
Open Watcom Debugger Interface

Originally written by WATCOM International Corp.

Revised by Open Watcom contributors

Table of Contents

WATCOM Debugging Information Format VERSION 4.0 .. 1

1 Debugging Information Format ... 3

2 Object file structures .. 5

2.1 Version number and source language identification ... 5

2.2 Line number information .. 5

2.3 Location information ... 6

2.4 Typing information ... 9

2.4.1 TYPE_NAME (value 0x1?) ... 9

2.4.2 ARRAY (value 0x2?) ... 10

2.4.3 SUBRANGE (value 0x3?) ... 10

2.4.4 POINTER (value 0x4?) .. 11

2.4.5 ENUMERATED (value 0x5?) .. 11

2.4.6 STRUCTURE (value 0x6?) .. 12

2.4.7 PROCEDURE (value 0x7?) ... 13

2.4.8 CHARACTER_BLOCK (value 0x8?) ... 13

2.5 Local symbol information ... 14

2.5.1 VARIABLE (value 0x1?) ... 14

2.5.2 CODE (value 0x2?) .. 14

2.5.3 NEW_BASE (value 0x3?) .. 16

3 Executable file structures ... 17

3.1 Master debug header ... 17

3.2 Source language table ... 19

3.3 Segment address table ... 19

3.4 Section debug information .. 19

3.4.1 Section debug header .. 19

3.4.2 Local symbols class .. 20

3.4.3 Types class .. 20

3.4.4 Line numbers class ... 20

3.4.4.1 Special Line Number Table ... 21

3.4.5 Module information class ... 22

3.4.6 Global symbols class .. 24

3.4.7 Address information class .. 24

Debugger Trap File Interface VERSION 1.3 ... 27

1 Introduction .. 29

1.1 Some Definitions ... 29

1.1.1 Byte Order .. 29

1.1.2 Pointer Sizes ... 30

1.1.3 Base Types .. 30

2 The Request Interface .. 31

2.1 Request Structure .. 31

2.2 The Interface Routines .. 31

2.2.1 TrapInit ... 31

2.2.2 TrapRequest .. 32

2.2.2.1 Request Example ... 33

2.2.3 TrapFini .. 33

ii

Table of Contents

3 The Requests .. 35

3.1 Core Requests .. 35

3.1.1 REQ_CONNECT ... 35

3.1.2 REQ_DISCONNECT ... 36

3.1.3 REQ_SUSPEND .. 36

3.1.4 REQ_RESUME .. 36

3.1.5 REQ_GET_SUPPLEMENTARY_SERVICE .. 37

3.1.6 REQ_PERFORM_SUPPLEMENTARY_SERVICE ... 37

3.1.7 REQ_GET_SYS_CONFIG .. 38

3.1.8 REQ_MAP_ADDR .. 40

3.1.9 REQ_CHECKSUM_MEM .. 40

3.1.10 REQ_READ_MEM .. 41

3.1.11 REQ_WRITE_MEM .. 41

3.1.12 REQ_READ_IO ... 42

3.1.13 REQ_WRITE_IO ... 42

3.1.14 REQ_PROG_GO .. 42

3.1.15 REQ_PROG_STEP .. 42

3.1.16 REQ_PROG_LOAD .. 43

3.1.17 REQ_PROG_KILL .. 44

3.1.18 REQ_SET_WATCH .. 44

3.1.19 REQ_CLEAR_WATCH .. 45

3.1.20 REQ_SET_BREAK .. 45

3.1.21 REQ_CLEAR_BREAK .. 45

3.1.22 REQ_GET_NEXT_ALIAS .. 46

3.1.23 REQ_SET_USER_SCREEN .. 46

3.1.24 REQ_SET_DEBUG_SCREEN .. 46

3.1.25 REQ_READ_USER_KEYBOARD ... 47

3.1.26 REQ_GET_LIB_NAME .. 47

3.1.27 REQ_GET_ERR_TEXT .. 48

3.1.28 REQ_GET_MESSAGE_TEXT .. 48

3.1.29 REQ_REDIRECT_STDIN ... 49

3.1.30 REQ_REDIRECT_STDOUT ... 49

3.1.31 REQ_SPLIT_CMD .. 49

3.1.32 REQ_READ_REGS ... 49

3.1.33 REQ_WRITE_REGS ... 50

3.1.34 REQ_MACHINE_DATA .. 50

3.2 File I/O requests .. 51

3.2.1 REQ_FILE_GET_CONFIG ... 51

3.2.2 REQ_FILE_OPEN ... 51

3.2.3 REQ_FILE_SEEK .. 52

3.2.4 REQ_FILE_READ ... 53

3.2.5 REQ_FILE_WRITE ... 53

3.2.6 REQ_FILE_WRITE_CONSOLE ... 54

3.2.7 REQ_FILE_CLOSE ... 54

3.2.8 REQ_FILE_ERASE ... 54

3.2.9 REQ_FILE_STRING_TO_FULLPATH .. 55

3.2.10 REQ_FILE_RUN_CMD .. 55

3.3 Overlay requests .. 56

3.3.1 REQ_OVL_STATE_SIZE ... 56

3.3.2 REQ_OVL_GET_DATA ... 57

3.3.3 REQ_OVL_READ_STATE ... 57

3.3.4 REQ_OVL_WRITE_STATE ... 57

iii

Table of Contents

3.3.5 REQ_OVL_TRANS_VECT_ADDR ... 58

3.3.6 REQ_OVL_TRANS_RET_ADDR .. 58

3.3.7 REQ_OVL_GET_REMAP_ENTRY ... 59

3.4 Thread requests ... 59

3.4.1 REQ_THREAD_GET_NEXT .. 59

3.4.2 REQ_THREAD_SET ... 60

3.4.3 REQ_THREAD_FREEZE ... 60

3.4.4 REQ_THREAD_THAW .. 60

3.4.5 REQ_THREAD_GET_EXTRA ... 61

3.5 Remote File transfer (RFX) requests .. 61

3.5.1 REQ_RFX_RENAME .. 61

3.5.2 REQ_RFX_MKDIR ... 62

3.5.3 REQ_RFX_RMDIR ... 62

3.5.4 REQ_RFX_SETDRIVE ... 62

3.5.5 REQ_RFX_GETDRIVE .. 63

3.5.6 REQ_RFX_SETCWD .. 63

3.5.7 REQ_RFX_GETCWD ... 63

3.5.8 REQ_RFX_SETDATETIME ... 64

3.5.9 REQ_RFX_GETDATETIME .. 64

3.5.10 REQ_RFX_GETFREESPACE .. 64

3.5.11 REQ_RFX_SETFILEATTR .. 65

3.5.12 REQ_RFX_GETFILEATTR .. 65

3.5.13 REQ_RFX_NAMETOCANONICAL .. 65

3.5.14 REQ_RFX_FINDFIRST .. 66

3.5.15 REQ_RFX_FINDNEXT .. 66

3.5.16 REQ_RFX_FINDCLOSE .. 67

3.6 Environment requests .. 67

3.6.1 REQ_ENV_GET_VAR .. 67

3.6.2 REQ_ENV_SET_VAR .. 68

3.7 File Info requests ... 68

3.7.1 REQ_FILE_INFO_GET_DATE .. 68

3.7.2 REQ_FILE_INFO_SET_DATE ... 68

3.8 Asynchronous Debugging requests ... 69

3.8.1 REQ_ASYNC_GO ... 69

3.8.2 REQ_ASYNC_STEP ... 69

3.8.3 REQ_ASYNC_POLL ... 69

3.8.4 REQ_ASYNC_STOP ... 69

3.8.5 REQ_ASYNC_ADD_BREAK .. 70

3.8.6 REQ_ASYNC_REMOVE_BREAK .. 70

3.9 Non-blocking Thread requests .. 70

3.9.1 REQ_RUN_THREAD_INFO .. 70

3.9.2 REQ_RUN_THREAD_GET_NEXT ... 70

3.9.3 REQ_RUN_THREAD_GET_RUNTIME .. 71

3.9.4 REQ_RUN_THREAD_POLL .. 71

3.9.5 REQ_RUN_THREAD_SET .. 71

3.9.6 REQ_RUN_THREAD_GET_NAME .. 71

3.9.7 REQ_RUN_THREAD_STOP .. 71

3.9.8 REQ_RUN_THREAD_SIGNAL_STOP ... 72

3.10 Capabilities requests .. 72

3.10.1 REQ_CAPABILITIES_GET_EXACT_BP ... 72

3.10.2 REQ_CAPABILITIES_SET_EXACT_BP .. 72

iv

Table of Contents

4 System Dependent Aspects .. 75

4.1 Trap Files Under DOS .. 75

4.2 Trap Files Under OS/2 .. 75

4.3 Trap Files Under Windows. .. 76

4.4 Trap Files Under Windows NT. .. 76

4.5 Trap Files Under QNX .. 76

4.6 Trap Files Under Netware 386 or PenPoint .. 77

Overlay Manager Interface VERSION 3.0 ... 79

1 Overlay manager interface ... 81

1.1 The Hook Routine ... 81

1.2 The Handler Routine ... 82

1.2.1 GET_STATE_SIZE .. 82

1.2.2 GET_OVERLAY_STATE ... 82

1.2.3 SET_OVERLAY_STATE .. 82

1.2.4 TRANSLATE_VECTOR_ADDR .. 83

1.2.5 TRANSLATE_RETURN_ADDR .. 83

1.2.6 GET_OVL_TBL_ADDR ... 83

1.2.7 GET_MOVED_SECTION ... 84

1.2.8 GET_SECTION_DATA .. 84

1.3 Overlay Table Structure .. 85

v

WATCOM Debugging Information
Format VERSION 4.0

WATCOM Debugging Information Format VERSION 4.0

2

1 Debugging Information Format

This document describes the object and executable file structures used by the Open Watcom Debugger to

provide symbolic information about a program. This information is subject to change.

Note that version 4.0 of the Open Watcom debugger supports the DWARF and CodeView symbolic

debugging information formats in addition to the format described in this document. For the purposes of

discussion, this format will be known as the "WATCOM" format. DWARF is now the primary format used

by Open Watcom compilers. Support for generating the WATCOM format will probably remain but is

only useful for debugging DOS overlays.

Before reading this document you should understand the Intel 8086 Object Module Format (OMF). This

format is described in the Intel document 8086 Relocatable Object Module Formats and also the October

1985 issue of PC Tech Journal.

Responsibility for the Intel/Microsoft OMF specification has been taken over by the Tools Interface

Standards (TIS) Committee. The TIS standards (including the OMF spec) may be obtained by phoning the

Intel literature center at 1-800-548-4725 and asking for order number 241597.

This document is for the Open Watcom Debugger version 4.0 (or above.)

Debugging Information Format 3

WATCOM Debugging Information Format VERSION 4.0

4 Debugging Information Format

2 Object file structures

The compiler is responsible for placing extra information into the object file in order to provide symbolic

information for the Open Watcom Debugger. There are three classes of information, each of which may be

present or absent from the file individually. These classes are line number, type and local symbol

information.

For the Open Watcom C compiler, line number information is provided when the "/d1" switch is used and

all three classes are provided when the "/d2" switch is used.

2.1 Version number and source language identification

Since there may be different versions of the type and local symbol information, and there may be multiple

front-ends a special OMF COMENT record is placed in the object file. It has the following form:

comment_class = 0xfe
’D’
major_version_number (char)
minor_version_number (char)
source_language (string)

The comment_class of 0xfe indicates a linker directive comment. The character ’D’ informs the linker

that this record is providing debugging information. The major_version_number is changed

whenever there is a modification made to the types or local symbol classes that is not upwardly compatible

with previous versions. The minor_version_number increments by one whenever a change is made

to those classes that is upwardly compatible with previous versions. The source_language field is a

string which determines what language that the file was compiled from.

If the debugging comment record is not present, the local and type segments (described later) are not in

WATCOM format and should be omitted from the resulting executable file’s debugging information. The

current major version is one, and the current minor version is three.

2.2 Line number information

Line number information is provided by standard Intel OMF LINNUM records. A kludge has been added

that allows for line numbers to refer to more than one source file. See the section on the "Special Line

Number Table" in the executable structures portion of the document for more details.

Line number information 5

WATCOM Debugging Information Format VERSION 4.0

2.3 Location information

A type or symbol definition may contain a location field. This field is of variable length and identifies the

memory (or register) location of the symbol in question. A location field may consist of a single entry, or a

list of entries. Each entry describes an operation of a stack machine. The value of the location field is the

top entry of the stack after all the operations have been performed. To tell whether a field is a single entry

or a list, the first byte is examined. If the value of the byte is greater than 0x80, then the field consists of a

list of entries, and the length in bytes of the list is the value of the first byte minus 0x80. If the first byte is

less than 0x80, the byte is the first byte of a single entry field. The top nibble of the first byte in each entry

is a general location class while the low nibble specifies the sub-class.

6 Location information

Object file structures

BP_OFFSET (value 0x1?)

BYTE (value 0x10) offset_byte
WORD (value 0x11) offset_word
DWORD (value 0x12) offset_dword

CONST (value 0x2?)
ADDR286 (value 0x20) memory_location_32_pointer
ADDR386 (value 0x21) memory_location_48_pointer
INT_1 (value 0x22) const_byte
INT_2 (value 0x23) const_word
INT_4 (value 0x24) const_dword

MULTI_REG (value 0x3?)
Low nibble is number of register bytes that follow - 1.
The registers are specified low order register first.

REG (value 0x4?)
Low nibble is low nibble of the appropriate register value.
This may only be used for the first 16 registers.

IND_REG (value 0x5?)
CALLOC_NEAR (value 0x50) register_byte
CALLOC_FAR (value 0x51) register_byte, register_byte
RALLOC_NEAR (value 0x52) register_byte
RALLOC_FAR (value 0x53) register_byte, register_byte

OPERATOR (value 0x6?)
IND_2 (value 0x60)
IND_4 (value 0x61)
IND_ADDR286 (value 0x62)
IND_ADDR386 (value 0x63)
ZEB (value 0x64)
ZEW (value 0x65)
MK_FP (value 0x66)
POP (value 0x67)
XCHG (value 0x68) stack_byte
ADD (value 0x69)
DUP (value 0x6a)
NOP (value 0x6b)

Here is the list of register numbers:
0-AL, 1-AH, 2-BL, 3-BH, 4-CL, 5-CH, 6-DL, 7-DH
8-AX, 9-BX, 10-CX, 11-DX, 12-SI, 13-DI, 14-BP, 15-SP

16-CS, 17-SS, 18-DS, 19-ES
20-ST0, 21-ST1, 22-ST2, 23-ST3, 24-ST4, 25-ST5, 26-ST6, 27-ST7
28-EAX, 29-EBX, 30-ECX, 31-EDX, 32-ESI, 33-EDI, 34-EBP, 35-ESP
36-FS, 37-GS

CONST pushes a single constant value onto the expression stack. INT_1 and INT_2 constant values are

sign-extended to four bytes before being pushed.

The OPERATOR class performs a variety of operations on the expression stack.

Location information 7

WATCOM Debugging Information Format VERSION 4.0

IND_2 Pick up two bytes at the location specified by the top entry of the stack, sign-extend to four

bytes and replace top of stack with the result.

