line set command is entered without parameters or with 2 as
its only parameter.

8.2.14 SETVALWINDOW

Syntax: SETVALWindow

Description: The window in which the new value of an editor setting is entered. This window is
displayed if a value change is requested after entering the command line set with 2 as the
parameter.

8.2.15 STATUSWINDOW

Syntax: STATUSWindow

Description: This is the window where the current line and column are reported. The current line
number is displayed in the first line of the window, and the current column is displayed in
the second line of the window. This window is disabled if statusinfo is not set.

Window Types 139

The Open Watcom Vi Editor Reference

8.3 Sample Window Settings

The following examples are sample settings of the different types of windows. These commands may be
issued from the command line one at at time, or may be executed from a Open Watcom Vi Editor script.
Typically, these commands will be found in the Open Watcom Vi Editor configuration script.

Commandwindow:

commandwindow

dimension 2 %(SH)-7 %(SW)-3 %(SH)-5
text %(white) %(blud) 0
border 1 7 1
hilight %(highwhite) %(cyan) 1

endwindow

Countwindow:

countwindow

dimension 28 %(SH)-5 43 %(SH)-3
border 1 7 1
text %(white) %(blue) 0
hilight %(highwhite) %(cyan) 1

endwindow

Dirwindow:

dirwindow

dimension 15 2 %(SW)-12 %(SH)-7
border 1 7 1
text %(white) %(blue) 0
hilight %(highwhite) %(cyan) 1

endwindow

Editwindow:

editwindow

dimension 0 1 %(SW)-1 %(SH)-2
border 1 %(white) %(black)
text %(white) %(black) 0
hilight %(yellow) %(blue) 0
whitespace %(white) %(black) 0
selection %(yellow) %(blue) 0
eoftext %(white) %(black) 0
keyword %(highwhite) %(black) 0
octal %(cyan) %(black) 0
hex %(cyan) %(black) 0
integer %(cyan) %(black) 0
char %(cyan) %(black) 0
preprocessor %(yellow) %(black) 0
symbol %(white) %(black) 0
invalidtext %(yellow) %(black) 0
identifier %(white) %(black) 0
jumplabel %(cyan) %(black) 0
comment %(lightcyan) %(black) 0
float %(cyan) %(black) 0
string %(cyan) %(black) 0

endwindow

140 Sample Window Settings

Windows and Menus

Extrainfowindow:

extrainfowindow

dimension 0 1 %(SW)-1 %(SH)-3
border 1 7 1
text %(white) %(blue) 0
hilight %(purple) %(cyan) 1

endwindow

Filecwindow:

filecwindow

dimension 4 7 %(SW)-5 %(SH)-9
border 1 7 1
text %(white) %(blue) 0
hilight %(highwhite) %(cyan) 1

endwindow

Filewindow:

filewindow

dimension 26 2 %(SW)-2 %(SH)-7
border 1 7 1
text %(white) %(blue) 0
hilight %(highwhite) %(cyan) 1

endwindow

Messagewindow:

messagewindow

dimension 18 %(SH)-1 %(SW)-1 %(SH)-1
border -1
text %(white) %(blue) 0
hilight %(yellow) %(blue) 1

endwindow

Menuwindow:

menuwindow

dimension 0 1 %(SW)-1 %(SH)-3
border 1 14 1
text %(highwhite) %(blue) 0
hilight %(yellow) %(blue) 1

endwindow

Menubarwindow:

menubarwindow

dimension 0 0 %(SW)-1 0
border -1
text %(highwhite) %(blue) 0
hilight %(yellow) %(blue) 1

endwindow

Setvalwindow:

Sample Window Settings 141

The Open Watcom Vi Editor Reference

setvalwindow

dimension 46 6 %(SW)-7 9
border 1 7 1
text %(white) %(blue) 0
hilight %(highwhite) %(cyan) 1

endwindow

Setwindow:

setwindow

dimension 12 2 43 %(SH)-4
border 1 7 1
text %(white) %(blue) 0
hilight %(highwhite) %(cyan) 1

endwindow

Statuswindow:

statuswindow

dimension 0 %(SH)-1 17 %(SH)-1
border -1
text %(white) %(blue) 0
hilight %(yellow) %(blue) 1

endwindow

8.4 Menu Commands

Vi menus are set dynamically. Any menu will automatically be added to the menu bar when created, and
removed when destroyed. There are some reserved menus:

windowgadget This menu is the one that appears when the upper left hand corner of an edit window is
clicked.

float<0-3> These are floating (popup) menus. They are made to appear when the script command
floatmenu is used. There are 4 floating menus, float0 through float3.

Menus will attempt to open up where they are told to; however, if the menu cannot fit, then it will try to
open above the position that it was told to, to the left of the position that it was told to, and above and to the
left of the position that it was told to.

The following sections describe each of the command line commands for controlling menus.

8.4.1 ADDMENUITEM

Syntax: ADDMENUItem <menuname> <itemname> <cmd>

Description: Adds a new item to a previously created menu <menuname>. The item <itemname> is
added to the menu.

This command is similar to the command line command menuitem, only the menuitem
command is used when first defining a menu.

142 Menu Commands

Windows and Menus

<menuname> may be a quoted string, if the parameter contains spaces. If <menuname>
is specified as "", then a solid bar is displayed in the menu.

A character in <itemname> preceded with an ’&’ will be the hot key for activating the
menu, e.g. &Control would have ’C’ as the hot key.

The command <cmd> may be any Open Watcom Vi Editor command line command, and
is run whenever the item is selected.

See Also: menuitem

8.4.2 DELETEMENU

Syntax: DELETEMENU <menuname>

Description: Destroys menu with name <menuname>.

8.4.3 DELETEMENUITEM

Syntax: DELETEMENUItem <menuname> <index>

Description: Deletes item number <index> from menu <menuname>. The item number <index> is 0
based.

If <index> is specified as -1, then the last item is removed from the menu.

8.4.4 ENDMENU

Syntax: ENDMENU

Description: Finishes the creation of a new menu.

See Also: menu

8.4.5 MENU

Syntax: MENU <menuname>

Description: Starts the creation of a new menu <menuname>. If a menu exists with the name already, it
is destroyed and re-created. A character preceded with an ampersand (’&’) will be the hot
key for activating the menu, e.g. &Control would have ’C’ as the hot key.

<menuname> may be a reserved name: windowgadget, float0, float1, float2, or float3

See Also: endmenu, menuitem

Menu Commands 143

The Open Watcom Vi Editor Reference

8.4.6 MENUITEM

Syntax: MENUITEM <itemname> <cmd>

Description: Adds the item <itemname> to the last menu started with the menu command. Menu items
may be added until the command line command endmenu has been issued.

<itemname> may be a quoted string, if the parameter contains spaces. If <itemname> is
specified as "", then a solid bar is displayed in the menu.

A character in <itemname> preceded with an ampersand (’&’) will be the hot key for
activating the menu item, e.g. &Exit would have ’E’ as the hot key.

The command <cmd> may be any Open Watcom Vi Editor command line command, and
is run whenever the item is selected.

See Also: addmenuitem, endmenu, menu

8.5 Sample Menus

The following examples are sample menu setups. These commands may be issued from the command line
one at at time, or may be contained in a script and executed in the script. Typically, these commands will
be found in the Open Watcom Vi Editor configuration script.

This configures the menu that is popped up whenever the top left-hand corner of an edit window is clicked
with the mouse.

menu windowgadget

menuitem "&Maximize" maximize
menuitem "M&inimize" minimize
menuitem ""
menuitem "&Open another view" open
menuitem ""
menuitem "&Save" write
menuitem "&Save & close" keyadd ZZ
menuitem "Close &no save" quit!
menuitem "&Close" quit

endmenu

This configures one of the floating (popup) menus. This menu could be displayed whenever a word is
selected with the mouse.

menu float0

menuitem "&Open" edit %1
menuitem ""
menuitem "&Change" keyadd cr
menuitem "&Delete" keyadd dr
menuitem "&Yank" keyadd yr
menuitem ""
menuitem "&Fgrep" fgrep "%1"
menuitem "&Tag" tag %1

endmenu

This configures a menu bar menu item called File.

144 Sample Menus

Windows and Menus

menu &File

menuitem "&Open new file ..." edit
menuitem "&Next file" next
menuitem "&Read file ..." read
menuitem "&File list ..." file
menuitem ""
menuitem "&Save current file" write
menuitem "Save ¤t file & close" wq
menuitem ""
menuitem "En&ter command ..." keyadd \<CTRL_K>
menuitem "S&ystem" shell
menuitem ""
menuitem "E&xit" exitall

endmenu

This configures a menu bar menu item called Edit.

menu &Edit

menuitem "&Delete region" keyadd \<SHIFT_DEL>
menuitem "&Copy (yank) region" keyadd yr
menuitem "&Paste (put)" put
menuitem ""
menuitem "&Insert Text" keyadd i
menuitem "&Overstrike Text" keyadd R
menuitem ""
menuitem "&Undo" undo
menuitem "&Redo" undo!

endmenu

This configures a menu bar menu item called Position.

menu &Position

menuitem "&Start of file" 1
menuitem "&End of file" $
menuitem "Line &number" so lnum._vi
menuitem ""
menuitem "S&tart of line" keyadd 0
menuitem "En&d of line" keyadd $
menuitem ""
menuitem "Search &forwards" keyadd /
menuitem "Search &backwards" keyadd ?
menuitem "&Last search" keyadd n
menuitem "&Reverse last search" keyadd N

endmenu

This configures a menu bar menu item called Window.

menu &Window

menuitem "&Tile windows" tile
menuitem "&Cascade windows" cascade
menuitem "&Reset windows" tile 1 1
menuwindowlist

endmenu

This configures a menu bar menu item called Options.

Sample Menus 145

The Open Watcom Vi Editor Reference

menu &Options

menuitem "&Settings ..." set
endmenu

This configures a menu bar menu item called Help.

menu &Help

menuitem "&Command Line" help com
menuitem "&Key Strokes" help keys
menuitem "&Regular Expressions" help reg
menuitem "&Scripts" help scr
menuitem "S&ettings" help set
menuitem "Starting &Up" help start

endmenu

146 Sample Menus

9 Editor Settings

This chapter describes the various options that may be controlled using the Open Watcom Vi Editor’s set
command. Options are typically set in the configuration script however, options are settable at execution
time as well.

If you know the option you wish to set, you may just issue the set command directly at the command
prompt, e.g.:

set nocaseignore
set autosaveinterval=10

A boolean option is set in the following way:

set autoindent - turns on autoindent
set noautoindent - turns off autoindent

Short forms may also be used; for example:

set ai - turns on autoindent
set noai - turns off autoindent

A non-boolean option may be set in the following way:

set filename=test.c - sets current filename to ’test.c’
set filename test2.c - sets current filename to ’test2.c’

Note that the assignment operator ’=’ is optional.

If you do not know the boolean option you wish to set, you may issue the set command with no option at
the command prompt, e.g.:

set

This will cause a menu of all possible settings to appear. These values may be changed by either cursoring
to the desired one and pressing enter, or by double clicking on the desired one with the mouse. Boolean
settings will toggle between TRUE and FALSE. Selecting any other setting will cause a window to pop up,
displaying the old value and prompting you for the new value. This window may be cancelled by pressing
the ESC key.

Editor Settings 147

The Open Watcom Vi Editor Reference

Figure 39. Vi Settings Selection list

When you are finished with the settings menus, you may close the window by pressing the ESC key.

9.1 Boolean Settings

The section contains descriptions of the boolean settings.

9.1.1 autoindent

Syntax: autoindent [ai]

Description: In text insertion mode, autoindent causes the cursor to move to start of previous line when
a new line is started. In command mode, autoindent causes the cursor to go to the first non
white-space when ENTER is pressed.

9.1.2 automessageclear

Syntax: automessageclear [ac]

Description: Automatically erases the message window when a key is typed in command mode.

9.1.3 beepflag

Syntax: beepflag [bf]

Description: Vi normally beeps when an error is encountered. Setting nobeepflag disables the beeping.

148 Boolean Settings

Editor Settings

9.1.4 caseignore

Syntax: caseignore [ci]

Description: Causes all searches to be case insensitive if set.

9.1.5 changelikevi

Syntax: changelikevi [cv]

Description: If set, then the change command behaves like UNIX Vi, i.e. if ESC is pressed when no
change has been made, the text is deleted. Normally, pressing ESC cancels the change
without deleting the text.

9.1.6 cmode

Syntax: cmode [cm]

Description: When cmode is set, certain things will happen when you are entering text:

• After entering a line ending in ’{’, the next line will be indented a shiftwidth further
than the current one.

• After entering a line ending in ’}’, the current line is shifted to match the indentation
of the line with the matching ’{’. The cursor will flash for a brief instant on the
matching ’{’ if showmatch is set.

• All lines entered will have trailing white space trimmed off.

• "case" and "default" statements are shifted to be aligned with switch statements.

Each file has its own cmode setting; so setting cmode in one file and not in another (during
the same editing session) will work.

One thing that is useful is to add the following lines to your read hook script:

if %E == .c
set cmode

else
set nocmode

endif

This will cause cmode to be set if the file has a .c extension, and not to be set for any other
type of file.

9.1.7 columninfilestatus

Syntax: columninfilestatus [cs]

Description: Causes the current column to be added to file status display (obtained when typing
CTRL_G).

Boolean Settings 149

The Open Watcom Vi Editor Reference

9.1.8 currentstatus

Syntax: currentstatus [ct]

Description: Enables the display of the current status on the menu bar. The position on the menu bar is
controlled with currentstatuscolumn.

9.1.9 drawtildes

Syntax: drawtildes [dt]

Description: If drawtildes is true, then the all lines displayed that do not have any data associated with
them will have a tilde (’~’) displayed on the line. If drawtildes is false, then no tidles will
be displayed and the string fileendstring will be displayed after the last line with data.

9.1.10 eightbits

Syntax: eightbits [eb]

Description: If eightbits is set, then all characters are displayed as normal. If noeightbits is set then
non-printable ASCII will be displayed as control characters.

9.1.11 escapemessage

Syntax: escapemessage [em]

Description: Display the current file status whenever the ESC key is pressed in command mode.

9.1.12 extendedmemory

Syntax: extendedmemory [xm]

Description: If extendedmemory is set, extended memory is used if it is present (standard extended,
EMS, XMS). This option applies to the real-mode DOS version of Vi only.

9.1.13 ignorectrlz

Syntax: ignorectrlz [iz]

Description: Normally, a CTRL_Z in a file acts as an end-of-file indicator. Setting ignorectrlz causes Vi
to treat CTRL_Z as just another character in the file. This option may also be selected
using the ’-z’ option when invoking Vi.

150 Boolean Settings

Editor Settings

9.1.14 ignoretagcase

Syntax: ignoretagcase [it]

Description: When using the "-t" command line option of Vi, the tag that is matched is normally case
sensitive. Setting ignoretagcase causes the tag matching to be case insensitive.

9.1.15 magic

Syntax: magic [ma]

Description: If magic is set, then all special characters in a regular expression are treated as "magic", and
must be escaped to be used in an ordinary fashion. If nomagic is set, then any special
characters in magicstring are NOT treated as magic characters by the regular expression
handler, and must be escaped to have special meaning.

Magic characters are: ^$.[()|?+*\@

9.1.16 pauseonspawnerr

Syntax: pauseonspawnerr [ps]

Description: This option, if set, causes Vi to pause after spawning (running a system command) if there
was an error, even if the system command was spawned from a script. Normally, a
command spawned from a script does not pause when control returns to the editor.

9.1.17 quiet

Syntax: quiet [qu]

Description: When running in quiet mode, Vi does not update the screen. This is useful when running a
complex script, so that the activity of the editor is hidden. This option may be selected
when invoking Vi by using the ’-q’ switch, causing Vi to run in a ’batch mode’.

9.1.18 quitmovesforward

Syntax: quitmovesforward [qf]

Description: If this option is set, then when a file is quit, the next file in the list of files is moved to.
Otherwise, the previous file in the list of files is moved to.

9.1.19 readentirefile

Syntax: readentirefile [rf]

Description: If readentirefile is set, then the entire file is read into memory when it is edited. This is the
default setting. However, if noreadentirefile is set, then the file is only read into memory as

Boolean Settings 151

The Open Watcom Vi Editor Reference

it is needed. This option is useful when you only want to look at the first few pages of a
large file. This option may be selected when invoking Vi by using the ’-n’ switch.

9.1.20 readonlycheck

Syntax: readonlycheck [rc]

Description: This option causes Vi to complain about modifications to read-only files every time the file
is modified.

9.1.21 realtabs

Syntax: realtabs [rt]

Description: If norealtabs is set, then tabs are expanded to spaces when the file is read.

9.1.22 regsubmagic

Syntax: regsubmagic [rm]

Description: If noregsubmagic is set, then escaped characters have no meaning in regular expression
substitution expressions.

9.1.23 samefilecheck

Syntax: samefilecheck [sc]

Description: Normally, Vi just warns you if you edit a file twice (with a different path). If
samefilecheck is set, then if you edit a file that is the same as a file already being edited
(only you specified a different path), then that file will be brought up, rather than a new
copy being read in.

9.1.24 saveconfig

Syntax: saveconfig [sn]

Description: If this option is set, then the editor’s configuration (fonts, colors, settings, etc) is saved
when the editor is exited.

This option is only valid with the GUI versions of the editor.

9.1.25 saveposition

Syntax: saveposition [so]

Description: If this option is set, then the editor’s position and size is saved when the editor is exited,
and restored the next time the editor is started.

152 Boolean Settings

Editor Settings

This option is only valid with the GUI versions of the editor.

9.1.26 searchwrap

Syntax: searchwrap [sw]

Description: When searching a file, Vi normally wraps around the top or bottom of the file. If
nosearchwrap is set, then Vi terminates its searches once it reaches the top or bottom of the
file.

9.1.27 showmatch

Syntax: showmatch [sm]

Description: If showmatch is set, the Vi briefly moves the cursor to a matching ’(’ whenever a ’)’ is
typed while entering text. Also, the matching ’{’ is shown if a ’}’ is typed if cmode is set.

9.1.28 tagprompt

Syntax: tagprompt [tp]

Description: If a more than one instance of a tag is found in the tags file, a list of choices is displayed if
tagprompt is set.

9.1.29 undo

Syntax: undo [un]

Description: Setting noundo disables Vi’s undo ability.

9.1.30 verbose

Syntax: verbose [ve]

Description: If enabled, this option causes Vi to display extra messages while doing involved
processing.

9.1.31 wordwrap

Syntax: wordwrap [ww]

Description: If enabled, word movement commands (’w’,’W’,’b’,’B’) will wrap to the next or previous
line.

Boolean Settings 153

The Open Watcom Vi Editor Reference

9.1.32 wrapbackspace

Syntax: wrapbackspace [ws]

Description: If this option is set, pressing backspace while on column one of a line will cause Vi to wrap
to the end of the previous line (while in text insertion mode).

9.1.33 writecrlf

Syntax: writecrlf [wl]

Description: Normally, lines are written with carriage return and line feeds at the end of each line. If
nowritecrlf is set, the lines are written with only a line feed at the end.

9.1.34 Mouse Control Booleans

The section contains descriptions of the boolean settings affecting the mouse.

9.1.34.1 lefthandmouse

Syntax: lefthandmouse [lm]

Description: When lefthandmouse is set, the right and left mouse buttons are inverted.

9.1.34.2 usemouse

Syntax: usemouse [um]

Description: This option enables/disables the use of the mouse in Vi.

9.1.35 Window Control Booleans

The section contains descriptions of the boolean settings affecting windows.

9.1.35.1 clock

Syntax: clock [cl]

Description: This enables/disables the clock display. The position of the clock is controlled by the
clockx and clocky set commands.

9.1.35.2 linenumbers

Syntax: linenumbers [ln]

Description: This option turns on the line number window. This window is displayed on the left-hand
side of the edit window by default, unless linenumsonright is set.

154 Boolean Settings

Editor Settings

9.1.35.3 linenumsonright

Syntax: linenumsonright [lr]

Description: Setting linenumsonright causes the line number window to appear on the right-hand side of
the edit window.

9.1.35.4 marklonglines

Syntax: marklonglines [ml]

Description: If this option is set, then any line that exceeds the with of the screen has the last character
highlighted. If endoflinechar is a non-zero ASCII value, then the last character is
displayed as that ASCII value.

9.1.35.5 menus

Syntax: menus [me]

Description: This option enables/disables the menu bar.

9.1.35.6 repeatinfo

Syntax: repeatinfo [ri]

Description: Normally, Vi echos the repeat count in the countwindow as it is typed. Setting
norepeatinfo disables this feature.

9.1.35.7 spinning

Syntax: spinning [sp]

Description: If set, this option enables the busy-spinner. Whenever the editor is busy, a spinner will
appear. The position of the spinner is controlled using the spinx and the spiny set
commands.

9.1.35.8 statusinfo

Syntax: statusinfo [si]

Description: If set, this option enables the status info window. This window contains the current line
and column, and is controlled using the statuswindow window command.

9.1.35.9 toolbar

Syntax: toolbar [tb]

Description: This option enables/disables the toolbar.

This option is only valid with the GUI versions of the editor.

Boolean Settings 155

The Open Watcom Vi Editor Reference

9.1.35.10 windowgadgets

Syntax: windowgadgets [wg]

Description: This option enables/disables gadgets on edit session windows.

9.2 Non-Boolean Settings

The section contains descriptions of the non-boolean settings.

9.2.1 autosaveinterval

Syntax: autosaveinterval <seconds>

Description: Sets the number of seconds between autosaves of the current file to the backup directory.
Autosave is disabled if <seconds> is 0. The backup directory is defined using the tmpdir
parameter.

9.2.2 commandcursortype

Syntax: commandcursortype <size>

Description: Sets the size of the cursor when in command mode. Values for <size> are 0 to 100 (0=full
size, 100=thin).

9.2.3 endoflinechar

Syntax: endoflinechar <ascii_val>

Description: If marklonglines is set, and <ascii_val> is non-zero, then the character in the last column
of a line wider than the screen is displayed as the ASCII value <ascii_val>.

9.2.4 exitattr

Syntax: exitattr <attr>

Description: Defines the attribute to be assigned to the screen when Vi is exited. The attribute is
composed of a foreground and a background color, (16 * background + foreground gives
<attr>). The default is 7 (white text, black background).

This option is only valid with the character mode versions of the editor.

156 Non-Boolean Settings

Editor Settings

9.2.5 fileendstring

Syntax: fileendstring <string>

Description: If drawtildes is false, then the character string <string> will be displayed after the last line
with data.

9.2.6 grepdefault

Syntax: grepdefault <rexexp>

Description: Default files to search when using the fgrep or egrep commands. <rexexp> is a file
matching regular expression, the default is *.(c|h) For more information, see the section
"File Matching Regular Expressions" on page 169.

9.2.7 hardtab

Syntax: hardtab <dist>

Description: This controls the distance between tabs when a file is displayed. The default is 8 (4 on
QNX).

9.2.8 historyfile

Syntax: historyfile <fname>

Description: If the history file is defined, your command and search history is saved across editing
sessions in the file <fname>.

9.2.9 insertcursortype

Syntax: insertcursortype <size>

Description: Sets the size of the cursor when inserting text in text insertion mode. Values for <size> are
0 to 100 (0=full size, 100=thin).

9.2.10 magicstring

Syntax: magicstring <str>

Description: If magic is not set, then the characters specified in <str> are NOT treated as magic
characters by the regular expression handler, and must be escaped to have special meaning.

Magic characters are: ^$.[()|?+*\@

Non-Boolean Settings 157

The Open Watcom Vi Editor Reference

9.2.11 maxclhistory

Syntax: maxclhistory <numcmds>

Description: Vi keeps a history of commands entered at the command line. <numcmds> sets the
number of commands kept in the history.

9.2.12 maxemsk

Syntax: maxemsk <kbytes>

Description: Sets the maximum number of kilobytes of EMS memory to be used by Vi (DOS real-mode
version only).

This option can only be set during editor initialization.

9.2.13 maxfilterhistory

Syntax: maxfilterhistory <numfiltercmds>

Description: Vi keeps a history of the filter commands entered. <numfiltercmds> sets the number of
filter commands kept in the history.

9.2.14 maxfindhistory

Syntax: maxfindhistory <numsearchcmds>

Description: Vi keeps a history of search commands entered. <numsearchcmds> sets the number of
search commands kept in the history.

9.2.15 maxlinelen

Syntax: maxlinelen <maxlne>

Description: This parameter controls the maximum line length allowed by Vi. The default value is 512
bytes. Any lines longer than <maxlne> are broken up into multiple lines.

9.2.16 maxpush

Syntax: maxpush <num>

Description: Controls the number of pushed file positions that will be remembered. Once more than
<num> push or tag commands have been issued, the first pushed positions are lost.

158 Non-Boolean Settings

Editor Settings

9.2.17 maxswapk

Syntax: maxswapk <n>

Description: Sets the maximum number of kilobytes of disk space to be used for temporary storage by
Vi.

This option can only be set during editor initialization.

9.2.18 maxxmsk

Syntax: maxxmsk <kbytes>

Description: Sets the maximum number of kilobytes of XMS memory to be used by Vi (DOS real-mode
version only).

This option can only be set during editor initialization.

9.2.19 pagelinesexposed

Syntax: pagelinesexposed <lines>

Description: Sets the number of lines of context left exposed when a page up/down is done. For
example, if <lines> is set to 1, then when a page down key is pressed, the bottom line of the
file will be visible at the top of the new page.

9.2.20 overstrikecursortype

Syntax: overstrikecursortype <size>

Description: Sets the size of the cursor when in overstriking text in text insertion mode. Values for
<size> are 0 to 100 (0=full size, 100=thin).

9.2.21 radix

Syntax: radix <rdx>

Description: Sets the radix (base) of the results of using the command line command eval. The default
is base 10.

9.2.22 shiftwidth

Syntax: shiftwidth <nsp>

Description: Sets the number of spaces inserted/deleted by the shift operators (’>’ and ’<’), CTRL_D
and CTRL_T in text insertion mode, and by autoindent and cmode when they are
indenting.

Non-Boolean Settings 159

The Open Watcom Vi Editor Reference

9.2.23 stackk

Syntax: stackk <kbytes>

Description: Sets the size (in kilobytes) of the stack used by Vi. The minimum is 10. This can be set
higher if you plan on using nested scripts that go deeper than 4 or 5 levels.

This option can only be set during editor initialization.

9.2.24 statussections

Syntax: statussections <sects>

Description: The controls the appearance of the bars in the status window. A list of distances (in pixels)
is given. This distance is measured from the start of the status window. Each section may
have something put in it via the statusstring

This option is only valid with the GUI versions of the editor.

9.2.25 statusstring

Syntax: statusstring <str>

Description: This controls what is displayed in the status window. Any characters may be in this string.
Additionally, the dollar sign (’$’) is a special character. It is used in combination with
other characters to represent special values:

• $<n>C current column number. If <n> is specified (a number), then the column
number will be padded with spaces so that the it occupies <n> characters.

• $D current date

• $H current hint text from menus or toolbar (GUI editors only)

• $<n>L current line number. If <n> is specified (a number), then the line number
will be padded with spaces so that the it occupies <n> characters.

• $M current mode the editor is in

• $T current time

• $n skip to next line in status window (character mode editors only)

• $$ replaced with a ’$’

• $c replaced with a comma ’,’

• $[skip to next block in the status window (GUI editors only)

• $| text will be centered (within current block for GUI editors)

160 Non-Boolean Settings

Editor Settings

• $> text will be right-justified (within current block for GUI editors)

• $< text will be left-justified (within current block for GUI editors)

A number may precede the L or the C, to indicate the amount of space that the string should
occupy; for example, $6L will cause the line number to always occupy at least 6 spaces.

The string may be surrounded by quotes if spaces are being used. The default status string
setting for character mode editors is:

set statusstring = "L:$6L C:$6C"

For GUI editors, the default status string setting is:

set statusstring = "Line:$5L$[Col:$3C$[Mode:
M[$|$T$[$H"

9.2.26 shellprompt

Syntax: shellprompt <string>

Description: This setting controls what the prompt at the command line will be after using the shell
command.

9.2.27 tabamount

Syntax: tabamount <nsp>

Description: Sets the number of spaces inserted when the tab key is pressed in a text insertion mode. If
realtabs is set, these spaces will be changed into tabs, based on the setting of hardtab.

9.2.28 tagfilename

Syntax: tagfilename <fname>

Description: This defines the file name that Vi is to use to locate tags in. The default is the name tags.

9.2.29 tmpdir

Syntax: tmpdir <dir>

Description: This is used to specify the directory where all temporary editor files are to be created.

This option can only be set during editor initialization.

Non-Boolean Settings 161

The Open Watcom Vi Editor Reference

9.2.30 word

Syntax: word <str>

Description: This defines the word used by Vi. <str> is a group of character pairs. Each pair defines a
range; e.g. 09az defines the characters 0 through 9 and a thorough z. Any character in the
ranges defined by <str> is considered part of a word.