IND_4 Replace the top of stack with the contents of the four bytes at the location specified by the

top of stack.

IND_ADDR286 Replace the top of stack with the contents of the four bytes, treated as a far pointer, at the

location specified by the top of stack.

IND_ADDR386 Replace the top of stack with the contents of the six bytes, treated as a far pointer, at the

location specified by the top of stack.

ZEB Zero extend the top of stack from a byte to a dword (clear the high three bytes).

ZEW Zero extend the top of stack from a word to a dword.

MK_FP Remove the top two entries from the stack, use the top of stack as an offset and the next

element as a segment to form a far pointer and push that back onto the stack.

POP Remove the top entry from the stack.

XCHG Exchange the top of stack with the entry specified by stack_byte. "XCHG 1" would

exchange the top of stack with the next highest entry.

ADD Remove the top two entries from the stack, add them together and push the result.

DUP Duplicate the value at the top of the stack.

NOP Perform no operation.

REG and MULTI_REG push the ’lvalue’ of the register. If they are the only entry then the symbol exists in

the specified register. To access the value of the register, you must indirect it.

BP_OFFSET locations are for variables on the stack. The values given are offsets from the BP register for

286 programs and from the EBP register for 386 programs. A BP_OFFSET could also be expressed with

the following series of operations:

MULTI_REG(1) SS
IND_2
MULTI_REG(1) EBP
IND_4
MK_FP
INT_1 offset_byte
ADD

The IND_REG location type is used for structured return values. The register or register pair is used to

point at the memory location where the structure is returned. CALLOC means that the calling procedure is

responsible for allocating the return area and passing a pointer to it as a parameter in the specified registers.

RALLOC means that the called routine allocated the area and returns a pointer to it in the given registers.

8 Location information

Object file structures

2.4 Typing information

The Open Watcom Debugger typing information is contained in a special segment in the object file. The

segment name is "$$TYPES" and the segment class is "DEBTYP". To allow greater flexibility in demand

loading the typing information and also let it exceed 60K for a single module, each object file may have

multiple $$TYPES segments. Each segment is identified by an entry in the demand link table (described in

the executable file structures section). No individual segment may exceed 60K and no individual type

record may be split across a segment boundry. Also, any type which is described by multiple records

(structures, enums, procedures) may not be split across a segment boundry. Since each segment is loaded

as a whole by the debugger when demand loading, increasing the segment size requires larger amounts of

contiguous memory be present in the system. Decreasing the size of the individual segments reduces

memory requirements, but increases debugger lookup time since it has to traverse more internal structures.

The current code generator starts a new type segment when the current one exceeds 16K. The segments are

considered to be a stream of variable length definitions, with each definition being preceded by a length

byte. A number of the definitions contain indices of some form. These indices are standard Intel format,

with 0 meaning no index, 1 to 127 is represented in one byte, 128 to 32767 in high byte/low byte form with

the top bit on in the high byte. Definitions are given index numbers by the order in which they appear in

the module, with the first being index one. Character strings representing names are always placed at the

end of a definition so that their length can be calculated by subtracting the name’s start point from the

length of the record. They are not preceded by a length byte or followed by a zero byte.

The first byte identifies the kind of the type definition that follows. The top nibble of the byte is used to

indicate the general class of the type definition (there are eight of these). The low order nibble is used to

qualify the general type class and uniquely identify the definition type.

2.4.1 TYPE_NAME (value 0x1?)

This definition is used to give names to types. There are three sub-classes.

SCALAR (value 0x10) scalar_type_byte, name
SCOPE (value 0x11) name
NAME (value 0x12) scope_index, type_index, name
CUE_TABLE (value 0x13) table_offset_dword
EOF (value 0x14)

SCALAR is used to give a name to a basic scalar type. It can also be used to give a type index to a scalar

type without a name by specifying the null name. The scalar_type_byte informs the Open Watcom

Debugger what sort of scalar item is being given a name. It has the following form:

BIT: 7 6 5 4 3 2 1 0

| | | | |
| | | +-----+--- size in bytes - 1
| +---+----------- class (000 - integer)
| (001 - unsigned)
| (010 - float)
| (011 - void (size=0))
| (100 - complex)
+----------------- unused

To create an unnamed scalar type, for use in other definitions, just use a zero length name.

Notes: BASIC would have been a better name for this, since complex is not a scalar type, but the name was

chosen before complex support was added.

Typing information 9

WATCOM Debugging Information Format VERSION 4.0

SCOPE is used to restrict the scope of other type names. A restricted scope type name must be preceded by

its appropriate scope name in order for the Open Watcom Debugger to recognize it as a type name. This is

useful for declaring C structure, union, and enum tag names. You declare SCOPE names of "struct",

"union", and "enum" and then place the appropriate value in the scope_index field of the NAME record

when declaring the tag.

NAME gives an arbitrary type a name. The field, scope_index , is either zero, which indicates an

unrestricted type name, or is the type index of a SCOPE definition, which means that the type name must

be preceded by the given scope name in order to be recognized.

The next two records are kludges to allow OMF line numbers to refer to more than one source file. See the

section of on the "Special Line Number Table" in the executable structure for more details.

CUE_TABLE is followed by table_offset_dword which gives the offset in bytes from the begining

of the typing information for a module to the special line number table. If this record is present, it must be

in the first $$TYPES segment for the module and preferably as close to the begining of the segment as

possible.

EOF marks the end of the typing information for the module and the begining of the special line number

table.

2.4.2 ARRAY (value 0x2?)

This definition is used to define an array type. There are 6 sub-classes.

BYTE_INDEX (value 0x20) high_bound_byte, base_type_index
WORD_INDEX (value 0x21) high_bound_word, base_type_index
LONG_INDEX (value 0x22) high_bound_dword, base_type_index
TYPE_INDEX (value 0x23) index_type_index, base_type_index
DESC_INDEX (value 0x24) scalar_type_byte, scalar_type_byte,

bounds_32_pointer, base_type_index
DESC_INDEX_386 (value 0x25) scalar_type_byte, scalar_type_byte,

bounds_48_pointer, base_type_index

BYTE_INDEX, WORD_INDEX, LONG_INDEX are all used to describe a restricted form of array. If one

of these forms is used then the index type is an integer with the low bound of the array being zero and the

high bound being whatever is specified.

The DESC_INDEX form is used when the array bounds are not known at compile time. The

bounds_32_pointer is a far pointer to a structure in memory. The type and size of the first field is

given by the first scalar_type_byte and indicates the lower bound for the index. The second field’s

type and size is given by the second scalar_type_byte. This field gives the number of elements in

the array.

The DESC_INDEX_386 is the same as DESC_INDEX except that a 48-bit far pointer is used to locate the

structure in memory.

2.4.3 SUBRANGE (value 0x3?)

This definition is used to define a subrange type. There are 3 sub-classes.

10 Typing information

Object file structures

BYTE_RANGE (value 0x30) lo_bnd_byte, hi_bnd_byte, base_type_index
WORD_RANGE (value 0x31) lo_bnd_word, hi_bnd_word, base_type_index
LONG_RANGE (value 0x32) lo_bnd_dword, hi_bnd_dword, base_type_index

If the base type is unsigned then the low and high bounds should be interpreted as containing unsigned

quantities, otherwise they contain integers. However, the decision to use the byte, word, or long form of

the definition is always made considering the high and low bounds as signed numbers.

2.4.4 POINTER (value 0x4?)

This definition is used to define a pointer type. There are 10 sub-classes.

NEAR (value 0x40) base_type_index [,base_locator]
FAR (value 0x41) base_type_index
HUGE (value 0x42) base_type_index
NEAR_DEREF (value 0x43) base_type_index [,base_locator]
FAR_DEREF (value 0x44) base_type_index
HUGE_DEREF (value 0x45) base_type_index
NEAR386 (value 0x46) base_type_index [,base_locator]
FAR386 (value 0x47) base_type_index
NEAR386_DEFREF (value 0x48) base_type_index [,base_locator]
FAR386_DEREF (value 0x49) base_type_index

When a symbol is one of the *_DEREF types, the Open Watcom Debugger will automatically dereference

the pointer. This "hidden" indirection may be used to define reference parameter types, or other indirectly

located symbols. The *_DEREF types have now been superceeded by location expressions. They should

no longer be generated. The NEAR* pointer types all have an optional base_locator field. The

debugger can tell if this field is present by examining the length of the debug type entry at the begining of

the record and seeing if there are additional bytes after the base_type_index field. If there are more

bytes, the base_locator is a location expression whose result is an address, the value of which is the

base selector and offset value when indirecting through the pointer (based pointers). The contents of the

based pointer variable are added to result of the location expression to form the true resulting address after

an indirection. The address of the pointer variable being indirected through is pushed on the stack before

the location expression is evaluated (needed for self-based pointers). If the base_locator field is not

present, the debugger will use the default near segment and a zero offset.

2.4.5 ENUMERATED (value 0x5?)

This definition is used to define an enumerated type. There are 4 sub-classes.

LIST (value 0x50) #consts_word, scalar_type_byte
CONST_BYTE (value 0x51) value_byte, name
CONST_WORD (value 0x52) value_word, name
CONST_LONG (value 0x53) value_dword, name

LIST is used to inform the Open Watcom Debugger of the number of constants in the enumerated type and

the scalar type used to store them in memory. It will be followed immediately by all the constant

definitions for the enumerated type. See TYPE_NAME for a description of the scalar_type_byte.

CONST_BYTE, CONST_WORD, and CONST_LONG define the individual constant values for an

enumerated type. The type of the constant is provided by the preceeding LIST definition. The decision to

use the byte, word, or long form of the definition is made always by considering the value as a signed

number. The CONST_* definition records are not counted when determining type index values.

Typing information 11

WATCOM Debugging Information Format VERSION 4.0

The LIST record and its associated CONST_* records must all be contained in the same $$TYPES

segment.

2.4.6 STRUCTURE (value 0x6?)

This definition is used to define a structure type. There are 10 sub-classes.

LIST (value 0x60) #fields_word [,size_dword]
FIELD_BYTE (value 0x61) offset_byte, type_index, name
FIELD_WORD (value 0x62) offset_word, type_index, name
FIELD_LONG (value 0x63) offset_dword, type_index, name
BIT_BYTE (value 0x64) offset_byte, start_bit_byte, bit_size_byte,

type_index, name
BIT_WORD (value 0x65) offset_word, start_bit_byte, bit_size_byte,

type_index, name
BIT_LONG (value 0x66) offset_dword, start_bit_byte, bit_size_byte,

type_index, name
FIELD_CLASS (v 0x67) attrib_byte, field_locator, type_index, name
BIT_CLASS (value 0x68) attrib_byte, field_locator, start_bit_byte,

bit_size_byte, type_index, name
INHERIT_CLASS (v 0x69) adjust_locator, ancestor_type_index

LIST is used to introduce a structure definition. It is followed immediately by all the field definitions that

make up the structure. The optional size_dword gives the size of the structure in bytes. If it is not

present, the debugger calculates the size of the structure based on field offsets and sizes.

FIELD_BYTE, FIELD_WORD, FIELD_LONG, and FIELD_CLASS define a single field entry in a

structure defintion.

BIT_BYTE, BIT_WORD, BIT_LONG, and BIT_CLASS define a bit field in a structure. :The

FIELD_CLASS and BIT_CLASS records are used for defining fields in a C++ class. The attrib_byte
contain a set of bits describing attributes of the field:

BIT: 7 6 5 4 3 2 1 0

| | | | | |
| | | | | +--- internal
| | | | +----- public
| | | +------- protected
| | +--------- private
+-----+----------- unused

An internal field is one that is generated for compiler support. It is not normally displayed to the user. The

other bits have their usual C++ meanings.

The field_locator is a location expression describing how to calculate the field address. Before

begining to evaluate the expression, the debugger will implicitly push the base address of the class instance

onto the stack. The following is an example of the location expression used to calculate an ordinary field at

offset 10 from the start of the class:

INT_1 10
ADD

The INHERIT_CLASS record indicates that a particular class should inherit all the fields specified by

ancestor_type_index. This field must point at either a STRUCTURE LIST record or a TYPE

NAME that eventually resolves to a STRUCTURE LIST. The adjust_locator is a location

12 Typing information

Object file structures

expression that tells the debugger how to adjust the field offset expressions in the inherited class to their

proper values for a class of this instance.

The FIELD_*, BIT_*, and INHERIT_CLASS records are not counted when determining type index values.

A C union, or Pascal variant record is described by having a number of fields all beginning at the same

offset. The Open Watcom Debugger will display the fields in the reverse order that the records define

them. This means that ordinarily, the records should be sorted by descending offsets and bit positions.

The LIST record and it’s associated field descriptions must all be contained in the same $$TYPES segment.

2.4.7 PROCEDURE (value 0x7?)

This definition is used to define a procedure type. There are 4 sub-classes.

NEAR (value 0x70) ret_type_index, #parms_byte
{,parm_type_index}
FAR (value 0x71) ret_type_index, #parms_byte
{,parm_type_index}
NEAR386 (value 0x72) ret_type_index, #parms_byte
{,parm_type_index}
FAR386 (value 0x73) ret_type_index, #parms_byte
{,parm_type_index}
EXT_PARMS (value 0x74) {,parm_type_index}

The EXT_PARMS sub-class is used when there are too many parameter types to fit into one PROCEDURE

record. This condition can be recognized when the #parms_byte indicates there are more parameter types

than fit into the record according to the length field at the beginning. In this case the remaining parameter

types are continued in the record immediately following, which will always be of type EXT_PARMS. The

EXT_PARMS record must be contained in the same $$TYPES segment as the preceeding procedure

record.

2.4.8 CHARACTER_BLOCK (value 0x8?)

Items of type CHARACTER_BLOCK are length delimited strings. There are 4 sub-classes.

CHAR_BYTE (value 0x80) length_byte
CHAR_WORD (value 0x81) length_word
CHAR_LONG (value 0x82) length_dword
CHAR_IND (value 0x83) scalar_type_byte, length_32_pointer
CHAR_IND_386 (value 0x84) scalar_type_byte, length_48_pointer
CHAR_IND_LOC (value 0x85) scalar_type_byte, address_locator

The CHAR_BYTE, CHAR_WORD, and CHAR_LONG forms are used when the length of the character

string is known at compile time. Even though the length given is an unsigned quantity, the decision on

which form to use is made by considering the value to be signed. The CHAR_IND form is used when the

length of the string is determined at run time. The length_32_pointer gives the far address of a

location containing the length of the string. The size of this location is given by the

scalar_type_byte. The CHAR_IND_386 form is the same as CHAR_IND except that the location of

the length is given by a 48-bit far pointer. The CHAR_IND_LOC form is the same as CHAR_IND except

that the address of the length is given by a location expression.

Typing information 13

WATCOM Debugging Information Format VERSION 4.0

2.5 Local symbol information

The Open Watcom Debugger local symbol information is contained in a special segment in the object file.