The default for word is "__09AZaz".

The word will be delimited by white space (spaces or tabs) and all characters not in the
ranges defined by <str>.

9.2.31 wrapmargin

Syntax: wrapmargin <margin>

Description: If wrapmargin is set to a non-zero value, then word wrapping is enabled. As text is entered,
the position of the cursor is monitored. Once the cursor gets within <margin> characters of
the right margin, the current word is moved to a new line.

9.2.32 Mouse Control Values

The section contains descriptions of the non-boolean settings affecting the mouse.

9.2.32.1 mousedclickspeed

Syntax: mousedclickspeed <ticks>

Description: Sets the number of ticks between the first mouse button depress and the second mouse
button depress for the action to count as a double-click. A tick is approximately 1/18 of a
second.

This option is only valid with the character mode versions of the editor.

9.2.32.2 mouserepeatdelay

Syntax: mouserepeatdelay <ticks>

Description: Sets the number of ticks between when a mouse button is depressed and when the button
starts to "repeat". A tick is approximately 1/18 of a second.

This option is only valid with the character mode versions of the editor.

9.2.32.3 mousespeed

Syntax: mousespeed <speed>

162 Non-Boolean Settings

Editor Settings

Description: Sets the speed of the mouse. <speed> may be in the range 0-31 (0 is the fastest, 31 is the
slowest).

This option is only valid with the character mode versions of the editor.

9.2.32.4 wordalt

Syntax: wordalt <str>

Description: This defines the alternate word used when double clicking the mouse. <str> is defined in
the same fashion as for the word setting.

The default for wordalt is "::..__09AZaz".

9.2.33 Window Control Values

The section contains descriptions of the non-boolean settings affecting windows.

9.2.33.1 buttonheight

Syntax: buttonheight <height>

Description: Sets the height (in pixels) of the tools on the toolbar.

This option is only valid with the GUI versions of the editor.

9.2.33.2 buttonwidth

Syntax: buttonwidth <width>

Description: Sets the width (in pixels) of the tools on the toolbar.

This option is only valid with the GUI versions of the editor.

9.2.33.3 clockx

Syntax: clockx <x>

Description: Sets the x-coordinate of where the clock is to be displayed, if clock is enabled.

This option is only valid with the character mode versions of the editor.

9.2.33.4 clocky

Syntax: clocky <y>

Description: Sets the y-coordinate of where the clock is to be displayed, if clock is enabled.

This option is only valid with the character mode versions of the editor.

Non-Boolean Settings 163

The Open Watcom Vi Editor Reference

9.2.33.5 currentstatuscolumn

Syntax: currentstatuscolumn <col>

Description: Controls which column current status information is displayed in on the the menu bar, if
currentstatus is enabled.

This option is only valid with the character mode versions of the editor.

9.2.33.6 cursorblinkrate

Syntax: cursorblinkrate <ticks>

Description: Controls the speed at which the cursor blinks at.

This option is only valid with the GUI versions of the editor.

9.2.33.7 gadgetstring

Syntax: gadgetstring <str>

Description: This string controls the characters that are used to draw the gadgets on the border. The
characters in the string are used as follows:

1. top left corner of edit window
2. top right corner of edit window
3. bottom left corner of edit window
4. bottom right corner of edit window
5. left side of edit window
6. top and bottom of edit window
7. left side of file name on top of border of edit window
8. right side of file name on top of border of edit window
9. cursor up gadget on scroll bar
10. cursor down gadget on scroll bar
11. right side of edit window (scroll bar area)
12. scroll thumb

This option is only valid with the character mode versions of the editor.

9.2.33.8 inactivewindowcolor

Syntax: inactivewindowcolor <clr>

Description: Sets the foreground color of an edit window border when it is inactive (not the current edit
window). <clr> may be 0-15, or one of the previously defined color keywords.

This option is only valid with the character mode versions of the editor.

164 Non-Boolean Settings

Editor Settings

9.2.33.9 maxtilecolors

Syntax: maxtilecolors <n>

Description: Controls the number of tile colors for tiled windows (when using the tile command).

This option is only valid with the character mode versions of the editor.

9.2.33.10 maxwindowtilex

Syntax: maxwindowtilex <x>

Description: Defines the maximum number of windows that may be tiled together in the x direction
when using the tile command.

This option is only valid with the character mode versions of the editor.

9.2.33.11 maxwindowtiley

Syntax: maxwindowtiley <y>

Description: Defines the maximum number of windows that may be tiled together in the y direction
when using the tile command.

This option is only valid with the character mode versions of the editor.

9.2.33.12 movecolor

Syntax: movecolor <attr>

Description: Controls the color attributes of an edit window border when the window is being moved
(either by using the mouse or by using the movewin command). The attribute is composed
of a foreground and a background color, (16 * background + foreground gives <attr>).

This option is only valid with the character mode versions of the editor.

9.2.33.13 resizecolor

Syntax: resizecolor <attr>

Description: Controls the color attributes of an edit window border when the window is being resized
(either by using the mouse or by using the resize command). The attribute is composed of
a foreground and a background color, (16 * background + foreground gives <attr>).

This option is only valid with the character mode versions of the editor.

9.2.33.14 spinx

Syntax: spinx <x>

Non-Boolean Settings 165

The Open Watcom Vi Editor Reference

Description: Sets the x-coordinate of where the busy spinner is displayed, if spinning is enabled.

This option is only valid with the character mode versions of the editor.

9.2.33.15 spiny

Syntax: spiny <y>

Description: Sets the y-coordinate of where the busy spinner is displayed, if spinning is enabled.

This option is only valid with the character mode versions of the editor.

9.2.33.16 tilecolor

Syntax: tilecolor <n fg bg>

Description: Sets tile area <n> to have the foreground color <fg> and the background color <bg>.

The tile area <n> must be in the range 1 to maxtilecolors.

The colors may be in the range 0-15, or one of the previously defined color keywords.

This option is only valid with the character mode versions of the editor.

166 Non-Boolean Settings

10 Regular Expressions

Regular expressions are a powerful method of matching strings in your text. Commands that use regular
expressions are:

• forward slash (’/’) command mode key (search forwards)

• question mark (’?’) command mode key (search backwards)

• forward slash (’/’) command line address (search forwards)

• question mark (’?’) command line address (search backwards)

• substitute command line command

• global command line command

• egrep command line command

• match command line command

Different characters in a regular expression match different things. A list of all special (or "magical")
characters is:

• A backslash (’\’) followed by a single character other than new line matches that character.

• The caret (’^’) matches the beginning of a line.

• The dollar sign (’$’) matches the end of a line.

• The dot (’.’) matches any character.

• A single character that does not have any other special meaning matches that character.

• A string enclosed in brackets [] matches any single character from the string. Ranges of ASCII
character codes may be abbreviated as in "a-z0-9". A ’]’ may occur only as the first character of the
string. A literal ’-’ must be placed where it cannot be mistaken as a range indicator. If a caret (’^’)
occurs as the first character inside the brackets, then any characters NOT in the string are matched.

• A regular expression followed by an asterisk (’*’) matches a sequence of 0 or more matches of the
regular expression.

• A regular expression followed by a plus sign (’+’) matches one or more matches of the regular
expression.

• A regular expression followed by a question mark (’?’) matches zero or one matches of the regular
expression.

• Two regular expressions concatenated match a match of the first followed by a match of the second.

Regular Expressions 167

The Open Watcom Vi Editor Reference

• Two regular expressions separated by an or bar (’|’) match either a match for the first or a match for
the second.

• A regular expression enclosed in parentheses matches a match for the regular expression.

• The order of precedence of operators at the same parenthesis level is the following: [], then *+?,
then concatenation, then |.

• All regular expressions following an at sign (’@’) are to be treated as case sensitive, regardless of
the setting of caseignore.

• All regular expressions following a tilde (’~’) are to be treated as case insensitive, regardless of the
setting of caseignore.

• If an exclamation point (’!’) occurs as the first character in a regular expression, it causes the
ignoring of the magic setting; that is, all magic characters are treated as magical. An exclamation
point (’!’) is treated as a regular character if it occurs anywhere but at the very start of the regular
expression.

If a regular expression could match two different parts of the line, it will match the one which begins
earliest. If both begin in the same place but match different lengths, or match the same length in different
ways, then the rules are more complicated.

In general, the possibilities in a list of branches are considered in left-to-right order, the possibilities for ‘*’,
‘+’, and ‘?’ are considered longest-first, nested constructs are considered from the outermost in, and
concatenated constructs are considered leftmost-first. The match that will be chosen is the one that uses the
earliest possibility in the first choice that has to be made. If there is more than one choice, the next will be
made in the same manner (earliest possibility) subject to the decision on the first choice. And so forth.

For example, ‘(ab|a)b*c’ could match ‘abc’ in one of two ways. The first choice is between ‘ab’ and ‘a’;
since ‘ab’ is earlier, and does lead to a successful overall match, it is chosen. Since the ‘b’ is already
spoken for, the ‘b*’ must match its last possibility the empty string since it must respect the earlier choice.

In the particular case where no ‘|’s are present and there is only one ‘*’, ‘+’, or ‘?’, the net effect is that the
longest possible match will be chosen. So ‘ab*’, presented with ‘xabbbby’, will match ‘abbbb’. Note that
if ‘ab*’ is tried against ‘xabyabbbz’, it will match ‘ab’ just after ‘x’, due to the begins-earliest rule.

10.1.1 Regular Expression BNF

A pseudo-BNF for regular expressions is:

reg-exp {branch}|{branch}|...

branch {piece}{piece}...

piece {atom{* or + or ?}}{atom{* or + or ?}}... * - match 0 or more of the atom + - match 1 or
more of the atom ? - match a match of the atom, or the null string

atom (reg-exp) or range or ~ or @ or ^ or $ or \char or char

range [{^} char and/or charlo-charhi]

’^’ causes negation of range.

168 Regular Expressions

Regular Expressions

. Match any character.

^ Match start of line.

$ Match end of line.

@ What follows is to be searched with case sensitivity.

~ What follows is to be searched without case sensitivity.

! If it occurs as the first character in a regular expression, it causes the ignoring of the magic
setting; that is, all magic characters are treated as magical. ! is treated as a regular
character if it occurs anywhere but at the very start of the regular expression.

char Any character.

\char Forces \char to be accepted as char (no special meaning) except \t matches a tab character if
realtabs is set.

10.2 File Matching Regular Expressions

When specifying a file name in Vi, it is possible to use a file matching regular expression. This expression
is similar to a regular expression, but has a couple of differences:

1. A dot (’.’) specifies an actual dot in the file name.

2. An asterisk (’*’) is equivalent to ’.*’ (matches 0 or more characters).

3. A question mark (’?’) is equivalent to a regular expression dot (’.’); i.e., a question mark matches
exactly one character.

4. Caret (’^’) has no meaning.

5. Dollar sign (’$’) has no meaning.

6. Backslash (’\’) has no meaning (it is used as a directory separator).

Imagine the list of files:

a.c
abc.c
abc
bcd.c
bad
xyz.c

The following examples show how what files from the above list would be matched by various file name
regular expressions:

File Matching Regular Expressions 169

The Open Watcom Vi Editor Reference

a*.c - all files that start with ’a’ and end in ’.c’.

matches: "a.c" and "abc.c"

(a|b)*.c - all files that start with an ’a’ or a ’b’ and end in ’.c’
matches: "a.c" "abc.c" and "bcd.c"

*d.c - all files that end in ’d.c’.
matches: "bcd.c"

* - all files.

. - all files that have a dot in them.
matches: a.c abc.c bcd.c xyz.c

10.3 Replacement Strings

If you are dealing with regular expression search and replace, then there are some special character
sequences in the replacement string.

& Each instance of ‘&’ in the replacement string is replaced by the entire string of matched
characters.

\\ Used to enter a ’\’ in the replacement string.

\n Replaced with a new line.

\t Replaced with a tab (if realtabs is set).

\<n> Each instance of <n>, where <n> is a digit from 0 to 9, is replaced by the n’th
sub-expression in the regular expression.

\u The next item in replacement string is changed to upper case.

\l The next item in replacement string is changed to lower case.

\U All items following \U in the replacement string are changed to upper case, until a \E or \e
is encountered.

\L All items following \L in the replacement string are changed to lower case, until a \E or \e
is encountered

\e Terminate a \U or \L

\E Terminate a \U or \L.

\|<n> Substitutes spaces up to column <n>, so that the item that follows occurs at column <n>.

\# Substitutes current line number that the match occurred on.

170 Replacement Strings

Regular Expressions

10.4 Controlling Magic Characters

By default, all special characters in a regular expression are "magical"; that is, if a special character is used
it has a special meaning. To use a special character, like (, it must be escaped: \(.

However, it is possible to change this using the magic setting and the magicstring setting. If magic is set,
then all special characters are magical. If magic is NOT set, then any special characters listed in
magicstring lose their special meaning, and are treated as regular characters. For example, the following
command line commands

set nomagic
set magicstring=()

set up Vi so that the brackets () lose their special meaning. To use the characters in their "magical" way,
they must be escaped with a \.

Replacement strings special character sequences can be disabled by turning off the regsubmagic setting.

10.5 Regular Expression Examples

The following sections contain examples of regular expression usage for text matching and text
replacement.

10.5.1 Matching Examples

This section gives examples of different types of regular expressions. Each example shows the regular
expression, the initial string, and the result. In the result, the part of the string that is matched is underlined.

a+

1.

String: defabc

Matches: defabc
2.

String: aaabca

Matches: aaabca
3.

String: zzzaaayyy

Matches: zzzaaayyy

^a+

1.

String: defabc

Regular Expression Examples 171

The Open Watcom Vi Editor Reference

Matches: defabc
2.

String: aaabca

Matches: aaabca
3.

String: zzzaaayyy

Matches: zzzaaayyy

ab*

1.

String: xabc

Matches: xabc
2.

String: abbbbbcabc

Matches: abbbbbcabc
3.

String: dddacab

Matches: dddacab

ab*$

1.

String: xabc

Matches: abc
2.

String: abbbbbcabc

Matches: abbbbbcabc
3.

String: dddacab

Matches: dddacab
4.

String: defabbbbb

Matches: defabbbbb

ab?

172 Regular Expression Examples

Regular Expressions

1.

String: abc

Matches: abc
2.

String: abbbbbcabc

Matches: abbbbbcabc
3.

String: acab

Matches: acab

[abc]

1.

String: abc

Matches: abc
2.

String: defb

Matches: defb
3.

String: defcghi

Matches: defcghi

a|b

1.

String: abc

Matches: abc
2.

String: bac

Matches: bac
3.

String: defabc

Matches: defabc

[a-z]+

Regular Expression Examples 173

The Open Watcom Vi Editor Reference

1.

String: abcdef

Matches: abcdef
2.

String: abc0def

Matches: abc0def
3.

String: 0abcdef

Matches: 0abcdef

([^

1.

String: abc def

Matches: abc def

(abc)|(def)

1.

String: abcdef

Matches: abcdef
2.

String: zzzdefabc

Matches: zzzdefabc

^(abc)|(def)

1.

String: abcdef

Matches: abcdef
2.

String: zzzdefabc

Matches: zzzdefabc
3.

String: zzzabcdef

Matches: zzzabcdef

174 Regular Expression Examples

Regular Expressions

((abc)+|(def))ghi

1.

String: defabcghi

Matches: defabcghi
2.

String: abcabcghi

Matches: abcabcghi
3.

String: abcdefghi

Matches: abcdefghi
4.

String: abcdef

Matches: abcdef

10.5.2 Replacement Examples

Regular expressions and replacement expressions. Each example shows the regular expression and the
replacement expression, the initial string, the match, and the resulting string after the replacement.

The regular expression and the replacement are separated by forward slashes (’/’). For example, in the
string

/([a-z]+)((a|b))/Test:\1\2/

([a-z]+)((a|b)) is the regular expression and Test:\1\2 is the replacement expression.

Regular Expression Examples 175

The Open Watcom Vi Editor Reference

176 Regular Expression Examples

11 Editor Script Language

The Open Watcom Vi Editor supports a powerful command language. In a script, you may use any
command line command, along with a number of special commands explicitly for the script environment.

White space is ignored in a script file, unless a line starts with a right angle bracket (’>’). Comments may
be imbedded in a script file by starting the line with pound sign (’#’).

A script is invoked using the command line command source. Examples are:

source test2.vi

source test.vi parm1 parm2 parm3 parm4

A script may be invoked with a set of optional parameters. These optional parameters are accessed in the
script by using %n. Every occurrence of %n in the script is replaced by the corresponding parameter. To
access parameter above 9, brackets must surround the number. This is because:

%10

cannot be distinguished from the variable %1 followed by a 0, and the variable %10. To remove the
ambiguity, brackets are used:

%(10)

All parameters can be accessed by using %*.

To allow multiple words in a single parameter, delimit the sequence by forward slashes (’/’) or double
quotes (’"’). For example, the line

source test.vi "a b c" d e

would cause the script test.vi to have the following variables defined:

%* = a b c d e
%1 = a b c
%2 = d
%3 = e

General variables, both local and global, are also supported in the editor script language. Any line in a
script that is not one of the script commands has all the variables on it expanded before the line is
processed. Script commands can manipulate the variables. For more information, see the section "Script
Variables" on page 178 of this chapter.

There are several useful command line commands dealing with Vi scripts, they are:

compile Used to compile a script. This allows much faster execution of the script by Vi.

load Used to make a script resident in Vi. This allows much faster invocation of the script, since
Vi does not have to search for it or parse it.

Editor Script Language 177

The Open Watcom Vi Editor Reference

If a system command is spawned from a script (using the exclamation point (’!’) command), then Vi does
not pause after the system command is finished running. However, if you set pauseonspawnerr, then Vi
will pause after a system command is executed from a script if the system command returned an error.

11.1 Script Variables

General variables are supported in a Vi script. Variables are preceded by a percent symbol (’%’).
Variables with more than one letter must be enclosed by brackets, for example:

%a - references variable named a.
%(abc) - references variable named abc.

The brackets are required to disambiguate single letter variables followed by text from multiple letter
variables.

Both local and global variables are supported. They are distinguished by the case of the first letter: local
variables must begin with a lower case letter, and global variables begin with an upper case variable.
Example variables:

%A - global variable named A.
%a - local variable named a.
%(AbC) - global variable named AbC.
%(abC) - local variable named abC.

Global variables are valid for the life of the editing session.

Local variables are only valid for the life of the script that they are used in.

11.1.1 Pre-defined Global Variables

There are a number of global variables that take on values as the editor runs, they are:

%C Contains the current column number in the current edit buffer.

%D Drive of current file, based on the actual path.

%(D1) Drive of current file, as typed by the user. This could have no value.

%E File name extension of current file.

%F Current file name (including name and extension).

%H Home directory of a file. This is the directory where the edit command was issued.

%N Name of the current file, extension removed.

%M Modified status of the current file - set to 1 if the file has been modified, and a 0 otherwise.

%(OS) What operating system the editor is hosted on. Possible values are:

• dos (protect and real mode).
• unix (QNX, Linux or other Unix-based systems)

178 Script Variables

Editor Script Language

• os2
• os2v2
• nt

%(OS386) This variable is set to 1 is the host operating system is 386 (or higher) based. The possible
386 environments are:

• dos (protect mode).
• os2v2
• nt
• unix (when running on a 386)

%P Path of current file (no extension, name, or drive) based on the actual full path to the file.

%(P1) Path of current file (no extension, name, or drive) based on the name typed by the user.
This could have no value.

%R Contains the current row (line number) in the current edit buffer.

%(SH) Height of entire screen in characters.

%(SW) Width of entire screen in characters.

%(Sysrc) Return code from last system command.

11.2 Hook Scripts

Vi has several hook points where a script, if defined by the user, is invoked. This allows you to intercept
the editor at key points to change its behaviour. A script that is invoked at a hook point is referred to as a
hook script.

Each hook script is identified by a particular global variable. Whenever Vi reaches a hook point, it checks
if the global variable is defined, and if it is, the global variables contents are treated like a script name, and
that script is invoked.

The hook points are:

• after a new file has been read.

• before a modified file is saved and exited.

• after return is pressed on the command line.

• whenever an unmodified file is modified.

• whenever a selected (highlighted) column range is chosen (via mouse click or keyboard).

• whenever a selected (highlighted) line range is chosen (via mouse click or keyboard).

Read Hook The hook script is called just after a new file has been read into the editor.

The script invoked is the file specified by the global variable %(Rdhook).

Hook Scripts 179

The Open Watcom Vi Editor Reference

Write Hook The hook script is called just before a modified file is to be saved and exited.

The script invoked is the file specified by the global variable %(Wrhook).

Command Hook
The hook script is called after the return is pressed from the command line. The global
variable %(Com) contains the current command string, and may be modified. Whatever it
is modified to is what will be processed by the command line processor.

The script invoked is the file specified by the global variable %(Cmdhook).

Modified Hook The hook script is called whenever a command is about to modify an unmodified file. If
the file is modified, the hook is not called.

The script invoked is the file specified by the global variable %(Modhook).

Mouse Columns Sel Hook
The hook script is called whenever a selected column range has been picked. Picking a
selected region is done by right-clicking the region with the mouse, or by double clicking
the region with the mouse, or by using the underscore (’_’) command mode keystroke.

The script is invoked with the following parameters:

%1 The selected string.

%2 Line on screen of selected string.

%3 Column on screen of start of selected string.

%4 Column on screen of end of selected string.

The script invoked is the file is specified by the global variable %(MCselhook).

Mouse Lines Sel Hook
The hook script is called whenever a selected line range has been picked. Picking a
selected region is done by right-clicking the region with the mouse, or by double clicking
the region with the mouse, or by using the underscore (’_’) command mode keystroke.

%1 Line on screen where selection request occurred.

%2 Column on screen where selection request occurred.

%3 First line of selected region.

%4 Last line of selected region.

The script invoked is the file specified by the global variable %(MLselhook).

180 Hook Scripts

Editor Script Language

11.3 Script Expressions

Vi allows the use of constant expressions in its script language. Long integers and strings may be used in
an expression. Some sample expressions are:

5*3+12
(7*7)+10*((3+5)*8+9)
5 >= %(var)
("%(str)" == "foo") || ("%(str)" == "bar")
(5+%i*3 == 15)
rdonly == 1

An expression is composed of operators and tokens. Operators act on the tokens to give a final result.

A token in an expression may be a special keyword, a boolean setting value, an integer, or a string.

A string is indicated by surrounding the string with double quotes ("). A token is an integer if it starts with
a numeric digit (0 to 9).

If a token starts with a dot (’.’), then the remainder of the token is assumed to be a setting token. This token
evaluates to be 1 or 0 for a boolean setting, or to the actual value of the setting for all others.

.autoindent - 1 if autoindent is true, 0 otherwise
.ai - 1 if autoindent is true, 0 otherwise
.autosave - current value of autosave
.tmpdir - current tmpdir string

If a token is not surrounded by double quotes, and is not a keyword and is not an integer, then that token is
assumed to be a string.

If an expression contains conditional operators, then the result of the expression is a boolean value (1 or 0).
The following script language control flow commands expect boolean results:

• if
• elseif
• quif
• while
• until

The following are conditional operators in an expression:

• == (equal to)
• != (not equal to)
• > (greater than)
• >= (greater than or equal to)
• < (less than)
• <= (less than or equal to)
• && (boolean AND)
• || (boolean OR)

An expression may also operate on its token using various mathematical operators, these operators are

• + (plus)
• - (minus)

Script Expressions 181

The Open Watcom Vi Editor Reference

• * (multiply)
• / (divide)
• ** (exponentiation)
• ^ (bitwise NOT)
• | (bitwise OR)
• & (bitwise AND)
• >> (bit shift down)
• << (bit shift up)

Special keyword tokens are:

ERR_??? These are symbolic representations of all possible errors while executing in Vi. These
values are found in error.dat. These values are described in the appendix "Error Code
Tokens" on page 227.

lastrc This keyword evaluates to the return code issued by the last command run in the script.
Possible values to compare against are found in error.dat. These values may are
described in the appendix "Error Code Tokens" on page 227.

rdonly This keyword evaluates to 1 if the current file is read only, and 0 if it is not read only.

config This keyword evalutes to a number representing the current mode the screen is configured
to. Possible values are:

100 Screen is in color mode.

10 Screen is in black and white mode.

1 Screen is in monochrome mode.

This may be used to have different configurations built into your configuration script
ed.cfg.

black This keyword evalutes to the integer representing the color black (0).

blue This keyword evalutes to the integer representing the color blue (1).

green This keyword evalutes to the integer representing the color green (2).

cyan This keyword evalutes to the integer representing the color cyan (3).

red This keyword evalutes to the integer representing the color red (4).

magenta This keyword evalutes to the integer representing the color magenta (5).

brown This keyword evalutes to the integer representing the color brown (6).

white This keyword evalutes to the integer representing the color white (7).

dark_gray This keyword evalutes to the integer representing the color dark_gray (8).

light_blue This keyword evalutes to the integer representing the color light_blue (9).

light_green This keyword evalutes to the integer representing the color light_green (10).

182 Script Expressions

Editor Script Language

light_cyan This keyword evalutes to the integer representing the color light_cyan (11).

light_red This keyword evalutes to the integer representing the color light_red (12).

light_magenta This keyword evalutes to the integer representing the color light_magenta (13).

yellow This keyword evalutes to the integer representing the color yellow (14).

bright_white This keyword evalutes to the integer representing the color bright_white (15).

11.3.1 Script Expression BNF

This section describes a BNF for the construction of constant expressions.

expression : conditional-exp

conditional-exp
: log-or-exp
| log-or-exp ? expression : conditional-exp

log-or-exp : log-and-exp
| log-or-exp || log-and-exp

log-and-exp : bit-or-exp
| log-and-exp && bit-or-exp

bit-or-exp : bit-xor-exp
| bit-or-exp | bit-xor-exp

bit-xor-exp : bit-and-exp
| bit-xor-exp ^ bit-and-exp

bit-and-exp : equality-exp
| bit-and-exp & equality-exp

equality-exp : relational-exp
| equality-exp == relational-exp | equality-exp != relational-exp

relational-exp : shift-exp
| relational-exp > shift-exp
| relational-exp < shift-exp
| relational-exp >= shift-exp
| relational-exp <= shift-exp

shift-exp : additive-exp
| shift-exp << additive-exp
| shift-exp >> additive-exp

additive-exp : multiplicative-exp
| additive-exp + multiplicative-exp
| additive-exp - multiplicative-exp

Script Expressions 183

The Open Watcom Vi Editor Reference

multiplicative-exp
: exponent-exp
| multiplicative-exp * exponent-exp
| multiplicative-exp / exponent-exp
| multiplicative-exp % exponent-exp

exponent-exp : unary-exp
| exponent-exp ** unary-exp

unary-exp : primary-exp
| - unary-exp
| ~ unary-exp
| ! unary-exp

primary-exp : token
| (expression)

token : INTEGER
| STRING
| KEYWORD

11.4 Control Flow Commands

This section gives a brief overview of the control flow commands of the Vi script language. For a full
description of all script commands, see the next section "Script Commands" on page 185.

11.4.1 The LOOP Block

The loop block is similar to the do-while construct in C. The flow of the loop may be modified using the
break, continue or quif script commands.

The loop may be set to run until a termination condition is met by using the loop - until commands.

The loop may be set to run without any termination condition by using the loop - endloop commands.

An overview of a loop block is:

loop

break
continue
quif <expr>

until <expr>

loop
break
continue
quif <expr>

endloop

184 Control Flow Commands

Editor Script Language

11.4.2 The WHILE Block

The while block is similar to the while loop construct in C. The flow of the while loop may be modified
using the break, continue or quif script commands.

The while loop is set up using the while - endwhile commands.

An overview of the while block is:

while <expr>

break
continue
quif <expr>

endwhile

11.4.3 The IF Block

The if block is similar to the if-else construct in C.

An overview of the if block is:

if <expr>
elseif <expr>
elseif <expr>
else
endif

11.5 Script Commands

The following command descriptions show items within angle brackets (<>). The angle brackets are there
to indicate items that you may supply. You are not required to type the brackets. For example, <filename>
simply means that in the corresponding place in the command you should enter the name of a file. For
example, <filename> may be replaced with

test.c

and the brackets are not entered.

The command descriptions also show items inside double quotes ("). The double quotes are used to
indicate a literal option that you may supply. You are not required to type the quotes. For example, "-c"
indicates that in the corresponding place in the command you may enter -c.

In the syntax model for each command, the upper-case characters represent the minimal truncation of the
command. For example, in its syntax model, the ASSIGN command is specified as "ASSIGN", indicating
that all the letters are required (there are no abbreviations, only "assign" is accepted as the command).

The term <expr> is used to indicate an expression in the following commands. Expressions are discussed
in full detail in the section "Script Expressions" on page 181 of this chapter.