The segment name is "$$SYMBOLS" and the segment class is "DEBSYM". The segment is considered to

be a stream of variable length definitions, with each definition being preceded by a length byte. A number

of the definitions contain indices of some form. These indices are standard Intel format, with 0 meaning no

index, 1 to 127 is represented in one byte, 128 to 32767 in high byte/low byte form with the top bit on in

the high byte. Character strings representing names are always placed at the end of a definition so that their

length can be calculated by subtracting the name’s start point from the length of the record. They are not

preceded by a length byte or followed by a zero byte.

The first byte identifies the kind of the symbol definition that follows. The top nibble of the byte is used to

indicate the general class of the symbol definition. The low order nibble is used to qualify the general

definition class.

Symbol definitions are used to provide the Open Watcom Debugger with the location and scoping of source

language local symbols. There are two general classes of symbol definition, one for variables and one for

code.

2.5.1 VARIABLE (value 0x1?)

This definition is used to define the location of a data symbol. There are 4 sub-classes.

MODULE (value 0x10) memory_location_32_pointer, type_index, name
LOCAL (value 0x11) address_locator, type_index, name
MODULE386 (value 0x12) memory_location_48_pointer, type_index, name
MODULE_LOC (value 0x13) address_locator, type_index, name

MODULE defines either an exported, domestic, or imported variable in the module. It is not necessary to

generate symbol information for an imported variable since the Open Watcom Debugger will look for local

symbol information in the module which defines the variable if required.

LOCAL defines a symbol that is local to a code block or procedure. The defining block is the first one

previous to this definition. Local symbols only "exist" for the purpose of the Open Watcom Debugger

lookups when the program is executing in a block which defines the symbol.

2.5.2 CODE (value 0x2?)

This definition is used to define an object in the code. There are 6 sub-classes.

14 Local symbol information

Object file structures

BLOCK (value 0x20) start_offset_word, size_word,

parent_block_offset
NEAR_RTN (value 0x21) <BLOCK>, pro_size_byte, epi_size_byte,

ret_addr_offset_word, type_index,
return_val_loc, #parms_byte
{,parm_location}, name

FAR_RTN (value 0x22) <BLOCK>, pro_size_byte, epi_size_byte,
ret_addr_offset_word, type_index,
return_val_loc, #parms_byte
{,parm_location}, name

BLOCK_386 (value 0x23) start_offset_dword, size_dword,
parent_block_offset

NEAR_RTN_386 (value 0x24) <BLOCK_386>, pro_size_byte, epi_size_byte,
ret_addr_offset_dword, type_index,
return_val_loc, #parms_byte
{,parm_location}, name

FAR_RTN_386 (value 0x25) <BLOCK_386>, pro_size_byte, epi_size_byte,
ret_addr_offset_dword, type_index,
return_val_loc, #parms_byte
{,parm_location}, name

MEMBER_SCOPE (value 0x26) parent_block_offset, class_type_index
[obj_ptr_type_byte, object_loc]

BLOCK is used to indicate a block of code that contains local symbol definitions. The field

parent_block_offset is used to tell the Open Watcom Debugger the next block to search for a

symbol definition if it is not found in this block. The field is set to zero if there is no parent block.

NEAR_RTN and FAR_RTN are used to specify a routine definition. Notice that the first part is identical to

a code block definition. The ret_addr_offset_word is the offset from BP (or EBP) that the return

address is located on the stack. The #parms_byte and parm_location following are only for those

parms which are passed in registers. The remainder of the parms are assumed to be passed on the stack.

The MEMBER_SCOPE record is used for C++ member functions. It introduces a scope where the the

debugger looks up the fields of the class identified by class_type_index as if they were normal

symbols. If the obj_ptr_type_byte and object_loc location expression portions of the record are

present, it indicates that the function has a C++ "this" pointer, and all fields of the class structure are

accessable. The location expression evaluates to the address of the object that the member function is

manipulating. The obj_ptr_type_byte contains a value from the low order nibble of a POINTER

type record. It indicates the type of ‘this’ pointer the routine is expecting. I.e.:

Value Definition

0 16-bit near pointer

1 16-bit far pointer

6 32-bit near pointer

7 32-bit far pointer

If the portions following the class_type_index are absent from the record, the routine is a static

member function and only has access to static data members.

Local symbol information 15

WATCOM Debugging Information Format VERSION 4.0

To use this record, the member function’s parent_block_offset is pointed at the MEMBER_SCOPE

record, and the MEMBER_SCOPE’s parent_block_offset field is pointed at what the member

function would normally be pointing at. In effect, a new block scope has been introduced.

The *_386 versions of the records are identical to their 286 counterparts excepts that the start_offset
, size , and ret_addr_offset fields have been widened to 32 bits.

Notes: There should be a better mapping of parm number to parm location. There is no provision for

Pascal calling conventions (reversed parm order) or other strangeness.

The BLOCK definition contains a start_offset_word (or start_offset_dword in a

BLOCK_386). This is the offset from a given memory location provided by NEW_BASE entries and

indicates the address of the start of executable code for the block.

All the code location definitions are assumed to be sorted in order of increasing end offsets (start offset +

size). This ensures that the first scope that the debugger encounters in a traversal of the symbolic

information is the closest enclosing scope.

2.5.3 NEW_BASE (value 0x3?)

ADD_PREV_SEG (value 0x30) seg_increment_word
SET_BASE (value 0x31) memory_location_32_pointer
SET_BASE386 (value 0x32) memory_location_48_pointer

For ADD_PREV_SEG, the specified amount is added to the segment value of the code start address of the

module. The code start offset is reset to zero. All BLOCK definitions occuring after this item are relative

to the new value. After a SET_BASE or SET_BASE386 all BLOCK definitions are relative to the memory

location that is given by the record.

Notes: Avoid the use of the ADD_PREV_SEG record. Its operation is only valid in real mode. It is

included for backwards compatiblity only.

16 Local symbol information

3 Executable file structures

The linker is responsible for processing the debugging information contained in the object files and some of

its internal structures and appending them to the executable file.

After linking, the executable file looks like this:

+-----------------------+
| |
| EXE file |
| |
+=======================+
| |
| Overlays |
| |
+=======================+
| Any Other Stuff |
+=======================+<--- start of debugging information
| source language table |
+-----------------------+
| segment address table |
+-----------------------+
| |<-\
| section debug info | +-- repeated for each overlay & root
| |<-/
+-----------------------+
| master debug header |
+=======================+<--- end of file

The section marked as "EXE file" is the normal executable file. All debugging information is appended to

the end of the file, after any overlay sections or other information. The master debug header begins

at a fixed offset from the end of the file, and provides the location of the remainder of the debug

information. The source language table contains the source languages used by the program. The

section debug info is repeated once for the root and each overlay section defined in the executable.

It contains all the debugging information for all object modules defined in the root or a particular overlay

section. The section debug info is further divided into a number of debugging information classes,

these will be explained later. All offsets in the debugging information that refer to other information items

are relative to the start of the information, the start of a section of information, or the start of a class of the

information. In other words, the information is not sensitive to its location in the executable file.

3.1 Master debug header

The master debug header allows the Open Watcom Debugger to verify the fact that there is debugging

information, to locate the other sections and to verify that it is capable of handling the version of debugging

information. The master header structure is as follows:

Master debug header 17

WATCOM Debugging Information Format VERSION 4.0

struct master_dbg_header {

unsigned_16 signature;
unsigned_8 exe_major_ver;
unsigned_8 exe_minor_ver;
unsigned_8 obj_major_ver;
unsigned_8 obj_minor_ver;
unsigned_16 lang_size;
unsigned_16 segment_size;
unsigned_32 debug_size;

};

The signature word contains the value 0x8386. This is the first indication to the Open Watcom

Debugger that there is debugging information present. The exe_major_ver field contains the major

version number of the executable file debugging information structures. The major version number will

change whenever there is a modification to these structures that is not upwardly compatible with the

previous version. The current major version number is three. The exe_minor_ver field contains the

minor version number of the executable file debugging information structures. The minor version number

increments by one whenever there is a change to the structures which is upwardly compatible with the

previous version. The current minor version number is zero. This means that in order for the Open

Watcom Debugger to process the debugging information the following must be true:

1. FILE exe debug info major version == debugger exe debug info major version

2. FILE exe debug info minor version <= debugger exe debug info minor version

The obj_major_ver field contains the major version number of the object file debugging information

structures (internal format of the types and local symbol information). The major version number will

change whenever there is a modification to these structures that is not upwardly compatible with the

previous version. The current major version number is one. The obj_minor_ver field contains the

minor version number of the object file debugging information structures. The minor version number

increments by one whenever there is a change to the structures which is upwardly compatible compatible

with the previous version. The current minor version number is three. This means that in order for the

debugger to process the debugging information the following must be true:

1. FILE obj debug info major version == debugger obj debug info major version

2. FILE obj debug info minor version <= debugger obj debug info minor version

These two fields are filled in by the linker by extracting the version information from special debug

comment record in the processed object files. If two object files in the link contain different major version

numbers, the linker should report an error or warning and not process the type or local symbol information

for the ’incorrect’ file. The minor version number placed in the master header should be the maximum of

all the minor version numbers extracted from the object files.

The lang_size field contains the size of the source language table at the beginning of the debug

information. The segment_size field informs the debugger of the size, in bytes, of the segment address

table. The field, debug_size , gives the total size of the debugging information, including the size of the

master header itself. This allows the debugger to calculate the start of the debugging information by

subtracting the value of the debug_size field from the location of the end of file. This gives the start of

the source language and segment address tables, whose sizes are known from the master header. Once the

location of the first section of debugging information is determined, it can be processed. Within the section

information is a indicator of its total size, which allows the debugger to find the start of the next section,

and process that as well. This continues until all the debug sections have been processed. the debugger

18 Master debug header

Executable file structures

knows there are no more debug sections to process when the indicated start of a section is the same as the

start of the master header.

3.2 Source language table

The source language table is merely the collection of unique source languages used in the program. The

strings are extracted from the special debug comment records in the object files and placed in this section

one after another with zero bytes separating them.

3.3 Segment address table

The segment address table is an array of all the unique segment numbers used by the executable.

Essentially, any segment value that would appear in the map file will be represented in the table.

3.4 Section debug information

Each section debug info contains the following:

+-----------------------+
| section header |
+-----------------------+
| local symbols |
+-----------------------+
| types |
+-----------------------+
| line numbers |
+-----------------------+
| module info |
+-----------------------+
| global symbols |
+-----------------------+
| address info |
+-----------------------+

The local symbols, types and line numbers classes are demand loaded by the debugger as it requires pieces

of the classes for various modules. The module info, global symbols, and address info classes are

permanently loaded by the debugger at the start of a debugging session. The global symbol, module, and

address info classes have no size restriction, however there is a limit of 65536 modules per section and

there are some restrictions on how the address info class may be laid out. These restrictions are described

in the section explaining the address info class.

3.4.1 Section debug header

The section header class allows the debugger to determine the size of the section information and the

location of the permanently loaded classes. The header structure is as follows:

Section debug information 19

WATCOM Debugging Information Format VERSION 4.0

struct section_dbg_header {

unsigned_32 mod_offset;
unsigned_32 gbl_offset;
unsigned_32 addr_offset;
unsigned_32 section_size;
unsigned_16 section_id;

};

The mod_offset , gbl_offset , and addr_offset fields are offsets, from the beginning of the

section debug header to the module info, global symbol, and address info classes of debugging information.

The section_size field is the size of the debugging information for the section, including the section

header. The following conditions must hold true for the debugger to recognize the debugging information

as valid:

1. mod_offset < gbl_offset

2. gbl_offset < addr_offset

3. addr_offset < section_size

The section_id field contains the overlay number for this section. This is zero for the root.

3.4.2 Local symbols class

The local symbols segments are processed normally by the linker, except that the data in the segments is

placed in this section, no relocation entries are output for any fixups in the data and fields in the module

structure are intialized to point to the beginning and size of each object file’s contribution to the section.

3.4.3 Types class

The type segments are processed normally by the linker, except that the data in the segments is placed in

this section, no relocation entries are output for any fixups in the data and fields in the module structure are

intialized to point to the beginning and size of each object file’s contribution to the section.

3.4.4 Line numbers class

The LINNUM records for each object file are collected and placed in this class using an array of arrays.

The top level array is the following structure:

struct line_segment {

unsigned_32 segment;
unsigned_16 num;
line_info line[1];

}

The segment field contains a offset, from the start of the address info class, to an addr_info structure (see

the address info class description). This provides the segment value for the array of line_info’s following.

The next field, num , provides the number of line_info’s in the array. The line is a variable size array

containing the following structure:

20 Section debug information

Executable file structures

struct line_info {

unsigned_16 line_number;
unsigned_32 code_offset;

};

The line_number contains the source line number whose offset is being defined. If the top bit of the

line number is on, this line number refers to an entry in the special line number table. See the "Special Line

Number Table" section for more details. The code_offset field contains the offset from the begining of

the module for the first instruction associated with the line number. To get the true code address for the

instruction you must add code_offset to the address given by the segment field in the line_segment

structure. All the instructions up to the next element’s code_offset , or the end of the object file’s code

for that segment if there is no next code_offset are considered to be part of the line_number source

line. Within each line_segment structure the line_info array is assumed to be sorted in order of ascending

code_offset. The module structure for the object file contains fields which indicate the start and size

of the line_segment array within the class.

Each line_segment structure may not exceed 60K, however the total amount of line information for a

module may exceed 60K with multiple line_segment structures and multiple entries in the demand link

table (described in the module information section).

To obtain a line number from an address, the debugger performs the following steps

1. Given an address, the defining module is found from the address information class. This allows

the debugger to find and load the line number information for that module, if it is not already

loaded.

2. Walk down the array of line_segment structures until one with the appropriate segment is found.

3. Binary search the array of line_info’s until the proper one is located.

3.4.4.1 Special Line Number Table

The OMF line number record does not allow for more than one source file to be referenced in an object file.

This kludge gets around the restriction. If the top bit is on in line_number than that field refers to an

entry in the special line number table. The debugger then searches the typing information for the module

for a CUE_TABLE record. If it finds one, it uses the offset given to find the begining of the table in the

typing information. The table looks like this:

Section debug information 21

WATCOM Debugging Information Format VERSION 4.0

/* cue entry table */
unsigned_16 cue_count

struct {
unsigned_16 cue;
unsigned_16 fno;
unsigned_16 line;
unsigned_16 column;

} cue_entry; /* repeated cue_count times, sorted by the ’cue’ field
*/

/* file name index table */
unsigned_16 file_count

struct {
unsigned_16 index;

} file_name_index_entry; /* repeated file_count times */

/* file name table */
A list of zero terminated source file names

To find the correct cue entry given the value in a line_number , search the cue_entry table for the

cue which satisfies the following:

cue_entry[entry].cue <= (line_number & 0x7fff) <
cue_entry[entry+1].cue

Once you have the cue entry, you can extract the true line number by:

line = cue_entry[entry].line + (line_number & 0x7fff)

- cue_entry[entry].cue;

The file name is found by:

fname_index = file_name_index_table[cue_entry[entry].fno]
fname = file_name_table[fname_index]

The code offset and segment are found in the line_info and line_segment structures as usual.

3.4.5 Module information class

The module information class is built from the linker’s list of object files that it processes to build the

executable file, which are either specified on the linker command line or extracted from libraries. All the

modules are implicitly given an index number by their order in the class. These index numbers start at zero

and are used by other classes to identify individual modules. The module structure contains the following

fields:

struct mod_info {

unsigned_16 language;
demand_info locals;
demand_info types;
demand_info lines;
unsigned_8 name[1];

};

22 Section debug information

Executable file structures

The language field contains an offset, from the start of the source language table to the string of the

source language for this module. The name field is a variable length array of characters with the first

element of the array being the length of the name. The remaining characters identify the source file the

compiler used to generate the object file (e.g. "C:\DEV\WV\C\DBGMAIN.C"). The source file name is

obtained from the THEADR record of the object file. the debugger uses the file name part of the file

specification as its "module name". The remaining fields, locals , types , and lines are a structure

type which define the location and size of this module’s demand loaded information from those classes.

The structure contains these fields:

struct demand_info {

unsigned_32 offset;
unsigned_16 num_entries;

};

The offset field contains the offset from the beginning of the debugging information section to first

entry in the demand link table containing the information for that particular demand load class. The

num_entries field gives the number of contiguous entries in the demand link table that are present for

the module’s demand load information of that particular class.

The demand link table consists of an array of unsigned_32 offsets, which are relative from the debugging

information section, to the individual demand info class data blocks. The array is in ascending order of

offsets so that the debugger may calculate the size of a particular demand load data block by subtracting the

offset of the next data block from the offset of the current data block. This implies that there is an extra

entry at the end of the table whose offset points to the end of the final demand load data block so that the

debugger always has a ’next’ link entry to calculate size of a data block with. The size of each individual

block may not exceed 60K. A picture may be useful here to show how all the pieces fit together:

module info
class
+--------+
| | demand link

... table demand info
| | +--------+ data block
| | | | +------+
+--------+ ... +--->| |
| offset | ---+ | | | ...
+--------+ | +--------+ | | |
|#entries| +---->| offset |---+ +------+
+--------+ +--------+
| | | |

... ...
| | | |
+--------+ +--------+ demand info

| offset |---+ data block
+--------+ | +------+
| | +--->| |

... ...
| | | |
+--------+ +------+

When the debugger wishes to look something up in a demand load class for a module. It uses the offset in

the mod_info structure to locate the array entry in the demand link table which has the offset for the first

info data block. It then loads the first block and searches it for the information. If the information is not

present in that block, it moves to the next entry in the demand link table and repeats the above process.

This continues until all the entries for that particular class of the module (identified by the num_entries
field in the mod_info structure) have been examined, or the information is located.

Section debug information 23

WATCOM Debugging Information Format VERSION 4.0

3.4.6 Global symbols class

All PUBDEF records processed by the linker create entries in this class. The fields in the structure are:

struct gbl_info {

addr48_ptr addr;
unsigned_16 mod_index;
unsigned_8 kind;
unsigned_8 name[1];

};

The addr field contains the location in memory associated with this symbol. The value placed in this field

is the same that the linker places in the map file (i.e. unrelocated, as if the executable loads at location 0:0).

The field contains a 48 bit value (32 bit offset followed by a 16 bit segment). The mod_index field is an

index which identifies the module which defines the symbol (i.e. contained the [L]PUBDEF record). The

kind gives rudimentary typing information for the symbol. It consists of the following set of bits:

BIT: 7 6 5 4 3 2 1 0

| | | | |
| | | | +--- STATIC symbol
| | | +----- DATA symbol
| | +------- CODE symbol
+-------+--------- unused

Bit zero is 1 if the global was defined by a LPUBDEF record and 0 if it was defined by a PUBDEF record.

LPUBDEF symbols are generated by the code generator for static symbols, so this allows a debugger to see

static symbols even when no compiler debug switches are being used. Bit one is 1 if the producer of the

information is able to determine that the symbol is a data symbol. Bit two is one if the producer is able to

determine that the symbol is a code symbol. Both bits may be zero if the producer is unable to determine

whether the symbol is a code or data item. The final field, name is a variable length array, with the first

character indicating the length of the name, and the remaining characters being the actual name of the

symbol.

3.4.7 Address information class

The address information class allows the debugger, given a memory address, to determine the module

which defines that memory address. The linker builds this class from the SEGDEF and GRPDEF records

in the object files that it processes. The class consists of an array of structures with the following fields:

struct seg_info {

addr48_ptr addr;
unsigned_16 num;
addr_info sects[1];

};

The addr field identifies the start of a segment in memory. This field contains the unrelocated value of the

segment starting address (i.e. as if the executable had been loaded at 0:0). The the low order 15 bits of the

next field, num tells how many of the sects entries there are in the structure. The top bit of the field is a

one when the segment belongs to "NonSect". "NonSect" is the overlay section which holds all program

data that is not in the root or an overlay section. Typically this consists of DGROUP and FAR_DATA

segments. NonSect always is located at the highest address of all sections. It is preloaded by the overlay

manager and is never moved. If the segment does not belong to NonSect, the top bit of the num field is

zero. The sects field is a variable size array of structures. This addr_info structure contains the

following fields:

24 Section debug information

Executable file structures

struct addr_info {

unsigned_32 size;
unsigned_16 mod_index;

};

The mod_index field indicates the module in the module information class which defines this piece of the

segment. The size field identifies how large a piece of the segment specified by the seg_info structure

belongs to the module. The starting address of the segment piece is given by adding all the previous size

fields in the sects array to the original starting address in the seg_info structure.

The size of a seg_info structure may not exceed 60K. If a single physical segment would have more

sects than would fit into this restriction (num greater than 10238), it should be split into two separate

seg_info structures.

To identify the module that defines a location in memory, the debugger does the following:

1. Walk down the array of seg_info structures until one is found with the same segment address as

the location that is being identified. If no such seg_info is found, or the starting offset of the

segment is greater than the offset of the memory location, then there is no defining module.

2. Walk down the array of addr_info’s in the seg_info structure until an entry is found whose

starting offset is less than or equal to the memory location offset and whose ending offset is

greater than the memory location offset. If there is no such entry, there is no defining module.

3. Otherwise, the mod_offset field of the addr_info entry is added to the beginning of the

module information class, which gives a pointer to the module structure that defines the memory

location.

Section debug information 25

WATCOM Debugging Information Format VERSION 4.0

26 Section debug information

Debugger Trap File Interface VERSION
1.3

Debugger Trap File Interface VERSION 1.3

28

1 Introduction

The Open Watcom debugger consists of a number of separate pieces of code. The main executable,

WD.EXE (wd on UNIX systems), provides a debugging ‘engine’ and user interface. When the engine

wishes to perform an operation upon the program being debugged such as reading memory or setting a

breakpoint, it creates a request structure and sends it to the ‘trap file’ (so called because under DOS, it

contains the first level trap handlers). The trap file examines the request structure, performs the indicated

action and returns a result structure to the debugger. The debugger and trap files also use Machine

Architecture Description (MAD) files which abstract the CPU architecture. This design has the following

benefits:

1. OS debugging interfaces tend to be wildly varying in how they are accessed. By moving all the

OS specific interface code into the trap file and having a defined interface to access it, porting

the debugger becomes much easier.

2. By abstracting the machine architecture specifics through MAD files, it becomes possible to use

one debugger for several target CPU architectures (such as x86 and Alpha AXP). Unlike most

other debuggers, the Open Watcom debugger is not tied to a single host/target combination and

if appropriate trap and MAD files are available, the debugger running on any host can remotely

debug any target.

3. The trap file does not have to actually perform the operation. Instead it could send the request

out to a remote server by a communication link such as a serial line or LAN. The remote server

can retrieve the request, perform the operation on the remote machine and send the results back

via the link. This enables the debugger to debug applications in cases where there are memory

constraints or other considerations which prevent the debugger proper from running on the

remote system (such as Novell Netware 386).

This document describes the interface initially used by version 4.0 of the WATCOM debugger (shipped

with the 10.0 C/C++ and FORTRAN releases). It has been revised to describe changes incorporated in

Watcom 11.0 release, as well as subsequent Open Watcom releases. It is expected to be modified in future

releases. Where possible, notification of expected changes are given in the document, but all aspects are

subject to revision.

1.1 Some Definitions

Next follow some general trap definitions.

1.1.1 Byte Order

The trap file interface is defined to use little endian byte order. That is, the least significant byte is stored at

the lowest address. Little endian byte order was chosen for compatibility with existing trap files and tools.

Fixed byte order also eases network communication between debuggers and trap files running on machines

with different byte order.

Some Definitions 29

Debugger Trap File Interface VERSION 1.3

1.1.2 Pointer Sizes

In a 16-bit hosted environment such as DOS, all pointers used by the trap file are "far" 16:16 pointers. In a

32-bit environment such as Windows NT the pointers are "near" 0:32 pointers.

1.1.3 Base Types

A number of basic types are used in the interface. They are defined as follows:

Type Definition

unsigned_8 1 byte unsigned quantity

unsigned_16 2 byte unsigned quantity

unsigned_32 4 byte unsigned quantity

trap_req The first field of every request is of this type. It is a 1 byte field which identifies the

request to be performed.

addr48_ptr This type encapsulates the concept of a 16:32 pointer. All addresses in the debuggee

memory are described with these. The debugger always acts as if the debuggee were in a

32-bit large model environment since the 32-bit flat model and all 16-bit memory models

are subsets. The structure is defined as follows:

typedef struct {

unsigned_32 offset;
unsigned_16 segment;

} addr48_ptr;

The segment field contains the segment of the address and the offset field stores the

offset of the address.

bytes The type bytes is an array of unsigned_8. The length is provided by other means.

Typically a field of type bytes is the last one in a request and the length is calculated from

the total length of the request.

string The type string is actually an array of characters. The array is terminated by a null (’\0’)

character. The length is provided by other means. Typically a field of type string is the last

one in a request and the length is calculated from the total length of the request.

trap_error Some trap file requests return debuggee operating system error codes, notably the requests

to perform file I/O on the remote system. These error codes are returned as an

unsigned_32. The debugger considers the value zero to indicate no error.

trap_phandle This is an unsigned_32 type which holds process (task) handle. A task handle is used to

uniquely identify a debuggee process.

trap_mhandle This is an unsigned_32 type which holds a module handle. Typically the main executable

will be one module, and on systems which support DLLs or shared libraries, each library

will be identified by a unique module handle.

30 Some Definitions

2 The Request Interface

Next follow detailed description of interface elements.

2.1 Request Structure

Each request is a composed of two sequences of bytes provided by the debugger called messages. The first

set contains the actual request code and whatever parameters that are required by the request. The second

sequence is where the result of the operation is to be stored by the trap file.

The two sequences need not be contiguous. The sequences are described to the trap file through two arrays

of message entry structures. This allows the debugger to avoid unnecessary packing and unpacking of

messages, since mx_entry can be set to point directly at parameter/result buffers.

Multiple requests are not allowed in a single message. The mx_entry is only used to provide

scatter/gather capabilities for one request at a time.

The message entry structure is as follows (defined in trptypes.h):

typedef struct {

void *ptr;
unsigned len;

} mx_entry;

The ptr is pointing to a block of data for that message entry. The len field gives the length of that block.

One array of mx_entry describes the request message. The second array describes the return message.

It is not legal to split a message into arbitrary pieces with mx_entries. Each request documents where an

mx_entry is allowed to start with a line of dashes.

2.2 The Interface Routines

The trap file interface must provide three routines: TrapInit , TrapRequest , and TrapFini. How

the debugger determines the address of these routines after loading a trap file, as well as the calling

convention used, is system dependent and described later. These functions are prototyped in trpimp.h.

2.2.1 TrapInit

This function initializes the environment for proper operation of TrapRequest.

trap_version TRAPENTRY TrapInit(

char *parm,
char *error,
unsigned_8 remote

);

The Interface Routines 31

Debugger Trap File Interface VERSION 1.3

The parm is a string that the user passes to the trap file. Its interpretation is completely up to the trap file.

In the case of the Open Watcom debugger, all the characters following the semicolon in the /TRAP option

are passed as the parm. For example:

wd /trap=nov;testing program

The parm would be "testing". Any error message will be returned in error. The remote field is a zero

if the Open Watcom debugger is loading the trap file and a one if a remote server is loading it. This

function returns a structure trap_version of the following form (defined in trptypes.h):

typedef struct {

unsigned_8 major;
unsigned_8 minor;
unsigned_8 remote;

} trap_version;

The major field contains the major version number of the trap file while the minor field tells the minor

version number of the trap file. Major is changed whenever there is a modification made to the trap file

that is not upwardly compatable with previous versions. Minor increments by one whenever a change is

made to the trap file that is upwardly compatible with previous versions. The current major verion is 1, the

current minor version is 3. The remote field informs the debugger whether the trap file communicates

with a remote machine.

TrapInit must be called before using TrapRequest to send a request. Failure to do so may result in

unpredictable operation of TrapRequest.

2.2.2 TrapRequest

All requests between the server and the remote trap file are handled by TrapRequest.

unsigned TRAPENTRY TrapRequest(

unsigned num_in_mx,
mx_entry *mx_in,
unsigned num_out_mx,
mx_entry *mx_out

);

The mx_in points to an array of request mx_entry’s. The num_in_mx field contains the number of

elements of the array. Similarly, the mx_out will point to an array of return mx_entry’s. The number of

elements will be given by the num_out_mx field. The total number of bytes actually filled in to the return

message by the trap file is returned by the function (this may be less than the total number of bytes

described by the mx_out array).

Since every request must start with an trap_req field, the minimum size of a request message is one

byte.

Some requests do not require a return message. In this case, the program invoking TrapRequest must pass

zero for num_out_mx and NULL for mx_out.

32 The Interface Routines

The Request Interface

2.2.2.1 Request Example

The request REQ_READ_MEM needs the memory address and length of memory to read as input and will

return the memory block in the output message. To read 30 bytes of memory from address 0x0010:0x8000

into a buffer, we can write:

mx_entry in[1];
mx_entry out[1];
unsigned char buffer[30];
struct in_msg_def {

trap_req req;
addr48_ptr addr;
unsigned_16 len;

} in_msg = { REQ_READ_MEM, { 0x8000, 0x0010 }, sizeof(buffer) };

unsigned_16 mem_blk_len;

in[0].ptr = &in_msg;
in[0].len = sizeof(in_msg);
out[0].ptr = &buffer;
out[0].len = sizeof(buffer);

mem_blk_len = TrapRequest(1, in, 1, out);

if(mem_blk_length != sizeof(buffer)) {
printf("Error in reading memory\n");

} else {
printf("OK\n");

}

The program will print "OK" if it has transferred 30 bytes of data from the debuggee’s address space to the

buffer variable. If less than 30 bytes is transfered, an error message is printed out.

2.2.3 TrapFini

The function terminates the link between the debugger and the trap file. It should be called after finishing

all access requests.

void TRAPENTRY TrapFini(void);

After calling TrapFini , it is illegal to call TrapRequest without calling TrapInit again.