Script variables are used by some of the following commands. Variables are discussed in full detail in the
section "Script Variables" on page 178 of this chapter.

Script Commands 185

The Open Watcom Vi Editor Reference

When a script command terminates, lastrc is sometimes set to a value. This value may be tested in an
expression. Script commands that set this have a Returns section.

11.5.1 ATOMIC

Syntax: ATOMIC

Description: This command causes all editing actions done by the script to all be part of one undo
record. This way, the action of the entire script can be eliminated with a single undo
(command) i.e., it is an atomic action.

11.5.2 ASSIGN

Syntax: ASSIGN <v1> = /<val>/"r$@xl"

Description: This command is used to assign the value <val> to the variable <v1>.

The forward slashes (’/’) around <val> are only need if there are spaces in <val>, or if one
of the special flags r, x, l, $ or @ is required at the end.

The special flags have the following meaning:

r When this flag is used, <val> may contain regular expression replacement
strings (using the last regular expression searched for). For more
information on regular expressions, see the chapter "Regular Expressions"
on page 167.

l When this flag is used, <val> is assumed to be an expression that indicates
a line number. The expression is evaluated, and the data on the
corresponding line number is assigned to <v1>.

x When this flag is used, <val> is assumed to be an expression, and is
evaluated. The result is assigned to <v1>. For another way of assigning
expression results to a variable, see the expr script command.

$ (dollar sign) When this flag is used, <val> is assumed to be the name of an operating
system environment variable, and the contents of that environment variable
is what is assigned to <v1>.

@ When this flag is used, <val> may be the name of one of the set command
parameters. <v1> will be given the current value of that parameter.

<val> may be coded as a special operator. If <val> is coded this way, the forward slashes
(’/’) must NOT be used. The special operators are:

strlen <v> Computes the length of the variable <v>. This value is assigned to <v1>.

strchr <v> <c>
Computes the offset of the character <c> in the variable <v>. The offset is
assigned to <v1>. Note that the character <c> may be a variable, the value
of which will be expanded before offset is computed.

186 Script Commands

Editor Script Language

substr <v> <n1> <n2>
Computes a substring of the string contained in the variable <v>. The
substring is composed of characters from offset <n1> to offset <n2>. The
substring is assigned to <v1>. Note that the parameters <n1> and <n2>
may be variables, the values of which will be expanded before the substring
is computed.

Example(s):
assign %a = foobar

The variable %a gets the string foobar assigned to it.

assign %(Path) = /path/$
The global variable %(Path) gets the data stored in the path environment variable assigned
to it.

assign %b = strlen %a
Assigns the length of the contents of the local variable %a to the local variable %b.
Assuming the local variable %a has the string abcdefg assigned to it, then %b gets 7
assigned to it.

assign %b = strchr %a b
Assigns the offset of the letter b in the string contained in the local variable %a to the local
variable %b. Assuming the local variable %a has the string abcdefg assigned to it, then %b
gets 2 assigned to it.

assign %(Substr) = substr %a 2 4
Assigns the characters from offset 2 to offset 4 in the string contained in the local variable
%a to the global variable %(Substr). Assuming the local variable %a has the string abcdefg
assigned to it, then %b gets bcd assigned to it.

assign %(res) = /abc %(str) def/
Assuming %(str) has been assigned the value xyz, then the string abc xyz def is assigned to
the local variable %(res)

assign %(Result) = /100*30+(50-17)*10/x
The value 3330 is assigned to the global variable %(Result).

See Also: expr

11.5.3 BREAK

Syntax: BREAK

Description: Unconditionally exits the current looping block. This breaks out of loop - endloop, loop -
until and while - endwhile blocks.

See Also: continue, endloop, endwhile, loop, quif, until, while

Script Commands 187

The Open Watcom Vi Editor Reference

11.5.4 CONTINUE

Syntax: CONTINUE

Description: Restarts the current looping block. This causes a jump to the top of loop - endloop, loop -
until and while - endwhile blocks.

See Also: break, endloop, endwhile, loop, quif, until, while

11.5.5 ENDIF

Syntax: ENDIF

Description: Terminates an if - elseif - else block.

See Also: if, elseif, else

11.5.6 ENDLOOP

Syntax: ENDLOOP

Description: Terminates a loop block. Control goes to the top of the current loop.

See Also: break, continue, endwhile, loop, quif, until, while

11.5.7 ENDWHILE

Syntax: ENDWHILE

Description: Terminates a while block. Control goes to the top of the current while loop.

See Also: break, continue, endloop, loop, quif, until, while

11.5.8 ELSEIF

Syntax: ELSEIF <expr>

Description: An alternate case in an if block. If the opening if script command and none of the elseif
script commands prior to this one were executed, then this elseif is executed.

Any variables contained in <expr> are expanded before the expression is evaluated.

If <expr> is true, then the code following the elseif is executed. If <expr> is false, control
goes to the next elseif, else or endif command.

See Also: if, else, endif

188 Script Commands

Editor Script Language

11.5.9 ELSE

Syntax: ELSE

Description: This is the alternate case in an if block. If none of the preceding if or elseif statements are
true, the code following the else command is executed.

See Also: if, elseif, endif

11.5.10 EXPR

Syntax: EXPR <v1> = <expr>

Description: Assigns the expression <expr> to the variable <v1>.

Any variables contained in <expr> are expanded before the expression is evaluated.

Example(s):
expr %(Num) = 100*30+50

Assigns the value 3050 to the global variable %(Num).

expr %a = %(SW)-10
Assuming a screen width of 80, then this assigns the value 70 to the local variable %a.

See Also: assign, eval

11.5.11 FCLOSE

Syntax: FCLOSE <n>

Description: Closes file previously opened with a fopen script command.

Example(s):
fclose 1

Closes file 1.

See Also: fopen, fread, fwrite

11.5.12 FOPEN

Syntax: FOPEN <name> <n> <how>

Description: This command opens file <name>, assigning it file handle <n>.

<n> may be a value from 1 to 9. This number is used to identify the file for future fread,
fwrite or fclose script commands.

<how> specifies the method that the file is opened. Methods are:

a Opens file for append.

Script Commands 189

The Open Watcom Vi Editor Reference

r Opens file for read.

w Opens file for write.

x Checks if the file exists. This does not actually open the file, so no fclose is
required.

Returns:

ERR_NO_ERR.
The setting of lastrc if the open/existence check is a success.

ERR_FILE_NOT_FOUND
The setting of lastrc if the open/existence check is a fails.

Example(s):
fopen test.dat 1 r

Opens file test.dat for read, and uses file handle 1.

fopen test.dat 2 w
Opens file test.dat for write, and uses file handle 2.

fopen test.dat 1 x
Tests if the file test.dat exists.

fopen test.dat 9 a
Opens file test.dat for append, and uses file handle 9.

See Also: fclose, fread, fwrite

11.5.13 FREAD

Syntax: FREAD <n> <v1>

Description: Reads a line from the file identified by handle <n>. The line is stored in the variable <v1>.

Returns:

ERR_NO_ERR The setting of lastrc if the read was successful.

END_OF_FILE
The setting of lastrc if end of file was encountered.

ERR_FILE_NOT_OPEN
The setting of lastrc if the file being read was not opened with fopen.

Example(s):
fread 1 %(line)

Reads the next line from file handle 1 into the variable %(line).

See Also: fclose, fopen, fwrite

190 Script Commands

Editor Script Language

11.5.14 FWRITE

Syntax: FWRITE <n> <v1>

Description: Writes the contents of the variable <v1> to the file identified by handle <n>.

Returns:

ERR_NO_ERR The setting of lastrc if the write was successful.

ERR_FILE_NOT_OPEN
The setting of lastrc if the file being written was not opened with fopen.

Example(s):
fwrite 3 %(line)

Writes the contents of the variable %(line) to file handle 3.

See Also: fclose, fopen, fread

11.5.15 GET

Syntax: GET <v1>

Description: Waits for the user to type a single keystroke, and then assigns the keystroke into variable
<v1>.

Example(s):
get %(ch)

Waits for a key to be pressed, and then assigns the key to the local variable %(ch).

See Also: floatmenu, input

11.5.16 GOTO

Syntax: GOTO <label>

Description: Transfers control to point in script with label <label> defined.

See Also: label

11.5.17 IF

Syntax: IF <expr>

Description: Starts an if block.

Any variables contained in <expr> are expanded before the expression is evaluated.

If <expr> is true, then the code following the if is executed. If <expr> is false, control
goes to the next elseif, else or endif command.

Script Commands 191

The Open Watcom Vi Editor Reference

See Also: elseif, else, endif

11.5.18 INPUT

Syntax: INPUT <v1>

Description: Open a window (the commandwindow) and get a string from the user. The string is
assigned to the variable <v1>.

If <v1> was assigned a value before the input script command was executed, then that
value is used as a prompt string in the input window.

Returns:

ERR_NO_ERR.
The setting of lastrc if a string was entered.

NO_VALUE_ENTERED
The setting of lastrc if the user pressed ESC to cancel the input string.

Example(s):
input %(str)

Get a string from the user, placing the result in the local variable %(str). If %(str) had no
previous value, then the user would be prompted with:

Enter Value:

However, if %(str) had the value Type in a filename:, then the user would be prompted
with:

Type in a filename:

See Also: floatmenu, get

11.5.19 LABEL

Syntax: LABEL <name>

Description: Defines the a label with the name <name> at the current line in the script.

See Also: goto

11.5.20 LOOP

Syntax: LOOP

Description: Start a loop block. This is the top of the block, after a continue, endloop or until control
returns to the instruction after the loop command.

See Also: break, continue, endloop, endwhile, loop, quif, until, while

192 Script Commands

Editor Script Language

11.5.21 NEXTWORD

Syntax: NEXTWORD <srcvar> <resvar>

Description: Remove the next space-delimited word from the variable <srcvar>. The word is placed in
the variable specified by <srcvar>. Both <srcvar> and <resvar> must be variables only.

Example(s):
nextword %a %b

If %a has ’this is a test’ assigned to it, then after this command is processed, %a
will have ’is a test’ assigned to it, and %b will have ’this’ assigned to it.

11.5.22 QUIF

Syntax: QUIF <expr>

Description: Conditionally quit current loop or while loop block.

Any variables contained in <expr> are expanded before the expression is evaluated.

If <expr> is true, the current looping block is exited and execution resumes at the line after
the end of the current block.

If <expr> is false, execution continues at the next line.

See Also: break, continue, endloop, endwhile, loop, until, while

11.5.23 RETURN

Syntax: RETURN <rc>

Description: Exit the script, returning <rc>.

If the script was invoked by another script, then this value becomes lastrc.

If the script was invoked at the command line, then this return code is reported as the
appropriate error, if <rc> is not ERR_NO_ERR.

There are symbolic values for various error codes. These values are described in the
appendix "Error Code Tokens" on page 227.

11.5.24 UNTIL

Syntax: UNTIL <expr>

Description: Closes a loop block.

Any variables contained in <expr> are expanded before the expression is evaluated.

If <expr> is true, the first line after the loop block is executed.

Script Commands 193

The Open Watcom Vi Editor Reference

If <expr> is false, then control is returned to the top of the loop block, and the loop
executes again.

See Also: break, continue, endloop, endwhile, loop, quif, while

11.5.25 WHILE

Syntax: WHILE <expr>

Description: Start a loop block. If <expr> is true, the body of the loop is executed. If <expr> is false,
execution transfers to the instruction after the endwhile command.

Any variables contained in <expr> are expanded before the expression is evaluated.

This is the top of the block, after a continue or endwhile control returns to the while
command.

See Also: break, continue, endloop, endwhile, loop, quif, until

11.6 Script Examples

The following section describes a number of the scripts that are provided with Vi. Each script is discussed
in detail.

11.6.1 Example - err.vi
This is a simple script that edits a file that has the exact same name as the current file, only has the
extension .err.

1) edit %D%P%N.err

Line 1

> edit %D%P%N.err

The global variable %D contains the drive of the current file. The global variable %P contains the full
path to the current file. The global variable %N contains the name of the current file (extension
removed). These are combined with the .err extension to create a full path to an error file. This file is
edited.

11.6.2 Example - lnum.vi
This script prompts the user for a line number, and if a line number is entered, goes to that line.

194 Script Examples

Editor Script Language

1) assign %a = /Enter Line Number:/

2) input %a

3) if lastrc != NO_VALUE_ENTERED

4) %a

5) endif

Lines 1-2

> assign %a = /Enter Line Number:/

> input %a

These lines assigns the string Enter Line Number: to the local variable %a. This value will be used by
the input command on line 2 to prompt the user.

Lines 3-5

> if lastrc != NO_VALUE_ENTERED

> %a

> endif

As long as the input was not cancelled by the user (by pressing the ESC key), the line the user typed is
executed directly. This assumes that the user will type a number.

11.6.3 Example - qall.vi
This script tries to quit each file being edited. If the file has been modified, the user is prompted if he
wishes to save the file. If he replies ’y’, the file is saved. If he replies ’n’, the file is discarded. If he
presses the ESC key and cancels the input, the script is exited.

Script Examples 195

The Open Watcom Vi Editor Reference

1) loop

2)

3) quit

4) if lastrc == ERR_FILE_MODIFIED

5) assign %a = /Save "%F" (y\/n)?/

6) input %a

7) quif lastrc == NO_VALUE_ENTERED

8) if "%a" == y

9) write

10) quit

11) else

12) quit!

13) endif

14) endif

15) quif lastrc != ERR_NO_ERR

16)

17) endloop

Line 1

> loop

Starts the loop.

Lines 3-4

> quit

> if lastrc == ERR_FILE_MODIFIED

Tries to to quit the file. If the quit command fails, and the return code is ERR_FILE_MODIFIED (the
quit command will fail if the file being abandoned is modified), then the code from lines 5-14 is
executed.

Lines 5-6

> assign %a = /Save "%F" (y\/n)?/

> input %a

196 Script Examples

Editor Script Language

Assigns the string Save "<filename>" (y/n)? to the local variable %a. This value will be used by the
input command on line 6 to prompt the user.

Line 7

> quif lastrc == NO_VALUE_ENTERED

This exits the main loop if the user cancels the input prompt by pressing the ESC key.

Lines 8-13

> if "%a" == y

> write

> quit

> else

> quit!

> endif

If the user typed the letter y, then the edit buffer is saved and exited, otherwise the contents of the edit
buffer are discarded.

Line 15

> quif lastrc != ERR_NO_ERR

This exits the main loop if any of the previous commands did not return the "everything is OK" return
code, ERR_NO_ERR.

Line 17

> endloop

Ends the loop. Control is returned to line 3.

11.6.4 Example - wrme.vi
This example is the default write hook script. This is called just before a edit buffer is saved and exited. If
the file has a null name, then the user is prompted for a name. If he cancels the prompt, then the save is
aborted. Otherwise, the new name is set and the save continues.

Script Examples 197

The Open Watcom Vi Editor Reference

1) if "%F" != ""

2) return ERR_NO_ERR

3) endif

4) assign %a = /Enter file name:/

5) input %a

6) if lastrc == NO_VALUE_ENTERED

7) return DO_NOT_CLEAR_MESSAGE_WINDOW

8) endif

9) echo off

10) set filename = %a

11) echo on

12) return ERR_NO_ERR

Lines 1-3

> if "%F" != ""

> return ERR_NO_ERR

> endif

Checks if the current file name is the empty string. If it is not, then there is a filename and the script
returns ERR_NO_ERR to indicate that processing is to continue.

Lines 4-8

> assign %a = /Enter file name:/

> input %a

> if lastrc == NO_VALUE_ENTERED

> return DO_NOT_CLEAR_MESSAGE_WINDOW

> endif

The user is prompted with Enter a file name:. If he cancels the input command by pressing the ESC
key, then the script returns DO_NOT_CLEAR_MESSAGE_WINDOW, which is not an error condition
but causes the save process to abort (remember, a hook point stops what it is doing if an non-zero return
code is returned from the hook script).

Line 9

> echo off

198 Script Examples

Editor Script Language

Echo is disabled so that the setting of the filename will not cause the normal message to appear in the
message window.

Line 10

> set filename = %a

The filename is set to whatever the user typed in.

Line 11

> echo on

Echo is enabled.

Line 12

> return ERR_NO_ERR

The script returns ERR_NO_ERR to indicate that processing is to continue.

11.6.5 Example - proc.vi
This example prompts the user for a procedure name. If the user types one, then a procedure skeleton is
added:

/*
* ProcName
*/

void ProcName()
{

} /* ProcName */

and the user is left in input mode on the space before the closing bracket (’)’).

Script Examples 199

The Open Watcom Vi Editor Reference

1) assign %a = /Procedure Name:/

2) input %a

3) if lastrc == NO_VALUE_ENTERED

4) return

5) endif

6) atomic

7) echo off

8) assign %x = /autoindent/@

9) set noautoindent

10) execute \e0o/*\n * %a\n */\n\e0ivoid %a(@)\n{\n\n} /* %a
*/\n\e

11) if %x == 1

12) set autoindent

13) endif

14) -4

15) execute \e0f@x

16) echo on

17) echo 1 Procedure %a added

18) echo 2 " "

19) keyadd i

Lines 1-5

> assign %a = /Procedure Name:/

> input %a

> if lastrc == NO_VALUE_ENTERED

> return

> endif

The user is prompted with Procedure Name:. If he cancels the input command by pressing the ESC
key, then the script exits.

Line 6

200 Script Examples

Editor Script Language

> atomic

The script is an atomic one; so all modifications to the edit buffer can be undone with a single undo
(command).

Line 7

> echo off

Disables any output to the message window.

Line 8

> assign %x = /autoindent/@

This line gets the current state of the autoindent setting, and saves it the the local variable %x.

Line 9

> set noautoindent

Turns off autoindent, so that the text to be inserted will line up properly.

Line 10

> execute \e0o/*\n * %a\n */\n\e0ivoid %a(@)\n{\n\n} /* %a */\n\e

This line simulates the typing of a number of keystrokes at the keyboard. The effect of these keys is to
generate the following:

/*
* ProcName
*/

void ProcName(@)
{

} /* ProcName */

Lines 11-13

> if %x == 1

> set autoindent

> endif

The local variable %x is set to the previous value of autoindent. If autoindent was on before, then this
turns it back on.

Line 14

> -4

This backs the cursor up to the line

Script Examples 201

The Open Watcom Vi Editor Reference

void ProcName(@)

Line 15

> execute \e0f@x

This line simulates the typing of a number of keystrokes at the keyboard. The effect of these keystrokes
is to move forward to the ’@’ character and delete it. This leaves the cursor in the position necessary to
enter procedure parameters.

Line 16

> echo on

Enables output to the message window.

Lines 17-18

> echo 1 Procedure %a added

> echo 2 " "

Displays a message.

Line 19

> keyadd i

Adds the key ’i’ to the keyboard buffer. Once the script exits, Vi will process this key as if the user had
typed it. Thus, once the script is done, the user is left inserting text.

202 Script Examples

Appendices

Appendices

204

Command Mode Key Summary

A. Command Mode Key Summary

The following is a list of all possible keys that may be pressed in command mode, and their default
behaviour.

Commands preceded with a <n> take a repeat count.

Commands preceded with a <"?> accept a copy buffer name.

Commands that accept mark letter (’a’-’z’) have a <?> in their definition.

The <oper> notation in the following commands indicates some sort of operator that the command will act
on. <oper> may be one of:

1. A movement command. See the section "Movement" on page 72 for a full description of all
movement commands. If a movement command is specified, then the range that the command
will act on is from the current position to the position that would be achieved by using the
movement command.

2. A search command:

• / (forward slash)
• ? (question mark)
• n
• N

See the section "Searching" on page 82 for a full description of the searching commands. If a
search command is specified, then the range that the command will act on is from the current
position to the position that would be achieved by using the search command.

3. The current selected (highlighted) region. In this case, <oper> is the r key.

4. The same character as the command character. This causes the command to operate on the
current line.

<n>CTRL_B Move up one page.

<n>CTRL_D Move down a half page.

<n>CTRL_E Expose the line below the bottom line on the screen.

<n>CTRL_F Move down one page.

CTRL_G Display current file status.

CTRL_L Redraw the screen.

Command Mode Key Summary 205

Appendices

<n>CTRL_N Move to next line.

<n>CTRL_P Move to previous line.

CTRL_R Start text selection.

<n>CTRL_U Move up a half page.

CTRL_V Display current version.

CTRL_X Display hex value of character under cursor.

<n>CTRL_Y Expose the line before the top line on the screen.

CTRL_] Go to the tag indicated by the current word.

<n>SPACE Move the cursor right one character.

<n>!<oper> Run lines through a filter.

$ Move to the end of the current line.

% Find the matching brace or other defined match item.

’<?> Go to the mark ?.

<n>+ Go to the start of the next line.

, Perform the last f,t,F or T command, in the opposite direction.

<n>- Go to the start of the previous line.

. Repeat last command mode sequence that changed the edit buffer.

/ Search forward for a string.

0 Move to the first character on the current line.

: Enter a command line command.

; Perform the last f,t,F or T command.

<n><<oper> Shift lines to the left.

<n>><oper> Shift lines to the right.

? Search backwards for a string

@ Execute a copy buffer as if it were typed at the keyboard.

A Start inserting text at the end of the current line.

<n>B Move back to the start of the previous space delimited word.

206 Command Mode Key Summary

Command Mode Key Summary

C Change characters from the current column to the end of the current line.

D Delete characters from the current column to the end of the current line.

<n>E Move forwards to the end of the next space delimited word.

F<n><?> Move backwards to a specified character.

<n>G Go to a specified line number.

<n>H Go to the top of the current edit window.

I Start inserting text at the first non-whitespace character on the current line.

<n>J Join the next line to the current line.

<n>L Go to the bottom of the current edit window.

M Go to the middle of the current edit window.

N Repeat the last find command, only search in the opposite direction.

O Open a blank line above the current line, and enter text insertion mode.

<"?>P Insert a copy buffer before the current position.

Q Enter EX mode.

R Enter text overstrike mode.

<n>S Substitute lines with other text.

T<?> Move backwards to the character after a specified character.

U Re-do (undoes the last undo).

<n>W Move forward to the start of the next space delimited word.

<n>X Delete the character before the current character.

<n>Y Yank (copy) lines.

Z If followed by another Z, saves the current file (if it has been modified) and quits the file.

^ Move to the first non-whitespace character on the line.

_ Simulate right-mouse button press.

‘<?> Go to the line and column with the mark <?>.

a Start inserting text at the character after the current cursor position.

<n>b Move backwards to the start of the previous word.

Command Mode Key Summary 207

Appendices

<n>c<oper> Change text.

<"?><n>d<oper>
Delete text.

<n>e Move to the end of the current word.

<n>f<?> Move forward to the character <?> on the current line.

<n>h Move left.

i Start inserting text at the current cursor position.

<n>j Move down one line.

<n>k Move up one line.

<n>l Move right.

m<?> Set the mark <?>.

n Repeat the last find command.

o Open a new line after the current line, and start inserting text.

<"?>p Insert a copy buffer at the current position in the edit buffer.

<n>r Replace the current character.

<n>s Substitute the current character with text.

<n>t<?> Move up to the character before the character <?> on the current line.

u Undo the last change.

<n>w Move to the start of the next word.

<n>x Delete the character at the cursor.

<n><"?>y<oper>
Yank (copy) text.

<n>z<?> Reposition the current line.

<n>| Move to the specified column.

<n>~<oper> Toggle the case of text.

F1 Move to the next file in the list of files being edited.

F2 Move back to the previous file in the list of files being edited.

<n>UP Move up one line.

208 Command Mode Key Summary

Command Mode Key Summary

<n>DOWN Move down one line.

<n>LEFT Move left to the previous character.

<n>RIGHT Move right to the next character.

<n>PAGEUP Move up one page.

<n>PAGEDOWN
Move down one page.

INS Start inserting text at the current cursor position.

<"?><n>DEL Delete the character at the current cursor position.

<n>BS Move left to the previous character.

<n>SHIFT_TAB
Move left by a tab amount.

<n>ENTER Move to the start of the next line.

<n>TAB Move right by a tab amount.

HOME Move to the start of the current line.

END Move to the end of the current line.

CTRL_F1 Make copy buffer 1 active.

CTRL_F2 Make copy buffer 2 active.

CTRL_F3 Make copy buffer 3 active.

CTRL_F4 Make copy buffer 4 active.

CTRL_F5 Make copy buffer 5 active.

CTRL_F6 Make copy buffer 6 active.

CTRL_F7 Make copy buffer 7 active.

CTRL_F8 Make copy buffer 8 active.

CTRL_F9 Make copy buffer 9 active.

ALT_M Display current memory state.

ALT_W Activate the current edit window menu.

ALT_X Insert a keystroke by entering the ASCII value.

CTRL_PAGEUP
Move to the first character in the current edit buffer.

Command Mode Key Summary 209

Appendices

CTRL_PAGEDOWN
Move to the last character in the current edit buffer.

<n>SHIFT_UP
Start selection, and move up.

<n>SHIFT_DOWN
Start selection, and move down.

<n>SHIFT_LEFT
Start selection, and move left.

<n>SHIFT_RIGHT
Start selection, and move right.

<"?>SHIFT_DEL
Delete selected region.

<"?>SHIFT_INS
Insert a copy buffer at the current position in the edit buffer.

210 Command Mode Key Summary

The Open Watcom Vi Editor Error Messages

B. The Open Watcom Vi Editor Error Messages

This appendix lists all of the various errors that Vi reports during its operation.

In the following error message text, there are certain special characters that you will not see when the
message is displayed; instead, something is filled in when you see it. These special characters are:

%s An appropriate string is filled in by Vi.

%c An appropriate character is filled in by Vi.

%d An appropriate number is filled in by Vi.

*+ operand could be empty
A regular expression error, issued if you use * or + after an empty sub-expression.

?+* follows nothing
A regular expression error, issued if you use a ?, + or * without using some sub-expression
for them to operate on.

Already in dot mode
You pressed dot (’.’), and the string that was executed tried to do another dot from
command mode.

Already two marks on this line
Only two marks are allowed on any line. This error is issued if you try to place a third
mark on the line.

Cannot delete character
You tried to delete a character that is not there.

Cannot insert the character value 0.
You typed the number 0 at the prompt from the ALT_X command mode keystroke.

Cannot open line number window
Vi could not open the line number window, probably due to an invalid position of the
command window.

Case toggle has nothing following
A regular expression error, issued if you use a case toggle operator (@ or ~) and do not
place an expression after it.

Character ’%c’ not found
You used a ’t’, ’T’, ’f’, ’F’, ’,’ or ’;’ command mode keystroke, and the letter that you
specified is not on the line.

The Open Watcom Vi Editor Error Messages 211

Appendices

Directory operation failed
You tried to ’cd’ to a directory that does not exist.

Empty copy buffer
You tried to paste a copy buffer that has no contents.

End of file reached
"nosearchwrap" is set and a search command got to the end of the edit buffer without
finding a string.

Expecting : You coded an expression with the ’?’ operator and did not specify a ’:’.

File close error
The "fclose" script command failed - this probably indicates a problem with your hard disk.

File exists - use w! to force
You attempted to write a file out with a new name that already exists.

File has no name
You attempted to write a file that has not been given a name.

File is a tty The file names "con", "lptN", "nul", and "prn" are special TTY files. You attempted to read
or edit a file like this.

File is read only
You attempted to modify a read-only file.

File is view only
You attempted to modify a view-only file.

File modified - use :q! to force
You attempted to quit a modified file.

File not FOPEN
In a script, you attempted to "fread" or "fwrite" a file that you did not open with "fopen".

File not found Issued whenever Vi is looking for a file and it cannot be found.

File open error Vi will issue this error whenever a file cannot be opened. Typically, this happens when
you try to edit a directory as a file.

File read error This error occurs when Vi is trying to read a file. This could indicate that there is a
problem with your hard disk.

File seek error This error occurs when Vi is trying to seek to a position in a file. This could indicate a
problem with your hard disk.

File write error
This error occurs when Vi is trying to write a file. This could indicate that your hard disk is
full, or that there is a problem with your hard disk.

File "error.dat" not found
When a script is being processed, and an error token is needed, the file "error.dat" is
loaded. If it cannot be found, then this error is issued.

212 The Open Watcom Vi Editor Error Messages

The Open Watcom Vi Editor Error Messages

Input key map already running
If another input key mapping is run while an input key map is running, this error is issued.

Insufficient stack for allocation
Vi tried to do an operation and did not have enough stack space. Try increasing your
stackk setting and trying the operation again.

Internal err: Invalid undo record found - undo stacks purged
Vi has encountered an internal error. Please note the circumstances of this error and, if
possible, construct a small test case that demonstrates the problem. You can then either file
a bug report using "GitHub issues" at
https://github.com/open-watcom/open-watcom-v2/issues. , or you can discuss the problem
on "Open Watcom Discord Channel" at
https://discord.com/channels/922934435744206908 .