The Interface Routines 33

Debugger Trap File Interface VERSION 1.3

34 The Interface Routines

3 The Requests

This section descibes the individual requests, their parameters, and their return values. A line of dashes

indicates where an mx_entry is allowed (but not required) to start. The debugger allows (via

REQ_GET_SUPPLEMENTARY_SERVICE and REQ_PERFORM_SUPPLEMENTARY_SERVICE)

optional components to be implemented only on specific systems.

The numeric value of the request which is placed in the req field follows the symbolic name in

parentheses.

3.1 Core Requests

These requests need to be implemented in all versions of the trap file, although some of them may only be

stub implementations in some environments. Note that structures suitable for individual requests are

declared in trpcore.h.

3.1.1 REQ_CONNECT

Request to connect to the remote machine. This must be the first request made.

Request message:

trap_req req
unsigned_8 major; <-+- struct trap_version
unsigned_8 minor; |
unsigned_8 remote; <-+

The req field contains the request. The trap_version structure tells the version of the program

making the request. The major field contains the major version number of the trap file while the minor
field tells the minor version number of the trap file. The major is changed whenever there is a

modification made to the trap file that is not upwardly compatable with previous versions. The minor
increments by one whenever a change is made to the trap file that is upwardly compatable with previous

versions. The current major version is 1, the current minor version is 3. The remote field informs the

trap file whether a remote server is between the Open Watcom debugger and the trap file.

Return message:

unsigned_16 max_msg_size

string err_msg

If error has occurred, the err_msg field will returns the error message string. If there is no error,

error_msg returns a null character and the field max_msg_size will contain the allowed maximum

size of a message in bytes. Any message (typically reading/writing memory or files) which would require

more than the maximum number of bytes to transmit or receive must be broken up into multiple requests.

The minimum acceptable value for this field is 256.

Core Requests 35

Debugger Trap File Interface VERSION 1.3

3.1.2 REQ_DISCONNECT

Request to terminate the link between the local and remote machine. After this request, a REQ_CONNECT

must be the next one made.

Request message:

trap_req req

The req field contains the request.

Return message:

NONE

3.1.3 REQ_SUSPEND

Request to suspend the link between the server and the remote trap file. The debugger issues this message

just before it spawns a sub-shell (the "system" command). This allows a remote server to enter a state

where it allows other trap files to connect to it (normally, once a remote server has connected to a trap file,

the remote link will fail any other attempts to connect to it). This allows the user for instance to start up an

RFX process and transfer any missing files to the remote machine before continuing the debugging process.

Request message:

trap_req req

The req field contains the request.

Return message:

NONE

3.1.4 REQ_RESUME

Request to resume the link between the server and the remote trap file. The debugger issues this request

when the spawned sub-shell exits.

Request message:

trap_req req

The req field contains the request.

Return message:

NONE

36 Core Requests

The Requests

3.1.5 REQ_GET_SUPPLEMENTARY_SERVICE

Request to obtain a supplementary service id.

Request message:

trap_req req

string service_name

The req field contains the request. The service_name field contains a string identifying the

supplementary service. This string is case insensitive.

service_name Description

"FileInfo" See "File Info requests" on page 68.

"Environment" See "Environment requests" on page 67.

"Files" See "File I/O requests" on page 51.

"Overlays" See "Overlay requests" on page 56.

"Threads" See "Thread requests" on page 59.

"RunThread" See "Non-blocking Thread requests" on page 70.

"Rfx" See "Remote File transfer (RFX) requests" on page 61.

"Capabilities" See "Capabilities requests" on page 72.

"Asynch" See "Asynchronous Debugging requests" on page 69.

Return message:

trap_error err;
trap_shandle id;

The err field is non-zero if something went wrong in obtaining or initializing the service. Id is the

identifier for a particular supplementary service. It need not be the same from one invocation of the trap

file to another. If both it and the err field are zero, it means that the service is not available from this trap

file.

Notes: In the future, we might allow for user developed add-ons to be integrated with the debugger. There

would be two components, one to be added to the debugger and one to be added to the trap file. The

two pieces could communicate with each other via the supplementary services mechanism.

3.1.6 REQ_PERFORM_SUPPLEMENTARY_SERVICE

Request to perform a supplementary service.

Request message:

Core Requests 37

Debugger Trap File Interface VERSION 1.3

trap_req req
trap_shandle id

unspecified

The req field contains the request. The service_id field indicates which service is being requested.

The remainder of the request is specified by the individual supplementary service provider.

Return message:

unspecified

The return message is specified by the individual supplementary service provider.

3.1.7 REQ_GET_SYS_CONFIG

Request to get system information from the remote machine.

Request message:

trap_req req

The req field contains the request.

Return message:

unsigned_8 cpu;
unsigned_8 fpu;
unsigned_8 osmajor;
unsigned_8 osminor;
unsigned_8 os;
unsigned_8 huge_shift;
unsigned_8 arch;

The arch field specifies the architecture in use and determines how the other fields will be interpreted.

Currently the following architectures are used:

DIG_ARCH_X86 - Intel Architecture IA-32 compatible
DIG_ARCH_X64 - Intel Architecture X64 compatible
DIG_ARCH_AXP - Alpha Architecture
DIG_ARCH_PPC - PowerPC Architecture
DIG_ARCH_MIPS - MIPS Architecture
DIG_ARCH_MSJ - Java Virtual Machine (Microsoft)
DIG_ARCH_JVM - Java Virtual Machine (Sun)

The cpu fields returns the type of the remote CPU. The size of that field is unsigned_8. Possible CPU

types for DIG_ARCH_X86 are:

38 Core Requests

The Requests

bits 0-3

X86_86 = 0 - 8086
X86_186 = 1 - 80186
X86_286 = 2 - 80286
X86_386 = 3 - 80386
X86_486 = 4 - 80486
X86_586 = 5 - Pentium
X86_686 = 6 - Pentium Pro/II/III
X86_P4 = 15 - Pentium 4

bit 4 - MMX registers
bit 5 - XMM registers
bits 6 - unused
bits 7 - unused

The fpu fields tells the type of FPU. The size of the field is unsigned_8. FPU types for DIG_ARCH_X86

include:

X86_NOFPU = 0 - No FPU
X86_87 = 1 - 8087
X86_287 = 2 - 80287
X86_387 = 3 - 80387
X86_487 = 4 - 486 integrated FPU
X86_587 = 5 - Pentium integrated FPU
X86_687 = 6 - Pentium Pro/II/III integrated FPU
X86_P47 = 15 - Pentium 4 integrated FPU
X86_EMU = 255 - Software emulated FPU

The osmajor and osminor contains the major and minor version number for the operating system of the

remote machine. The type of operating system can be found in os field. The size of this field is

unsigned_8. The OS can be:

DIG_OS_IDUNNO = 0 - Unknown operating system
DIG_OS_DOS = 1 - DOS
DIG_OS_OS2 = 2 - OS/2
DIG_OS_PHAR = 3 - Phar Lap 386 DOS Extender
DIG_OS_ECLIPSE = 4 - Eclipse 386 DOS Extender (obsolete)
DIG_OS_NW386 = 5 - NetWare 386
DIG_OS_QNX = 6 - QNX 4.x
DIG_OS_RATIONAL = 7 - DOS/4G or compatible
DIG_OS_WINDOWS = 8 - Windows 3.x
DIG_OS_PENPOINT = 9 - PenPoint (obsolete)
DIG_OS_NT = 10 - Win32
DIG_OS_AUTOCAD = 11 - ADS/ADI development (obsolete)
DIG_OS_NEUTRINO = 12 - QNX 6.x
DIG_OS_LINUX = 13 - Linux
DIG_OS_FREEBSD = 14 - FreeBSD
DIG_OS_WIN64 = 15 - Windows 64-bit

The huge_shift field is used to determine the shift needed for huge arithmetic in that system. It stores

the number of left shifts required in order to calculate the next segment correctly. It is 12 for real mode

programs. The value in a protect mode environment must be obtained from the OS of the debuggee

machine. This field is only relevant for 16-bit segmented architectures.

Core Requests 39

Debugger Trap File Interface VERSION 1.3

3.1.8 REQ_MAP_ADDR

Request to map the input address to the actual address of the remote machine. The addresses in the

symbolic information provided by the linker do not reflect any relocation performed on the executable by

the system loader. This request obtains that relocation information so that the debugger can update its

addresses.

Request message:

trap_req req;
addr48_ptr in_addr;
trap_mhandle mod_handle;

The req field contains the request. The in_addr tells the address to map. The mod_handle field

identifies the module which the address is from. The value from this field is obtained by

REQ_PROG_LOAD or REQ_GET_LIB_NAME. There are two magical values for the

in_addr.segment field.

MAP_FLAT_CODE_SELECTOR = -1
MAP_FLAT_DATA_SELECTOR = -2

When the in_addr.segment equals one of these values, the debugger does not have a map segment

value and is requesting that the trap file performs the mapping as if the given offset was in the flat address

space.

Return message:

addr48_ptr out_addr
addr48_off lo_bound;
addr48_off hi_bound;

The mapped address is returned in out_addr. Note that in addition to the segment portion being

modified, the offset of the portion of the address may be adjusted as well if the loader performs offset

relocations (like OS/2 2.x or Windows NT). The lo_bound and hi_bound fields identify the lowest

and highest input offsets for which this mapping is valid. If the debugger needs to map another address

whose input segment value is the same as a previous request, and the input offset falls within the valid

range identified by the return of that previous request, it can perform the mapping itself and not bother

sending the request to the trap file.

3.1.9 REQ_CHECKSUM_MEM

Request to calculate the checksum for a block of memory in the debuggee’s address space. This is used by

the debugger to determine if the contents of the memory block have changed since the last time it was read.

Since only a four byte checksum has to be transmitted back, it is more efficient than actually reading the

memory again. The debugger does not care how the checksum is calculated.

Request message:

trap_req req;
addr48_ptr in_addr;
unsigned_16 len;

The req field stores the request. The in_addr contains the starting address and the len field tells how

large the block of memory is.

40 Core Requests

The Requests

Return message:

unsigned_32 result

The checksum will be returned in result.

3.1.10 REQ_READ_MEM

Request to read a block of memory.

Request message:

trap_req req;
addr48_ptr mem_addr;
unsigned_16 len;

The mem_addr contains the address of the memory block to read from the remote machine. The length of

the block is determined by len. The memory data will be copied to output message.

Return message:

bytes data

The data field stores the memory block read in. The length of this memory block is given by the return

value from TrapRequest. If error has occurred in reading memory, the length of the data returns will not be

equal to the number of bytes requested.

3.1.11 REQ_WRITE_MEM

Request to write a block of memory.

Request message:

trap_req req
addr48_ptr mem_addr

bytes data

The data field stores the memory data to be transferred. The data will be stored in the debuggee’s address

space starting at the address in the mem_addr field.

Return message:

unsigned_16 len

The len field tells the length of memory block actually written to the debuggee machine. If error has

occurred in writing the memory, the length returned will not be equal to the number of bytes requested.

Core Requests 41

Debugger Trap File Interface VERSION 1.3

3.1.12 REQ_READ_IO

Request to read data from I/O address space of the debuggee.

Request message:

trap_req req
unsigned_32 IO_offset
unsigned_8 len

The IO_offset contains the I/O address of the debuggee machine. The length of the block is determined

by len. It must be 1, 2 or 4 bytes. The data will be copied from IO_offset to the return message.

Return message:

bytes data

The data field stores the memory block read in. The length of this memory block is given by the return

value from TrapRequest. If an error has occurred in reading, the length returned will not be equal to the

number of bytes requested.

3.1.13 REQ_WRITE_IO

Request to write data to the I/O address space of the debuggee.

Request message:

trap_req req
unsigned_32 IO_offset

bytes data

The IO_offset contains the I/O address of the debuggee machine. The data stored in data field will be

copied to IO_offset on the debuggee machine.

Return message:

unsigned_8 len

The len field tells the number of bytes actually written out. If an error has occurred in writing, the length

returned will not be equal to the number of bytes requested.

3.1.14 REQ_PROG_GO

3.1.15 REQ_PROG_STEP

Requests to execute the debuggee. REQ_PROG_GO causes the debuggee to resume execution, while

REQ_PROG_STEP requests only a single machine instruction to be executed before returning. In either

case, this request will return when a breakpoint, watchpoint, machine exception or other significant event

has been encountered. While executing, a trap file is allowed to return spurious COND_WATCH

indications. The debugger always checks its own watchpoint table for changes before reporting to the user.

42 Core Requests

The Requests

This means that a legal implementation of a trap file (but very inefficient) can just single step the program

and return COND_WATCH for every instruction when there are active watchpoints present.

Request message:

trap_req req

The request is in req field.

Return message:

addr48_ptr stack_pointer
addr48_ptr program_counter
unsigned_16 conditions

The stack_pointer and program_counter fields store the latest values of SS:ESP and CS:EIP (or

their non-x86 equivalents) respectively. The conditions informs the debugger what conditions have

changed since execution began. It contains the following flags:

Bit 0 : COND_CONFIG - Configurations change
Bit 1 : COND_SECTIONS - Program overlays change
Bit 2 : COND_LIBRARIES - Libraries (DLL) change
Bit 3 : COND_ALIASING - Alias change
Bit 4 : COND_THREAD - Thread change
Bit 5 : COND_THREAD_EXTRA - Thread extra change
Bit 6 : COND_TRACE - Trace point occurred
Bit 7 : COND_BREAK - Break point occurred
Bit 8 : COND_WATCH - Watch point occurred
Bit 9 : COND_USER - User interrupt
Bit 10 : COND_TERMINATE - Program terminated
Bit 11 : COND_EXCEPTION - Machine exception
Bit 12 : COND_MESSAGE - Message to be displayed
Bit 13 : COND_STOP - Debuggee wants to stop
Bit 14 : COND_RUNNING - Debuggee is running
Bit 15 : not used

When a bit is off, the debugger avoids having to make additional requests to determine the new state of the

debuggee. If the trap file is not sure that a particular item has changed, or if it is expensive to find out, it

should just turn the bit on.

3.1.16 REQ_PROG_LOAD

Request to load a program.

Request message:

trap_req req
unsigned_8 true_argv

bytes argv

The true_argv field indicates whether the argument consists of a single string, or a true C-style

argument vector. This field is set to be one for a true argument vector and zero otherwise. The argv is a

set of zero-terminated strings, one following each other. The first string gives the name of the program to

Core Requests 43

Debugger Trap File Interface VERSION 1.3

be loaded. The remainder of the argv field contains the program’s arguments. The arguments can be a

single string or an array of strings.

Return message:

trap_error err
trap_phandle task_id
trap_mhandle mod_handle
unsigned_8 flags

The err field returns the error code while loading the program. The task_id shows the task (process)

ID for the program loaded. The mod_handle is the system module identification for the executable

image. It is used as input to the REQ_MAP_ADDR request. The flags field contains the following

information:

Bit 0 : LD_FLAG_IS_BIG - 32-bit program (obsolete)
Bit 1 : LD_FLAG_IS_PROT - Protected mode (obsolete)
Bit 2 : LD_FLAG_IS_STARTED - Program already started
Bit 3 : LD_FLAG_IGNORE_SEGMENTS - Ignore segments (flat)
Bit 4 : LD_FLAG_HAVE_RUNTIME_DLLS - DLL load breaks supported
Bit 5 : LD_FLAG_DISPLAY_DAMAGED - Debugger must repaint screen
Bit 6 : not used
Bit 7 : not used

3.1.17 REQ_PROG_KILL

Request to kill the program.