Internal err: Null pointer found
Vi has encountered an internal error. Please note the circumstances of this error and, if
possible, construct a small test case that demonstrates the problem. You can then either file
a bug report using "GitHub issues" at
https://github.com/open-watcom/open-watcom-v2/issues. , or you can discuss the problem
on "Open Watcom Discord Channel" at
https://discord.com/channels/922934435744206908 .

Internal err: Open undo
Vi has encountered an internal error. Please note the circumstances of this error and, if
possible, construct a small test case that demonstrates the problem. You can then either file
a bug report using "GitHub issues" at
https://github.com/open-watcom/open-watcom-v2/issues. , or you can discuss the problem
on "Open Watcom Discord Channel" at
https://discord.com/channels/922934435744206908 .

Internal err: Regexp corrupted pointer
Vi has encountered an internal error. Please note the circumstances of this error and, if
possible, construct a small test case that demonstrates the problem. You can then either file
a bug report using "GitHub issues" at
https://github.com/open-watcom/open-watcom-v2/issues. , or you can discuss the problem
on "Open Watcom Discord Channel" at
https://discord.com/channels/922934435744206908 .

Internal err: Regexp foulup
Vi has encountered an internal error. Please note the circumstances of this error and, if
possible, construct a small test case that demonstrates the problem. You can then either file
a bug report using "GitHub issues" at
https://github.com/open-watcom/open-watcom-v2/issues. , or you can discuss the problem
on "Open Watcom Discord Channel" at
https://discord.com/channels/922934435744206908 .

Internal err: Regexp memory corruption
Vi has encountered an internal error. Please note the circumstances of this error and, if
possible, construct a small test case that demonstrates the problem. You can then either file
a bug report using "GitHub issues" at
https://github.com/open-watcom/open-watcom-v2/issues. , or you can discuss the problem
on "Open Watcom Discord Channel" at
https://discord.com/channels/922934435744206908 .

The Open Watcom Vi Editor Error Messages 213

Appendices

Internal error: Regular expression NULL argument
Vi has encountered an internal error. Please note the circumstances of this error and, if
possible, construct a small test case that demonstrates the problem. You can then either file
a bug report using "GitHub issues" at
https://github.com/open-watcom/open-watcom-v2/issues. , or you can discuss the problem
on "Open Watcom Discord Channel" at
https://discord.com/channels/922934435744206908 .

Invalid abbreviation
You did not enter an "abbrev" command correctly.

Invalid alias command
You did not enter an "alias" command correctly.

Invalid ASSIGN
You did not enter script "assign" command correctly.

Invalid case command
You did not enter a valid operation after starting the case toggle (’~’) command mode
command.

Invalid change command
You did not enter a valid operation after starting the change (’c’) command mode
command.

Invalid command
You entered an invalid command line command.

Invalid conditional expression
You did not code a script "if", "elseif", "quif", "until" or "while" statement correctly.

Invalid data in file ’%s’ at line %d
This error is issued if one of the .dat files (error.dat, keys.dat) contains invalid data.

Invalid delete command
You did not enter a valid operation after starting the delete (’d’) command mode command.

Invalid EXPR You coded an invalid "expr" script command.

Invalid FCLOSE
You coded an invalid "fclose" script command.

Invalid find command
You issued an invalid search command.

Invalid FOPEN
You coded an invalid "fopen" script command.

Invalid FREAD
You coded an invalid "fread" script command.

Invalid FWRITE
You coded an invalid "fwrite" script command.

214 The Open Watcom Vi Editor Error Messages

The Open Watcom Vi Editor Error Messages

Invalid global command
You issued an invalid "global" command line command.

Invalid GOTO You coded an invalid "goto" script command.

Invalid INPUT You coded an invalid "input" script command.

Invalid key ’%c’
You press a key that has no mapping in command mode.

Invalid LABEL You coded an invalid "label" script command.

Invalid line address
You used a "copy" or "move" EX mode command, and specified an invalid destination line.

Invalid line range
You used an invalid line range for a "global", "substitute" or shift (">" or "<") command
line command. This occurs if you use line number past the end of the file.

Invalid map command
You issued an invalid "map" or "mapbase" command.

Invalid mark - use ’a’-’z’
You attempted to set a mark that was not in the range ’a’ to ’z’.

Invalid match command
You issued an invalid "match" command line command.

Invalid menu You issued an invalid "menu" command line command.

Invalid redraw You did not specify a valid key after starting the ’z’ command mode command - valid keys
are dash (’-’), ENTER, and dot (’.’).

Invalid copy buffer ’%c’ - use ’1’-’9’ or ’a’-’z’
You tried to access an invalid copy buffer.

Invalid set command
You tried to set a variable that does not exist.

Invalid setcolor command
You issued an invalid "setcolor" command line command.

Invalid shift command
You did not enter a valid operation after starting a shift (’<’ or ’>’) command mode
command.

Invalid substitute command
You issued an improper "substitute" command line command.

Invalid tag found
Your tags file contained an invalid tag entry.

The Open Watcom Vi Editor Error Messages 215

Appendices

Invalid window
You attempted an operation on an undefined window, or the window that you attempted to
define was invalid.

Invalid window data
The parameters to "border", "text", "hilight", or "dimension" were invalid.

Invalid yank command
You did not enter a valid operation after starting the yank (’y’) command mode command.

invalid [] range
A regular expression error, issued when you specified an invalid range inside the square
brackets.

Label not found
In a script, you attempted to "goto" a label that was not defined.

Mark ’%c’ no longer valid
You tried to access a mark that has become invalid (the line or column that had the mark no
longer exists).

Mark ’%c’ not set
You tried to access an undefined mark.

Matching ’%s’ not found
You used the command mode key ’%’ to look for a matching string to the string under the
cursor, only the match could not be found.

nested *?+ A regular expression error, issued if you have two or more of the ’*’, ’?’ or ’+’ characters
in a row.

No character to replace
You used the command mode key ’r’ to replace a character on an empty line.

No file specified
You issued a "compile", "load" or "source" command, and did not specify a file. Another
source of this error is using the "write" command with a line range and not specifying a file
name.

No more undos You issued an undo command, and there are no more undos to perform.

No more windows
You exceeded the limit of 250 windows that can be open at the same time.

No previous search string
You pressed ’n’ or ’N’ in command mode, but have not yet issued a search command.

No selection You used the ’r’ operator with ’d’, ’c’, ’~’, ’>’, ’<’, ’!’ in command mode, but there is no
selected region. Another source of this error is specifying the pound sign (’#’) as a line
range on the command line, and having no selected region.

No string specified
You indicated that you are starting a string on the command line by using a double quote
(’"’) or forward slash (’/’), but you did not specify any characters at all for the string.

216 The Open Watcom Vi Editor Error Messages

The Open Watcom Vi Editor Error Messages

No such abbreviation
You attempted to use the command line command "unabbrev" for an abbreviation that does
not exist.

No such alias You attempted to use the command line command "unalias" for an alias that does not exist.

No such drive You used the "cd" command line command to attempt to switch to a disk drive that does
not exist.

No such line You specified a line number that does not exist in the current edit buffer.

Not enough room in line
You attempted to add characters to a line, and the resulting line would be longer than the
setting of "maxlinelen".

Not that many words
You attempted a command mode command that tried to access more words than were on
the current line.

Not valid while in EX mode
You attempted to use a command from EX mode that was not allowed: an "edit" command
line command with no parameter, or a "read" command line command with no parameter.

Nothing to match
You used the command mode percent (’%’) keystroke, but there was nothing on the current
line that could be matched.

Only valid in EX mode
You attempted to use an EX mode only command from the command line: "append",
"change", "insert", or "list".

Out of memory The editor ran out of memory. Try removing some TSR’s (terminate and stay resident
programs) or increasing swap space (maxswapk).

Repeat string too long
You entered a repeat count with too many digits, only 9 digits are allowed.

Copy buffer too big
You attempted to execute a copy buffer that is larger than 1024 bytes.

Script already loaded
You attempted to load a script that was previously loaded.

String ’%s’ not found
A search string cannot be found in the file.

Swap file full Vi ran out of space in the swap file, but needed more space. Increase the maxswapk
setting.

Swap file open error
Vi could not open a swap file. This could indicate that there are too many open files, or
that the directory is full (if the swap file is on the root directory), or a problem with your
hard disk.

The Open Watcom Vi Editor Error Messages 217

Appendices

Swap file read error
An error was encountered while attempting to read the swap file. This could indicate
problems with your hard disk.

Swap file write error
An error was encountered while attempting to read the swap file. This could indicate
problems with your hard disk, or that the disk is full.

Tag ’%s’ not found
If the tag you have requested cannot be found in the tags file, this error is issued.

Too many () A regular expression error. There is a limit of 21 nested parenthesis in a regular
expression.

Too many match items
When using the match command to add another match string. There is a limit of 9 different
match pairs.

Top of file reached
Issued if you have nosearchwrap set and a search command gets to the top of the edit buffer
without finding a string.

Trailing \ A regular expression error, issued if a backslash (’\’) is the last character on a line. Since a
backslash is an escape character, it must always have a character following it.

Unmatched () A regular expression error. You have an unequal number of open and closed round
brackets.

Unmatched [] A regular expression error. You have specified one square bracket, without using the
matching one.

Warning: file is read only
This warning is issued if "readonlycheck" is set. The message is issued every time you
modify a read only file.

218 The Open Watcom Vi Editor Error Messages

CTAGS

C. CTAGS

The Open Watcom Vi Editor can utilize something known as tags to help you locate declarations of various
objects in your C, C++, and FORTRAN code.

In C or C++ files, tags will help you locate functions, typedefs, structs, enums and unions. In a C++ file,
you will also be able to locate classes.

Tags will help you find all function and subroutines in FORTRAN files.

Once you select a tag that you wish to locate (by either using the command mode key CTRL_] (control
close square bracket) or the command line command tag), Open Watcom Vi Editor searchs a special tag
file for the specified tag. The name of the tag file is determined by the setting of tagfilename, the default is
tags.

If the tag is located in the tag file, then Open Watcom Vi Editor edits the file that contains the tag that you
specified and goes to the line with the definition on it, highlighting the line. If the tag is not found, you will
get an error message.

The tag file must be located somewhere in the directories specified in your PATH or EDPATH
environment variable.

There is a special program provided for the creation of tag files. This program is called ctags. It is used as
follows:

Usage: ctags [-?admstqvx] [-f<fname>] [files] [@optfile]

[files] : source files (may be C, C++, or FORTRAN)
file names may contain wild cards (* and ?)

[@optfile] : specifies an option file
Option File Directives:

option <opts>: any command line options (no dashes).
an option line resets the d,m,s and t

options.
they must be specified on option line to
remain in effect

file <flist> : a list of files, separated by commas
Options: -? : print this list

-a : append output to existing tags file
-c : add classes (C++ files)
-d : add all #defines (C,C++ files)
-f<fname> : specify alternate tag file (default is

"tags")
-m : add #defines (macros only) (C,C++ files)
-s : add structs, enums and unions (C,C++ files)
-t : add typedefs (C,C++ files)
-q : quiet operation
-v : verbose operation
-x : add all possible tags (same as -cdst)

Options may be specified in a CTAGS environment variable

CTAGS 219

Appendices

220 CTAGS

Symbolic Keystrokes

D. Symbolic Keystrokes

When mapping keys using the map command, and unmapping keys using the unmap command, it is useful
to be able to specify the key that you are mapping symbolically, especially if it is a function key, a cursor
key or other special key. There are a number of pre-defined keys symbols that are recognized when
specifying which key is being mapped/unmapped.

The next section describes the symbol used to represent the key, and what the key actually is. These
symbols are also used throughout this guide to represent a special key.

D.1 Symbols and Meaning

ALT_A Alt key and A key.

ALT_B Alt key and B key.

ALT_C Alt key and C key.

ALT_D Alt key and D key.

ALT_DEL Alt key and delete key.

ALT_DOWN Alt key and cursor down key.

ALT_E Alt key and E key.

ALT_END Alt key and end key.

ALT_F Alt key and F key.

ALT_F1 Alt key and F1 key.

ALT_F2 Alt key and F2 key.

ALT_F3 Alt key and F3 key.

ALT_F4 Alt key and F4 key.

ALT_F5 Alt key and F5 key.

ALT_F6 Alt key and F6 key.

ALT_F7 Alt key and F7 key.

ALT_F8 Alt key and F8 key.

Symbols and Meaning 221

Appendices

ALT_F9 Alt key and F9 key.

ALT_F10 Alt key and F10 key.

ALT_F11 Alt key and F11 key.

ALT_F12 Alt key and F12 key.

ALT_G Alt key and G key.

ALT_H Alt key and H key.

ALT_HOME Alt key and home key.

ALT_I Alt key and I key.

ALT_INS Alt key and insert key.

ALT_J Alt key and J key.

ALT_K Alt key and K key.

ALT_L Alt key and L key.

ALT_LEFT Alt key and cursor left key.

ALT_M Alt key and M key.

ALT_N Alt key and N key.

ALT_O Alt key and O key.

ALT_P Alt key and P key.

ALT_PAGEDOWN
Alt key and page down key.

ALT_PAGEUP Alt key and page up key.

ALT_Q Alt key and Q key.

ALT_R Alt key and R key.

ALT_RIGHT Alt key and cursor right key.

ALT_S Alt key and S key.

ALT_T Alt key and T key.

ALT_TAB Alt key and tab key.

ALT_U Alt key and U key.

ALT_UP Alt key and cursor up key.

222 Symbols and Meaning

Symbolic Keystrokes

ALT_V Alt key and V key.

ALT_W Alt key and W key.

ALT_X Alt key and X key.

ALT_Y Alt key and Y key.

ALT_Z Alt key and Z key.

BS Backspace key.

CTRL_A Control key and A key.

CTRL_B Control key and B key.

CTRL_C Control key and C key.

CTRL_D Control key and D key.

CTRL_DEL Control key and delete key.

CTRL_DOWN Control key and cursor down key.

CTRL_E Control key and E key.

CTRL_END Control key and end key.

CTRL_F Control key and F key.

CTRL_F1 Control key and F1 key.

CTRL_F2 Control key and F2 key.

CTRL_F3 Control key and F3 key.

CTRL_F4 Control key and F4 key.

CTRL_F5 Control key and F5 key.

CTRL_F6 Control key and F6 key.

CTRL_F7 Control key and F7 key.

CTRL_F8 Control key and F8 key.

CTRL_F9 Control key and F9 key.

CTRL_F10 Control key and F10 key.

CTRL_F11 Control key and F11 key.

CTRL_F12 Control key and F12 key.