Request message:

trap_req req
trap_phandle task_id

The req field contains the request. The task_id field (obtained from REQ_PROG_LOAD) identifies

the program to be killed.

Return message:

trap_error err

The err field returns the error code of the OS kill program operation.

3.1.18 REQ_SET_WATCH

Request to set a watchpoint at the address given.

Request message:

trap_req req
addr48_ptr watch_addr
unsigned_8 size

The address of the watchpoint is given by the watch_addr field. The size field gives the number of

bytes to be watched (1, 2, 4 or 8 bytes).

44 Core Requests

The Requests

Return message:

trap_error err
unsigned_32 multiplier

The err field returns the error code if the setting failed. If the setting of the watchpoint worked, the 31

low order bits of multiplier indicate the expected slow down of the program when it’s placed into

execution. The top bit of the field is set to one if a debug register is being used for the watchpoint, and zero

if the watchpoint is being done by software.

3.1.19 REQ_CLEAR_WATCH

Request to clear a watchpoint at the address given. The trap file may assume all watch points are cleared at

once.

Request message:

trap_req req
addr48_ptr watch_addr
unsigned_8 size

The address of the watch point is given by the watch_addr field. The size field gives the size of the

watch point (1, 2, 4 or 8 bytes).

Return message:

NONE

3.1.20 REQ_SET_BREAK

Request to set a breakpoint at the address given.

Request message:

trap_req req
addr48_ptr break_addr

The address of the break point is given by the break_addr field.

Return message:

unsigned_32 old

The old field returns the original byte(s) at the address break_addr.

3.1.21 REQ_CLEAR_BREAK

Request to clear a breakpoint at the address given. The trap file may assume all breakpoints are cleared at

once.

Request message:

Core Requests 45

Debugger Trap File Interface VERSION 1.3

trap_req req
addr48_ptr break_addr
unsigned_32 old

The address of the break point is given by the break_addr field. The old field holds the old instruction

returned from the REQ_SET_BREAK request.

Return message:

NONE

3.1.22 REQ_GET_NEXT_ALIAS

Request to get alias information for a segment. In some protect mode environments (typically 32-bit flat)

two different selectors may refer to the same physical memory. Which selectors do this is important to the

debugger in certain cases (so that symbolic information is properly displayed).

Request message:

trap_req req
unsigned_16 seg

The seg field contains the segment. To get the first alias, put zero in this field.

Return message:

unsigned_16 seg
unsigned_16 alias

The seg field contains the next segment where an alias appears. If this field returns zero, it implies no

more aliases can be found. The alias field returns the alias of the input segment. Zero indicates a

previously set alias should be deleted.

3.1.23 REQ_SET_USER_SCREEN

Request to make the debuggee’s screen visible.

Request message:

trap_req req

Return message:

NONE

3.1.24 REQ_SET_DEBUG_SCREEN

Request to make the debugger’s screen visible.

Request message:

46 Core Requests

The Requests

trap_req req

Return message:

NONE

3.1.25 REQ_READ_USER_KEYBOARD

Request to read the remote keyboard input.

Request message:

trap_req req
unsigned_16 wait

The request will be time out if it waits longer than the period specifies in the wait field. The waiting

period is measured in seconds. A value of zero means to wait forever.

Return message:

unsigned_8 key

The key field returns the input character from remote machine.

3.1.26 REQ_GET_LIB_NAME

Request to get the name of a newly loaded library (DLL).

Request message:

trap_req req
trap_mhandle mod_handle

The mod_handle field contains the library handle. It should be zero to get the name of the first DLL or

the value from the mod_handle of a previous request.

Return message:

trap_mhandle mod_handle

string name

The mod_handle field contains the library handle. It contains zero if there are no more DLL names to be

returned. The name of the library will be returned in name field. If the name field is an empty string

(consists just of the ’\0’ character), then this is a indication that the DLL indicated by the given handle has

been unloaded, and the debugger should remove any symbolic information for the image. It is an error to

attempt to remove a handle that has not been loaded in a previous REQ_GET_LIB_NAME request.

Core Requests 47

Debugger Trap File Interface VERSION 1.3

3.1.27 REQ_GET_ERR_TEXT

Request to get the error message text for an error code.

Request message:

trap_req req
trap_error err

The err field contains the error code number of the error text requested.

Return message:

string error_msg

The error message text will be returned in error_msg field.

3.1.28 REQ_GET_MESSAGE_TEXT

Request to retrieve generic message text. After a REQ_PROG_LOAD, REQ_PROG_GO or

REQ_PROG_STEP has returned with COND_MESSAGE or COND_EXCEPTION, the debugger will

make this request to obtain the message text. In the case of a COND_EXCEPTION return text describing

the machine exception that caused the return to the debugger. Otherwise return whatever generic message

text that the trap file wants to display to the user.

Request message:

trap_req req

Return message:

unsigned_8 flags

string msg

The message text will be returned in the msg field. The flags contains a number of bits which control

the next action of the debugger. They are:

Bit 0 : MSG_NEWLINE
Bit 1 : MSG_MORE
Bit 2 : MSG_WARNING
Bit 3 : MSG_ERROR
Bit 4 : not used
Bit 5 : not used
Bit 6 : not used
Bit 7 : not used

The MSG_NEWLINE bit indicates that the debugger should scroll its display to a new line after displaying

the message. The MSG_MORE bit indicates that there is another line of output to come and the debugger

should make another REQ_GET_MESSAGE_TEXT. MSG_WARNING indicates that the message is a

warning level message while MSG_ERROR is an error level message. If neither of these bits are on, the

message is merely informational.

48 Core Requests

The Requests

3.1.29 REQ_REDIRECT_STDIN

3.1.30 REQ_REDIRECT_STDOUT

Request to redirect the standard input (REQ_REDIRECT_STDIN) or standard output

(REQ_REDIRECT_STDOUT) of the debuggee.

Request message:

trap_req req

string name

The file name to be redirected to/from is given by the name field.

Return message:

trap_error err

When an error has occurred, the err field contains an error code indicating the type of error that has been

detected.

3.1.31 REQ_SPLIT_CMD

Request to split the command line into the command name and parameters.

Request message:

trap_req req

string cmd

The cmd field contains the command. Command can be a single command line or an array of command

strings.

Return message:

unsigned_16 cmd_end
unsigned_16 parm_start

The cmd_end field tells the position in command line where the command name ends. The

parm_start field stores the position where the program arguments begin.

3.1.32 REQ_READ_REGS

Request to read CPU register contents. The data returned depends on the target architecture and is defined

by the MAD file.

Request message:

trap_req req

Core Requests 49

Debugger Trap File Interface VERSION 1.3

Return message:

unspecified

The return message content is specific to the MAD in use and will contain a mad_registers union

(defined in madtypes.h).

3.1.33 REQ_WRITE_REGS

Request to write CPU register contents. The data is target architecture specific.

Request message:

trap_req req

unspecified

The message content is specific to the MAD in use and will contain a mad_registers union.

Return message:

NONE

3.1.34 REQ_MACHINE_DATA

Request to retrieve machine specific data.

Request message:

trap_req req;
unsigned_8 info_type;
addr48_ptr addr;

unspecified

The info_type field specifies what kind of information should be returned and addr determines the

address for which the information is requested. The remainder of the message is MAD specific.

Return message:

addr48_off cache_start;
addr48_off cache_end;

unspecified

The return message content is specific to the MAD in use.

50 Core Requests

The Requests

3.2 File I/O requests

This section describes requests that deal with file input/output on the target (debuggee) machine. These

requests are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY_SERVICE and

appropriate service ID. The following descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Files".

The file requests use a new basic type in addition to the ones already described:

Type Definition

trap_fhandle This is an unsigned_64 which holds a debuggee file handle.

3.2.1 REQ_FILE_GET_CONFIG

Request to retreive characteristics of the remote file system.

Request message:

trap_req req

Return message:

char ext_separator;
char drv_separator;
char path_separator[2];
char line_eol[2];
char list_separator;

The ext_separator contains the separator for file name extensions.

The drv_separator contains the separator for file name drive.

The possible path separators can be found in array path_separator. The first one is the "preferred"

path separator for that operating system. This is the path separator that the debugger will use if it needs to

construct a file name for the remote system.

The new line control characters are stored in array line_eol. If the operating system uses only a single

character for new line, put a zero in the second element.

The list_separator contains the separator for path list items.

3.2.2 REQ_FILE_OPEN

Request to create/open a file.

Request message:

File I/O requests 51

Debugger Trap File Interface VERSION 1.3

trap_req req
unsigned_8 mode

string name

The name of the file to be opened is given by name. The mode field stores the access mode of the file.

The following bits are defined:

Bit 0 : DIG_OPEN_READ
Bit 1 : DIG_OPEN_WRITE
Bit 2 : DIG_OPEN_CREATE
Bit 3 : DIG_OPEN_TRUNC
Bit 4 : DIG_OPEN_APPEND
Bit 5 : reserved
Bit 6 : reserved
Bit 7 : reserved

For read/write mode, turn both DIG_OPEN_READ and DIG_OPEN_WRITE bits on. The

DIG_OPEN_TRUNC bit should only be used together with DIG_OPEN_CREATE and indicates that the

created file needs executable permission (if relevant on the target platform).

Return message:

trap_error err
trap_fhandle handle

If successful, the handle returns a handle for the file. When an error has occurred, the err field contains

a value indicating the type of error that has been detected.

3.2.3 REQ_FILE_SEEK

Request to seek to a particular file position.

Request message:

trap_req req
trap_fhandle handle
unsigned_8 mode
unsigned_32 pos

The handle of the file is given by the handle field. The mode field stores the seek mode. There are three

seek modes:

DIG_SEEK_ORG = 0 - Relative to the start of file
DIG_SEEK_CUR = 1 - Relative to the current file position
DIG_SEEK_END = 2 - Rrelative to the end of file

The position to seek to is in the pos field.

Return message:

trap_error err
unsigned_32 pos

52 File I/O requests

The Requests

If an error has occurred, the err field contains a value indicating the type of error that has been detected.

The pos field returns the current position of the file.

3.2.4 REQ_FILE_READ

Request to read a block of data from a file.

Request message:

trap_req req
trap_fhandle handle
unsigned_16 len

The handle of the file is given by the handle field. The len field stores the number of bytes to be

transmitted.

Return message:

trap_error err

bytes data

If successful, the data returns the block of data. The length of returned data is given by the return value

of TrapRequest minus 4 (to account for the size of err). The length will normally be equal to the len
field. If the end of file is encountered before the read completes, the return value will be less than the

number of bytes requested. When an error has occurred, the err field contains a value indicating the type

of error that has been detected.

3.2.5 REQ_FILE_WRITE

Request to write a block of data to a file.

Request message:

trap_req req
trap_fhandle handle

bytes data

The handle of the file is given by the handle field. The data is given in data field.

Return message:

trap_error err
unsigned_16 len

If there is no error, len will equal to that in the data_len field. When an error has occurred, the err
field contains a value indicating the type of error that has been detected.

File I/O requests 53

Debugger Trap File Interface VERSION 1.3

3.2.6 REQ_FILE_WRITE_CONSOLE

Request to write a block of data to the debuggee’s screen.

Request message:

trap_req req

bytes data

The data is given in data field.

Return message:

trap_error err
unsigned_16 len

If there is no error, len will equal to the data_len field. When an error has occurred, the err field

contains a value indicating the type of error that has been detected.

3.2.7 REQ_FILE_CLOSE

Request to close a file.

Request message:

trap_req req
trap_fhandle handle

The handle of the file is given by the handle field.

Return message:

trap_error err

When an error has occurred, the err field contains a value indicating the type of error that has been

detected.

3.2.8 REQ_FILE_ERASE

Request to erase a file.

Request message:

trap_req req

string file_name

The file_name field contains the file name to be deleted.

Return message:

trap_error err

54 File I/O requests

The Requests

If error has occurred when erasing the file, the err field will return the error code number.

3.2.9 REQ_FILE_STRING_TO_FULLPATH

Request to convert a file name to its full path name.

Request message:

trap_req req
unsigned_8 file_type

string file_name

The file_type field indicates the type of the input file. File types can be:

DIG_FILETYPE_EXE = 0
DIG_FILETYPE_DBG = 1
DIG_FILETYPE_PRS = 2
DIG_FILETYPE_HLP = 3

This is so the trap file can search different paths for the different types of files. For example, under QNX,

the PATH environment variable is searched for the DIG_FILETYPE_EXE type, and the WD_PATH

environment variable is searched for the others. The file_name field contains the file name to be

converted.

Return message:

trap_error err

string path_name

If no error occurs the err field returns a zero and the full path name will be stored in the path_name
field. When an error has occurred, the err field contains an error code indicating the type of error that has

been detected.

3.2.10 REQ_FILE_RUN_CMD

Request to run a command on the target (debuggee’s) system.

Request message:

trap_req req
unsigned_16 chk_size

string cmd

The chk_size field gives the check size in kilobytes. This field is only useful in the DOS

implementation. It contains the value of the /CHECKSIZE debugger command line option and represents

the amount of memory the user wishes to have free for the spawned sub-shell. The cmd field stores the

command to be executed.

Return message:

trap_error err

File I/O requests 55

Debugger Trap File Interface VERSION 1.3

If error has occurred when executing the command, the err field will return the error code number.

3.3 Overlay requests

This section describes requests that deal with overlays (supported only under 16-bit DOS). These requests

are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY_SERVICE and

appropriate service ID. The following descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Overlays".

The overlay requests use a new basic type in addition to the ones already described:

Type Definition

addr32_ptr This type encapsulates the concept of a 16:16 pointer into the debuggee’s address space.

Since overlays are only useful for 16-bit environments, using the addr48_ptr type would be

inefficient. The structure is defined as follows:

typedef struct {

unsigned_16 offset;
unsigned_16 segment;

} addr32_ptr;

The segment field contains the segment of the address and the offset field stores the

offset of the address.

ovl_address This type contains the overlay address and the number of entries down in the overlay stack.

The structure is defined as follows:

typedef struct {

addr32_ptr mach;
unsigned_16 sect_id;

} ovl_address;

The mach field is the machine address. The sect_id field stores the address section

number.

3.3.1 REQ_OVL_STATE_SIZE

Request to return the size of the overlay state information in bytes of the task program. This request maps

onto the overlay manager’s GET_STATE_SIZE request. See the "Overlay manager interface" on page 81

document for more information on the contents of the return message.

Request message:

trap_req req

The req field contains the request.

Return message:

unsigned_16 size

56 Overlay requests

The Requests

The size field returns the size in bytes. A value of zero indicates no overlays are present in the debuggee

and none of the other requests dealing with overlays will ever be called.

3.3.2 REQ_OVL_GET_DATA

Request to get the address and size of an overlay section. This request maps onto the overlay manager’s

GET_SECTION_DATA request. See the "Overlay manager interface" on page 81 document for more

information on the contents of the return message.

Request message:

trap_req req
unsigned_16 sect_id

The sect_id field indicates the overlay section the information is being requested of.

Return message:

unsigned_16 segment
unsigned_32 size

The segment field contains the segment value where the overlay section is loaded (or would be loaded if

it was brought into memory). The size field gives the size, in bytes, of the overlay section. If there is no

section for the given id, the segment field will be zero.

3.3.3 REQ_OVL_READ_STATE

Request to read the overlay table state. This request maps onto the overlay manager’s

GET_OVERLAY_STATE request. See the "Overlay manager interface" on page 81 document for more

information on the contents of the return message. The size of the returned data is provided by the

REQ_OVL_STATE_SIZE trap file request.

Request message:

trap_req req

Return message:

bytes data

The data field contains the overlay state information requested.

3.3.4 REQ_OVL_WRITE_STATE

Request to write the overlay table state. This request maps onto the overlay manager’s

SET_OVERLAY_STATE request. See the "Overlay manager interface" on page 81 document for more

information on the contents of the return message.

Request message:

Overlay requests 57

Debugger Trap File Interface VERSION 1.3

trap_req req

bytes data

The data field contains the overlay state information to be restored.

Return message:

NONE

3.3.5 REQ_OVL_TRANS_VECT_ADDR

Request to check if the input overlay address is actually an overlay vector. This request maps onto the

overlay manager’s TRANSLATE_VECTOR_ADDR request. See the "Overlay manager interface" on page

81 document for more information on the contents of the messages.

Request message:

trap_req req
ovl_address ovl_addr

The mach field is the machine address. The sect_id field stores the number of entries down in the

overlay stack.

Return message:

ovl_address ovl_addr

The translated address will be returned in the ovl_addr field. If the address is not an overlay vector, then

the input address will be returned and the sect_id field will be zero.

3.3.6 REQ_OVL_TRANS_RET_ADDR

Request to check if the address is the overlay manager parallel return code. This request maps onto the

overlay manager’s TRANSLATE_RETURN_ADDR request. See the "Overlay manager interface" on page

81 document for more information on the contents of the messages.

Request message:

trap_req req
ovl_address ovl_addr

Return message:

ovl_address ovl_addr

The translated address will be returned in the ovl_addr field. If the address is not an parallel return code,

then the input address will be returned and the sect_id field in the structure ovl_addr will be zero.

58 Overlay requests

The Requests

3.3.7 REQ_OVL_GET_REMAP_ENTRY

Request to check if the overlay address needs to be remapped. This request maps onto the overlay

manager’s GET_MOVED_SECTION request. See the "Overlay manager interface" on page 81 document

for more information on the contents of the messages.

Request message:

trap_req req
ovl_address ovl_addr

The ovl_addr field contains the overlay address.

Return message:

unsigned_8 remapped
ovl_address ovl_addr

If the address gets remapped the remapped field will return one. The remapped address will be returned

in the ovl_addr field. The input address will be unchanged if the address has not been remapped.

3.4 Thread requests

This section descibes requests that deal with threads. These requests are actually performed by the core

request REQ_PERFORM_SUPPLEMENTARY_SERVICE and appropriate service ID. The following

descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Threads".

The thread requests use a new basic type in addition to the ones already described:

Type Definition

trap_thandle This is an unsigned_32 type which holds a thread handle.

3.4.1 REQ_THREAD_GET_NEXT

Request to get next thread.

Request message:

trap_req req
trap_thandle thread

The thread contains the either a zero to get information on the first thread, or the value of the thread
field in the return message of a previous request.

Return message:

trap_thandle thread
unsigned_8 state

Thread requests 59

Debugger Trap File Interface VERSION 1.3

The thread field returns the thread ID. There are no more threads in the list, it will contain zero. The

state field can have two values:

THREAD_THAWED = 0
THREAD_FROZEN = 1

3.4.2 REQ_THREAD_SET

Request to set a given thread ID to be the current thread.

Request message:

trap_req req
trap_thandle thread

The thread contains the thread number to set. If it’s zero, do not attempt to set the thread, just return the

current thread ID.

Return message:

trap_error error
trap_thandle old_thread

The old_thread field returns the previous thread ID. If the set fails, the err field will be non-zero.

3.4.3 REQ_THREAD_FREEZE

Request to freeze a thread so that it will not be run next time when executing the task program.

Request message:

trap_req req
trap_thandle thread

The thread contains the thread number to freeze.

Return message:

trap_error err

If the thread cannot be frozen, the err field returns non-zero value.

3.4.4 REQ_THREAD_THAW

Request to allow a thread to run next time when executing the program.

Request message:

trap_req req
trap_thandle thread

The thread contains the thread number to thaw.

60 Thread requests

The Requests

Return message:

trap_error err

If the thread cannot be thawed, the err field returns non zero value.

3.4.5 REQ_THREAD_GET_EXTRA

Request to get extra information about a thread. This is arbitrary textual data which the debugger merely

displays in its thread window. The trap file can place any information in the return message which it feels

would be useful for the user to know.

Request message:

trap_req req
unsigned_32 thread

The thread field contains the thread ID. A zero value means to get the title string for the thread extra

information. This is displayed at the top of the thread window.

Return message:

string extra

The extra information of the thread will be returned in extra field.

3.5 Remote File transfer (RFX) requests

This section deals with requests that are only used by the RFX (Remote File Xfer) program. These requests

are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY_SERVICE and

appropriate service ID. The following descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Rfx".

3.5.1 REQ_RFX_RENAME

Request to rename a file on the debuggee’s system.

Request message:

trap_req req

string from_name

string to_name

The file whose name is indicated by the field from_name will be renamed to the name given by the field

to_name.

Return message:

trap_error err

Remote File transfer (RFX) requests 61

Debugger Trap File Interface VERSION 1.3

If error has occurred, the err field will return the error code number.

3.5.2 REQ_RFX_MKDIR

Request to create a directory on the target (debuggee) system.

Request message:

trap_req req

string dir_name

The dir_name field contains the name of the directory to be created.

Return message:

trap_error err

If error has occurred when creating the directory, the err field will return the error code number.

3.5.3 REQ_RFX_RMDIR

Request to remove a directory on the target system.

Request message:

trap_req req

string dir_name

The dir_name field contains the name of the directory to be removed.

Return message:

trap_error err

If error has occurred, the err field will return the error code number.

3.5.4 REQ_RFX_SETDRIVE

Request to set the current drive on the target system.

Request message:

trap_req req
unsigned_8 drive

The drive field contains the drive number to be set on the target system (0=A,1=B,...).

Return message:

trap_error err

62 Remote File transfer (RFX) requests

The Requests

If error has occurred, the err field will return the error code number.

3.5.5 REQ_RFX_GETDRIVE

Request to get the current drive on the target system.

Request message:

trap_req req

The req field contains the request.

Return message:

unsigned_8 drive

The drive field returns the current drive number on the target system (0=A,1=B,...).

3.5.6 REQ_RFX_SETCWD

Request to set a directory on the target system.

Request message:

trap_req req

string dir_name

The dir_name field contains the name of the directory to be set.

Return message:

trap_error err

If error has occurred, the err field will return the error code number.

3.5.7 REQ_RFX_GETCWD

Request to get the current directory name on the target system.

Request message:

trap_req req
unsigned_8 drive

The drive field contains the target drive number (0=current drive,1=A,2=B,...).

Return message:

trap_error err

string dir_name

Remote File transfer (RFX) requests 63

Debugger Trap File Interface VERSION 1.3

The dir_name field contains the name of the directory to be set. If error has occurred, the err field will

return the error code number.

3.5.8 REQ_RFX_SETDATETIME

Request to set a file’s date and time information on the target system.

Request message:

trap_req req
trap_fhandle handle
time_t time

The handle contains the file handle. The time field follows the UNIX time format. The time
represents the time since January 1, 1970 (UTC).

Return message:

NONE

3.5.9 REQ_RFX_GETDATETIME

Request to get the date and time information for a file on the target system.

Request message:

trap_req req
trap_fhandle handle

The handle contains the file handle.

Return message:

time_t time

The time field follows the UNIX time format. The time represents the time since January 1, 1970

(UTC).

3.5.10 REQ_RFX_GETFREESPACE

Request to get the amount of free space left on the drive.

Request message:

trap_req req
unsigned_8 drive

The drive field contains the target drive number (0=current drive,1=A,2=B,...).

Return message:

unsigned_32 size

64 Remote File transfer (RFX) requests

The Requests

The size field returns the number of bytes left on the drive.

3.5.11 REQ_RFX_SETFILEATTR

Request to set the file attribute of a file.

Request message:

trap_req req
unsigned_32 attribute

string name

The name field contains the name whose attributes are to be set. The attribute field contains the new

attributes of the file.

Return message:

trap_error err

If error has occurred, the err field will return the error code number.

3.5.12 REQ_RFX_GETFILEATTR

Request to get the file attribute of a file.

Request message:

trap_req req

string name

The name field contains the name to be checked.

Return message:

unsigned_32 attribute

The attribute field returns the attribute of the file.

3.5.13 REQ_RFX_NAMETOCANONICAL

Request to convert a file name to its canonical form.

Request message:

trap_req req

string file_name

The file_name field contains the file name to be converted.

Remote File transfer (RFX) requests 65

Debugger Trap File Interface VERSION 1.3

Return message:

trap_error err

string path_name

If there is no error, the err field returns a zero and the full path name will be stored in the path_name
field. When an error has occurred, the err field contains an error code indicating the type of error that has

been detected.

3.5.14 REQ_RFX_FINDFIRST

Request to find the first file in a directory.

Request message:

trap_req req
unsigned_8 attrib

string name

The name field contains the name of the directory and the attrib field contains the attribute of the files

to list in the directory.

Return message:

trap_error err

rfx_find info

If found, the err field will be zero. The location and information of about the first file will be in the

structure info. Definition of the structure rfx_find is as follows:

typedef struct rfx_find {

unsigned_8 reserved[21];
unsigned_8 attr;
unsigned_16 time;
unsigned_16 date;
unsigned_32 size;
unsigned_8 name[260];

} rfx_find;

3.5.15 REQ_RFX_FINDNEXT

Request to find the next file in the directory. This request should be used only after

REQ_RFX_FINDFIRST.

Request message:

trap_req req

rfx_find info

66 Remote File transfer (RFX) requests

The Requests

The req field contains the request. The info field contains the rfx_find structure returned from the

previous REQ_FIND_NEXT or REQ_FIND_FIRST.

Return message:

trap_error err

rfx_find info

The info field is the same as in REQ_FIND_FIRST.

3.5.16 REQ_RFX_FINDCLOSE

Request to end the directory search operation.

Request message:

trap_req req

The req field contains the request.

Return message:

trap_error err

If successful, the err field will be zero, otherwise the system error code will be returned.

3.6 Environment requests

This section describes requests that deal with Environment on the target (debuggee) machine. These

requests are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY_SERVICE and

appropriate service ID. The following descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Environment".

3.6.1 REQ_ENV_GET_VAR

Request to retreive Environment variable from the remote system.

Request message:

trap_req req

string name

Return message:

trap_error err
string value;

The value contains the value for name Environment variable from the remote system.

Environment requests 67

Debugger Trap File Interface VERSION 1.3

3.6.2 REQ_ENV_SET_VAR

Request to set Environment variable on the remote system.

Request message:

trap_req req

string name
string value;

Return message:

trap_error err

The value contains the new value for Environment variable name on the remote system.

3.7 File Info requests

This section describes requests that deal with file information on the target (debuggee) machine. These

requests are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY_SERVICE and

appropriate service ID. The following descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "FileInfo".

3.7.1 REQ_FILE_INFO_GET_DATE

Request message:

trap_req req

Return message:

trap_error err

3.7.2 REQ_FILE_INFO_SET_DATE

Request message:

trap_req req

Return message:

trap_error err

68 File Info requests

The Requests

3.8 Asynchronous Debugging requests

This section describes requests that deal with asynchronous debugging on the target (debuggee) machine.

These requests are actually performed by the core request

REQ_PERFORM_SUPPLEMENTARY_SERVICE and appropriate service ID. The following

descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Asynch".

3.8.1 REQ_ASYNC_GO

Request message:

trap_req req

Return message:

trap_error err

3.8.2 REQ_ASYNC_STEP

Request message:

trap_req req

Return message:

trap_error err

3.8.3 REQ_ASYNC_POLL

Request message:

trap_req req

Return message:

trap_error err

3.8.4 REQ_ASYNC_STOP

Request message:

trap_req req

Return message:

trap_error err

Asynchronous Debugging requests 69

Debugger Trap File Interface VERSION 1.3

3.8.5 REQ_ASYNC_ADD_BREAK

Request message:

trap_req req

Return message:

trap_error err

3.8.6 REQ_ASYNC_REMOVE_BREAK

Request message:

trap_req req

Return message:

trap_error err

3.9 Non-blocking Thread requests

This section describes requests that deal with Non-blocking Thread requests on the target (debuggee)

machine. These requests are actually performed by the core request

REQ_PERFORM_SUPPLEMENTARY_SERVICE and appropriate service ID. The following

descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "RunThread".

3.9.1 REQ_RUN_THREAD_INFO

Request message:

trap_req req

Return message:

trap_error err

3.9.2 REQ_RUN_THREAD_GET_NEXT

Request message:

trap_req req

Return message:

trap_error err

70 Non-blocking Thread requests

The Requests

3.9.3 REQ_RUN_THREAD_GET_RUNTIME

Request message:

trap_req req

Return message:

trap_error err

3.9.4 REQ_RUN_THREAD_POLL

Request message:

trap_req req

Return message:

trap_error err

3.9.5 REQ_RUN_THREAD_SET

Request message:

trap_req req

Return message:

trap_error err

3.9.6 REQ_RUN_THREAD_GET_NAME

Request message:

trap_req req

Return message:

trap_error err

3.9.7 REQ_RUN_THREAD_STOP

Request message:

trap_req req

Return message:

trap_error err

Non-blocking Thread requests 71

Debugger Trap File Interface VERSION 1.3

3.9.8 REQ_RUN_THREAD_SIGNAL_STOP

Request message:

trap_req req

Return message:

trap_error err

3.10 Capabilities requests

This section describes requests that deal with capabilities information on the target (debuggee) machine.

These requests are actually performed by the core request

REQ_PERFORM_SUPPLEMENTARY_SERVICE and appropriate service ID. The following

descriptions do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Capabilities".

3.10.1 REQ_CAPABILITIES_GET_EXACT_BP

Request to get information if exact breakpoints are supported on the remote system.

Request message:

trap_req req

Return message:

trap_error err
unsigned_8 status

The status contains true if exact breakpoints are supported on the remote system otherwise status
contains false.

3.10.2 REQ_CAPABILITIES_SET_EXACT_BP

Request to set if exact breakpoints are active on the remote system.

Request message:

trap_req req
unsigned_8 status

Return message:

trap_error err
unsigned_8 status

The input status contains if exact breakpoints are required to be active on the remote system.

72 Capabilities requests

The Requests

The output status contains status if exact breakpoints are currently active on the remote system.