Symbols and Meaning 223

Appendices

CTRL_G Control key and G key.

CTRL_H Control key and H key.

CTRL_HOME Control key and home key.

CTRL_I Control key and I key.

CTRL_INS Control key and insert key.

CTRL_J Control key and J key.

CTRL_K Control key and K key.

CTRL_L Control key and L key.

CTRL_LEFT Control key and cursor left key.

CTRL_M Control key and M key.

CTRL_N Control key and N key.

CTRL_O Control key and O key.

CTRL_P Control key and P key.

CTRL_PAGEDOWN
Control key and page down key.

CTRL_PAGEUP
Control key and page up key.

CTRL_Q Control key and Q key.

CTRL_R Control key and R key.

CTRL_RIGHT Control key and cursor right key.

CTRL_S Control key and S key.

CTRL_T Control key and T key.

CTRL_TAB Control key and tab key.

CTRL_U Control key and U key.

CTRL_UP Control key and cursor up key.

CTRL_V Control key and V key.

CTRL_W Control key and W key.

CTRL_X Control key and X key.

224 Symbols and Meaning

Symbolic Keystrokes

CTRL_Y Control key and Y key.

CTRL_Z Control key and Z key.

DEL Delete key.

DOWN Cursor down key.

END End key.

ENTER Enter key.

ESC Escape key.

F1 F1 key.

F2 F2 key.

F3 F3 key.

F4 F4 key.

F5 F5 key.

F6 F6 key.

F7 F7 key.

F8 F8 key.

F9 F9 key.

F10 F10 key.

F11 F11 key.

F12 F12 key.

HOME Home key.

INS Insert key.

LEFT Cursor left key.

PAGEDOWN Page down key.

PAGEUP Page up key.

RIGHT Cursor right key.

SHIFT_DEL Shift key and delete key.

SHIFT_DOWN Shift key and cursor down key.

Symbols and Meaning 225

Appendices

SHIFT_F1 Shift key and F1 key.

SHIFT_F2 Shift key and F2 key.

SHIFT_F3 Shift key and F3 key.

SHIFT_F4 Shift key and F4 key.

SHIFT_F5 Shift key and F5 key.

SHIFT_F6 Shift key and F6 key.

SHIFT_F7 Shift key and F7 key.

SHIFT_F8 Shift key and F8 key.

SHIFT_F9 Shift key and F9 key.

SHIFT_F10 Shift key and F10 key.

SHIFT_F11 Shift key and F11 key.

SHIFT_F12 Shift key and F12 key.

SHIFT_INS Shift key and insert key.

SHIFT_LEFT Shift key and cursor left key.

SHIFT_RIGHT Shift key and cursor right key.

SHIFT_TAB Shift key and tab key.

SHIFT_UP Shift key and cursor up key.

TAB Tab key.

UP Cursor up key.

226 Symbols and Meaning

Error Code Tokens

E. Error Code Tokens

These are the tokens defined in the file error.dat that you can use to identify different errors in an
editor script. A typical usage would be:

if lastrc != ERR_NO_ERR

... handle error ...
else

... no error ...
endif

END_OF_FILE
Returned if a fread command is done at the end of file.

ERR_DIRECTORY_OP_FAILED
Returned if the last cd command was to a non-existent directory.

ERR_FILE_EXISTS
Returned if the last write command tried to overwrite an existing file.

ERR_FILE_MODIFIED
Returned if you attempt to quit a modified file.

ERR_FILE_NOT_FOUND
Returned by the read command or the fopen command if the file could not be found.

ERR_FILE_VIEW_ONLY
Returned if you attempt to modify a view only file.

ERR_FIND_END_OF_FILE
Returned if nosearchwrap is set, and the last search command encountered the end of the
edit buffer.

ERR_FIND_NOT_FOUND
Returned if the last search command didn’t find the string.

ERR_FIND_TOP_OF_FILE
Returned if nosearchwrap is set, and the last search command encountered the top of the
edit buffer.

ERR_INVALID_COMMAND
Returned if the last command was invalid.

ERR_INVALID_SET_COMMAND
Returned if the last set command was an invalid one.

ERR_NO_ERR Returned if the last operation was a success.

Error Code Tokens 227

Appendices

ERR_NO_FILE_NAME
Returned if you attempt to write a file with no file name.

ERR_NO_MORE_UNDOS
Returned if the last undo command didn’t undo anything.

ERR_NO_SUCH_DRIVE
Returned if the last cd command was to a non-existent drive.

ERR_NO_SUCH_LINE
Returned if the last movement command went to an invalid line.

ERR_READ_ONLY_FILE
Returned if you attempt to modify a read only file.

NEW_FILE Value of lastrc in a read hook script, if the file just edited was a new file.

NO_VALUE_ENTERED
Returned if an input command was cancelled by the user.

228 Error Code Tokens

Index

beepflag 148
caseignore 149

! changelikevi 149
cmode 149
columninfilestatus 149
currentstatus 150! 105
drawtildes 150
eightbits 150
escapemessage 150
extendedmemory 150<
ignorectrlz 150
ignoretagcase 151
magic 151
pauseonspawnerr 151< 105
quiet 151
quitmovesforward 151
readentirefile 151
readonlycheck 152>
realtabs 152
regsubmagic 152
samefilecheck 152

> 105 saveconfig 152
saveposition 152
searchwrap 153
showmatch 153

A tagprompt 153
undo 153
verbose 153
wordwrap 153abbrev 106
wrapbackspace 154ac 148
writecrlf 154addmenuitem 142

Boolean Window Settingsai 148
clock 154alias 106
linenumbers 154append 106
linenumsonright 155assign 186
marklonglines 155atomic 186
menus 155autoindent 148
repeatinfo 155automessageclear 148
spinning 155autosaveinterval 156
statusinfo 155
toolbar 155
windowgadgets 156

border 135B
break 187
buttonheight 163
buttonwidth 163

beepflag 148
bf 148
Boolean Mouse Settings

Clefthandmouse 154
usemouse 154

Boolean Settings
autoindent 148

cascade 106automessageclear 148

229

Index

caseignore 149 F11 98
cd 107 F12 98
change 107 F2 98
changelikevi 149 J 97
ci 149 Q 97
cl 154 Z 97
clock 154 Movement 72-78
clockx 163 $ 73
clocky 163 % 73
cm 149 ’ 72
cmode 149 + 73
columninfilestatus 149 , 73
Command Mode - 73

Case Toggling 93 0 73
~ 93 ; 73

Changing Text 89-90 ^ 73
C 89-90 ‘ 72
S 89 B 75

Copy Buffers 81-82 CTRL_B 74
p 82 CTRL_D 74
SHIFT_INS 81 CTRL_E 74

Copying Text 88 CTRL_F 74
Y 88 CTRL_N 74

Deleting Text 86-87 CTRL_P 74
D 86-87 CTRL_PAGEDOWN 73
DEL 86 CTRL_PAGEUP 73
X 86 CTRL_U 74

Filters 94 CTRL_Y 75
! 94 DOWN 73

Inserting Text 85 E 75-76
a 85 END 73
g 85 ENTER 73
i 85 F 76
INS 85 G 77
o 85 h 77

Marks 80 HOME 73
’ 80 j 77
‘ 80 k 77
m 80 L 77

Miscellaneous Keys 96-99 LEFT 73
. 98 M 77
: 97 PAGEDOWN 74
= 98 PAGEUP 74
@ 97 RIGHT 74
ALT_M 99 SHIFT_TAB 74
ALT_W 96 T 77-78
ALT_X 97 TAB 74
CTRL_] 96 UP 74
CTRL_C 96 W 78
CTRL_G 96 | 72
CTRL_L 96 Replacing Text 85
CTRL_V 96 g 85
CTRL_X 96 R 85
F1 98 Searching 82

230

Index

/ 82 maximize 121
? 82 minimize 121
n 82 move 121

Shifting Text 91 movewin 122
< 91 next 122
> 91 open 122

Text Selection 95-96 pop 123
_ 96 prev 123
CTRL_R 95 push 123
SHIFT_DEL 95 put 123
SHIFT_DOWN 95 quit 124
SHIFT_LEFT 95 quitall 124
SHIFT_RIGHT 95 read 125
SHIFT_UP 95 resize 126

Undoing Changes 79 set 126
u 79 setcolor 127

commandcursortype 156 shell 127
Commands size 127

! 105 source 128
< 105 substitute 128
> 105 tag 129
abbrev 106 tile 129
alias 106 unabbrev 130
append 106 unalias 130
cascade 106 undo (command) 130
cd 107 unmap 130
change 107 version 131
compile 107 view 131
compress 108 visual 131
copy 108 wq 132
date 108 write 132
delete 108 xit 133
echo 109 yank 132
edit 109 commandwindow 137
egrep 111 compile 107
eval 111 compress 108
execute 112 continue 188
exitall 113 copy 108
expand 113 countwindow 137
fgrep 113 cs 149
files 114 ct 150
floatmenu 115 currentstatus 150
genconfig 115 currentstatuscolumn 164
global 115 cursorblinkrate 164
help 116 cv 149
insert 116
join 117
keyadd 117
list 118 D
load 118
map 118
mapbase 120

date 108mark 120
defaultwindow 137match 120

231

Index

delete 108 fopen 189
deletemenu 143 fread 190
deletemenuitem 143 fwrite 191
dimension 136
dirwindow 137
drawtildes 150
dt 150 G

gadgetstring 164E
genconfig 115
get 191
global 115

eb 150 goto 191
echo 109 grepdefault 157
edit 109
editwindow 138
EDPATH environment variable 65-66, 219
egrep 111 H
eightbits 150
else 189
elseif 188

hardtab 157em 150
help 116endif 188
hilight 136endloop 188
historyfile 157endmenu 143

endoflinechar 156
endwhile 188
endwindow 136

Ienvironment variables
EDPATH 65-66, 219

escapemessage 150
eval 111 if 191
execute 112 ignorectrlz 150
exitall 113 ignoretagcase 151
exitattr 156 inactivewindowcolor 164
expand 113 input 192
expr 189 insert 116
extendedmemory 150 insertcursortype 157
extrainfowindow 138 it 151

iz 150

F
J

fclose 189
fgrep 113 join 117
filecwindow 138
fileendstring 157
files 114
filewindow 138
floatmenu 115

232

Index

addmenuitem 142
deletemenu 143

K deletemenuitem 143
endmenu 143
menu 143
menuitem 144keyadd 117

menubarwindow 139
menuitem 144
menus 155
menuwindow 138L
messagewindow 139
minimize 121
ml 155
mousedclickspeed 162label 192
mouserepeatdelay 162lefthandmouse 154
mousespeed 162linenumbers 154
move 121linenumberwindow 138
movecolor 165linenumsonright 155
movewin 122list 118

lm 154
ln 154
load 118

Nloop 192
lr 155

next 122
nextword 193M
Non-Boolean Mouse Settings

mousedclickspeed 162
mouserepeatdelay 162
mousespeed 162ma 151
wordalt 163magic 151

Non-Boolean Settingsmagicstring 157
autosaveinterval 156map 118
commandcursortype 156mapbase 120
endoflinechar 156mark 120
exitattr 156marklonglines 155
fileendstring 157match 120
grepdefault 157maxclhistory 158
hardtab 157maxemsk 158
historyfile 157maxfilterhistory 158
insertcursortype 157maxfindhistory 158
magicstring 157maximize 121
maxclhistory 158maxlinelen 158
maxemsk 158maxpush 158
maxfilterhistory 158maxswapk 159
maxfindhistory 158maxtilecolors 165
maxlinelen 158maxwindowtilex 165
maxpush 158maxwindowtiley 165
maxswapk 159maxxmsk 159
maxxmsk 159me 155
overstrikecursortype 159menu 143
pagelinesexposed 159Menu Commands

233

Index

radix 159
shellprompt 161

Qshiftwidth 159
stackk 160
statussections 160
statusstring 160 qf 151
tabamount 161 qu 151
tagfilename 161 quiet 151
tmpdir 161 quif 193
word 162 quit 124
wrapmargin 162 quitall 124

Non-Boolean Window Settings quitmovesforward 151
buttonheight 163
buttonwidth 163
clockx 163
clocky 163 R
currentstatuscolumn 164
cursorblinkrate 164
gadgetstring 164
inactivewindowcolor 164 radix 159
maxtilecolors 165 rc 152
maxwindowtilex 165 read 125
maxwindowtiley 165 readentirefile 151
movecolor 165 readonlycheck 152
resizecolor 165 realtabs 152
spinx 165 regsubmagic 152
spiny 166 repeatinfo 155
tilecolor 166 resize 126

resizecolor 165
return 193
rf 151

O ri 155
rm 152
rt 152

open 122
overstrikecursortype 159

S

P
samefilecheck 152
saveconfig 152
saveposition 152

pagelinesexposed 159 sc 152
pauseonspawnerr 151 searchwrap 153
pop 123 set 126
prev 123 setcolor 127
ps 151 setvalwindow 139
push 123 setwindow 139
put 123 shell 127

shellprompt 161
shiftwidth 159
showmatch 153

234

Index

si 155
size 127

Vsm 153
sn 152
so 152
source 128 ve 153
sp 155 verbose 153
spinning 155 version 131
spinx 165 Vi Script Commands
spiny 166 assign 186
stackk 160 atomic 186
statusinfo 155 break 187
statussections 160 continue 188
statusstring 160 else 189
statuswindow 139 elseif 188
substitute 128 endif 188
sw 153 endloop 188

endwhile 188
expr 189
fclose 189

T fopen 189
fread 190
fwrite 191
get 191tabamount 161
goto 191tag 129
if 191tagfilename 161
input 192tagprompt 153
label 192tb 155
loop 192text 137
nextword 193tile 129
quif 193tilecolor 166
return 193tmpdir 161
until 193toolbar 155
while 194tp 153

view 131
visual 131

U

W

um 154
un 153

wg 156unabbrev 130
while 194unalias 130
Window Propertiesundo 153

border 135undo (command) 130
dimension 136undo setting 153
endwindow 136unmap 130
hilight 136until 193
text 137usemouse 154

Window Types
commandwindow 137
countwindow 137

235

Index

defaultwindow 137
dirwindow 137
editwindow 138
extrainfowindow 138
filecwindow 138
filewindow 138
linenumberwindow 138
menubarwindow 139
menuwindow 138
messagewindow 139
setvalwindow 139
setwindow 139
statuswindow 139

windowgadgets 156
wl 154
word 162
wordalt 163
wordwrap 153
wq 132
wrapbackspace 154
wrapmargin 162
write 132
writecrlf 154
ws 154
ww 153

X

xit 133
xm 150

Y

yank 132

236