Capabilities requests 73

Debugger Trap File Interface VERSION 1.3

74 Capabilities requests

4 System Dependent Aspects

Every environment has a different method of loading the code for the trap file and locating the TrapInit,

TrapRequest, and TrapFini routines. This section descibes how the Open Watcom debugger performs these

operations for the various systems.

4.1 Trap Files Under DOS

A trap file is an "EXE" format file with the extension ".TRP". The debugger searches the directories

specified by the PATH environment variable. Once found, it is loaded into memory and has the normal

EXE style relocations applied to the image. Then the lowest address in the load image (NOTE: not the

starting address from EXE header information) is examined for the following structure:

typedef struct {

unsigned_16 signature; /* == 0xDEAF */
unsigned_16 init_off;
unsigned_16 acc_off;
unsigned_16 fini_off;

} trap_header;

If the first 2 bytes contain the value 0xDEAF, the file is considered to be a valid trap file and the

init_off , acc_off , and fini_off fields are used to obtain the offsets of the TrapInit, TrapRequest,

and TrapFini routines repectively.

The starting address field of the EXE header should be set to point at some code which prints out a message

about not being able to be run from the command line and then terminates.

4.2 Trap Files Under OS/2

A trap file is a normal OS/2 DLL. The system automatically searches the directories specified by the

LIBPATH command in the CONFIG.SYS file. Once loaded, the Open Watcom debugger uses export

ordinal 1 from the DLL for TrapInit, export ordinal 2 for TrapFini and export ordinal 3 for TrapRequest.

Some example code follows:

rc = DosLoadModule(NULL, 0, trap_file_name, &dll_module);
if(rc != 0) {

return("unable to load trap file");
}
if(DosGetProcAddr(dll_module, "#1", &TrapInit) != 0
|| DosGetProcAddr(dll_module, "#2", &TrapFini) != 0
|| DosGetProcAddr(dll_module, "#3", &TrapRequest) != 0) {

return("incorrect version of trap file");
}

Trap Files Under OS/2 75

Debugger Trap File Interface VERSION 1.3

4.3 Trap Files Under Windows.

A trap file is a normal Windows DLL. The system automatically searches the directories specified by the

PATH environment variable. Once loaded, the Open Watcom debugger uses export ordinal 2 from the

DLL for TrapInit, export ordinal 3 for TrapFini and export ordinal 4 for TrapRequest. Some example code

follows:

dll = LoadLibrary(trap_file_name);
if(dll < 32) {

return("unable to load trap file");
}
TrapInit = (LPVOID) GetProcAddress(dll, (LPSTR)2);
TrapFini = (LPVOID) GetProcAddress(dll, (LPSTR)3);
TrapRequest = (LPVOID) GetProcAddress(dll, (LPSTR)4);
if(TrapInit == NULL || TrapFini == NULL || TrapRequest == NULL) {

return("incorrect version of trap file");
}

4.4 Trap Files Under Windows NT.

A trap file is a normal Windows NT DLL. The system automatically searches the directories specified by

the PATH environment variable. Once loaded, the Open Watcom debugger uses export ordinal 1 from the

DLL for TrapInit, export ordinal 2 for TrapFini and export ordinal 3 for TrapRequest. Some example code

follows:

dll = LoadLibrary(trap_file_name);
if(dll < 32) {

return("unable to load trap file");
}
TrapInit = (LPVOID) GetProcAddress(dll, (LPSTR)1);
TrapFini = (LPVOID) GetProcAddress(dll, (LPSTR)2);
TrapRequest = (LPVOID) GetProcAddress(dll, (LPSTR)3);
if(TrapInit == NULL || TrapFini == NULL || TrapRequest == NULL) {

return("incorrect version of trap file");
}

4.5 Trap Files Under QNX

A trap file is a QNX load module format file with the extension ".trp" and whose file permissions are not

marked as executable. The debugger searches the directories specified by the WD_PATH environment

variable and then the "/usr/watcom/wd" directory. Once found, it is loaded into memory and has the

normal loader relocations applied to the image. Then the lowest address in the load image (NOTE: not the

starting address from load module header information) is examined for the following structure:

typedef struct {

unsigned_16 signature; /* == 0xDEAF */
unsigned_16 init_off;
unsigned_16 acc_off;
unsigned_16 fini_off;

} trap_header;

76 Trap Files Under QNX

System Dependent Aspects

If the first 2 bytes contain the value 0xDEAF, the file is considered to be a valid trap file and the

init_off , acc_off , and fini_off fields are used to obtain the offsets of the TrapInit, TrapRequest,

and TrapFini routines repectively.

The starting address field of the load image header should be set to point at some code which prints out a

message about not being able to be run from the command line and then terminates.

4.6 Trap Files Under Netware 386 or PenPoint

The trap file routines are linked directly into the remote server code and TrapInit, TrapRequest, TrapFini

are directly called.

Trap Files Under Netware 386 or PenPoint 77

Debugger Trap File Interface VERSION 1.3

78 Trap Files Under Netware 386 or PenPoint

Overlay Manager Interface VERSION
3.0

Overlay Manager Interface VERSION 3.0

80

1 Overlay manager interface

For Open Watcom Debugger to be able to debug overlays, it must be able to make requests of the overlay

manager for certain operations. The overlay manager must also be able to inform Open Watcom Debugger

when a new overlay section is loaded.

When Open Watcom Debugger loads a DOS program, it looks at the initial CS:IP value for the following

structure:

struct ovl_header {

unsigned_8 short_jmp_opcode; /* == 0xeb */
signed_8 short_jmp_displacment;
unsigned_16 signature; /* == 0x2112 */
void (far *hook)();
unsigned_16 handler_offset;

};

Open Watcom Debugger checks to make sure that the first instruction is a short jump (opcode 0xeb) and

that the word following that instruction contains the value 0x2112. If this occurs, Open Watcom Debugger

assumes that it is debugging an overlaid application.

Open Watcom Debugger then fills in the hook field with the far address of a routine that is invoked with a

far call whenever a change in the overlay state occurs. The initial CS value and the contents of the

handler_offset field gives the far address of the overlay manager routine responsible for handling

debugger requests.

1.1 The Hook Routine

After the routine addresses have been exchanged, Open Watcom Debugger starts the program executing, to

allow the overlay manager to initialize. After the manager has finished its initialization, it performs a far

call to the debugger hook routine, with the return address on the stack being the "real" starting address of

the program being debugged. All register contents (including flags) should be preserved by the hook

routine.

After initialization, the debugger hook routine is invoked with a far call every time a new overlay section is

loaded into memory. In this case the AX register contains the section number that was just loaded. The DL

register contains a zero or non-zero value if the overlay load was caused by a call or return, respectively.

The CX:BX registers form a far pointer to the last byte of the call instruction that caused the overlay load,

in the case of a overlay load being caused by a return instruction (DL is non-zero) the far pointer is to the

last byte of the call instruction that the return is returning from.

Notes: More sections than just the one identified by the section number in AX may be loaded by the

overlay manager before the hook routine is called. The current overlay manager also loads all of the

ancestors of a section (See the WLINK documentation in the Users’ Guide for a description of what

an ancestor is). To find out what sections are really in memory the debugger should invoke the

handler routine with a GET_OVERLAY_STATE request.

The Hook Routine 81

Overlay Manager Interface VERSION 3.0

1.2 The Handler Routine

The handler routine is responsible for processing requests from the debugger pertaining to overlays. It is

invoked by the debugger by performing a far call with a request number in the AX register. The AX

register is used to return the result or return status of the request. The CX and BX registers are used for

some requests to pass a far pointer to memory.

There are two structures that the handler routines deals with. The first is called an overlay state. An

overlay state consists of a block of memory containing all the information necessary for the overlay

manager to restore the overlays to their current condition at some later point in time. The first portion of

this block is a bit vector, with each bit representing an overlay section. If the bit is a one, then the overlay

section is currently in memory. If the bit is a zero then the overlay section is not in memory. To convert

from a section number to a bit position use the following formulas:

byte_offset = (section_number - 1) / 8;
bit_number = (section_number - 1) % 8;

Following the bit vector is information that the manager uses to restore the overlay stack.

The second structure used is an overlay address. This consists of a far pointer followed by a 16-bit section

number.

The following requests are recognized by the debug handler routine.

1.2.1 GET_STATE_SIZE

Inputs: Outputs:
AX = request number (0) AX = size of overlay state

This request returns the number of bytes required for an overlay state.

1.2.2 GET_OVERLAY_STATE

Inputs: Outputs:
AX = request number (1) AX = 1
CX:BX = far pointer to memory

to store overlay state

This request copies the overlay state into the memory pointed at by the CX:BX registers. A one is always

returned in AX.

1.2.3 SET_OVERLAY_STATE

Inputs: Outputs:
AX = request number (2) AX = 1
CX:BX = far pointer to memory

to load overlay state

This request takes a previously obtained overlay state and causes the overlay manager to return itself to that

overlay configuration. A one is always returned in AX. The overlay manager will not explicitly unload a

section that is not in memory according to the given overlay state, so a GET_OVERLAY_STATE request

82 The Handler Routine

Overlay manager interface

following a SET_OVERLAY_STATE may not return the same bit vector portion. This request may also

be used by the debugger to explicitly load a section, so the assembly code may be examined, perhaps. To

do this, zero out a block of memory the size of an overlay state, and then turn on the appropriate section

number in the bit vector, then make a SET_OVERLAY_STATE request. Remember that not only that

section will be loaded, but all of its ancestor sections as well.

1.2.4 TRANSLATE_VECTOR_ADDR

Inputs: Outputs:
AX = request number (3) AX = 1 if addr was translated,
CX:BX = far pointer to 0 otherwise

overlay address

This request checks to see if the far pointer portion of the overlay address pointed at by CX:BX is actually

an overlay vector. If the address is a vector then the vector address is replaced by the true address of the

routine that the vector is for, and the section number portion is filled in with the section number the of

routine. A one is returned in AX in this case. If the address is not an overlay vector, then the overlay

address is untouched and an zero is returned in AX.

1.2.5 TRANSLATE_RETURN_ADDR

Inputs: Outputs:
AX = request number (4) AX = 1 if addr was translated,
CX:BX = far pointer to 0 otherwise

overlay address

In order to handle parallel overlay calls, the overlay manager replaces the true return address on the stack

with that of some special code (the parallel return code). It then takes the original return address and

section number an places them on the overlay stack. When a routine returns to the overlay manager, it pops

the top entry of the overlay stack, makes sure that the original overlay section is loaded, and returns to the

original return address.

This function performs much the same function as TRANSLATE_VECTOR_ADDR, except that rather

than checking for a vector address, it checks to see if the address is that of the overlay manager parallel

return code. If it is then the section number in the overlay address is used as the number of entries down in

the overlay stack that the real return address and section number is to be found (zero is the top entry of the

overlay stack). The true return address and section number then replaces the contents of the overlay

address and a one is returned in AX. If the address is not the parallel return code, then the overlay address

is left untouched and a zero is returned in AX.

1.2.6 GET_OVL_TBL_ADDR

Inputs: Outputs:
AX = request number (5) AX = 0
CX:BX = far pointer to variable

of type far pointer to
be filled in with
overlay table address

This request fills in the far pointer pointed at by CX:BX with the address of the overlay table so that a

profiler can find out where sections are located in the executable, or overlay files. The sampler program,

when it detects that it is sampling a overlaid application, can perform this function and write the result into

The Handler Routine 83

Overlay Manager Interface VERSION 3.0

the sample file. Since the overlay table is always in the root, the profiler can then find the overlay table and

from that, find the other sections. It should be noted that the format of the overlay table may change, so

this call should be avoided if at all possible.

1.2.7 GET_MOVED_SECTION

Inputs: Outputs:
AX = request number (6) AX = 1 if the section exists
CX:BX = far pointer to 0 otherwise

overlay address

With the dynamic overlay manager, sections may be loaded, or moved, to positions other than where the

linker originally placed them. The debugger must be informed of the new positions so that it can update the

locations of its symbolic information. The GET_MOVED_SECTION request is responsible for informing

the debugger what sections have moved and their new locations. The debugger will call this request after

the hook routine has been called, or the debugger has invoked the SET_OVERLAY_STATE request. The

request returns the first section whose id larger than the section number that is in the overlay address being

passed in. The overlay manager will fill in the overlay address with the section number that has moved and

its new segment address. The offset portion of the overlay address is unused. The request will return a one

in AX. If there are no sections numbers larger than the one being passed in that have moved, a zero is

returned.

Here is some example debugger code:

void CheckMovedSections()
{

overlay_address addr;

addr.sect_id = 0;
while(OvlHandler(GET_MOVED_SECTION, &addr)) {

HandleMovedSection(addr.sect_id, addr.segment);
}

}

1.2.8 GET_SECTION_DATA

Inputs: Outputs:
AX = request number (7) AX = 1 if the section exists
CX:BX = far pointer to 0 otherwise

overlay address

This request returns information on the current location of a section while it is in memory (or where it

would be if it was loaded). The section number portion of the overlay address is filled in with the section id

that information is being requested about before the request is made. The overlay manager returns zero in

AX if the section does not exist. Otherwise it returns one and fills in the overlay address with the location

that the section is in memory, or where it would currently go if it was loaded at that time. It also fills in the

section number portion of the address with the size of the section in paragraphs.

84 The Handler Routine

Overlay manager interface

1.3 Overlay Table Structure

The pointer returned by the GET_OVL_TBL_ADDR request has the following format:

typedef struct ovl_table {

unsigned_8 major;
unsigned_8 minor;
void far *start;
unsigned_16 delta;
unsigned_16 ovl_size;
ovltab_entry entries[1];

} ovl_table;

The fields major and minor field contain version numbers for the overlay table structure. If an upwardly

compatible change in the structures is made, the minor number will be incremented. If a non-upwardly

compatible change to the structures is made, the major field will be incremented. The current major version

is 3, the current minor version is 0. The start field contains a 32-bit far pointer to the "actual" starting

address of the program. The overlay manager jumps to this address after it has finished initializing (If a

debugger/sampler is present then the overlay manager calls into the hook routine with this address on the

return stack). The delta field contains the value to be added to each of the segment relocations when a

section is loaded into memory (it contains the segment value for the first segment in the program). The

ovl_size field contains the size of the overlay area. This is only used in the dynamic overlay manager.

The final field, entries , is a variable sized array containing one entry for each overlay section in the

program (e.g. the tenth element in the array describes overlay section 10). Each entry has the following

form:

typedef struct ovltab_entry {

unsigned_16 flags_anc;
unsigned_16 relocs;
unsigned_16 start_para;
unsigned_16 code_handle;
unsigned_16 num_paras;
unsigned_16 fname;
unsigned_32 disk_addr;

} ovltab_entry;

The top bit of the flag_anc field contains an indicator, while the program is running, of whether the

overlay section is in memory (value one) or must be loaded from disk (value zero). The next highest bit is

filled in by the linker and informs the overlay manager that the section must be loaded during the overlay

manager initialization. The remaining bits contain the overlay number for the ancestor of this section (zero

if there is none). The relocs field say how many segment relocation items there are for this section,

while the start_para field gives the location in memory (relative to the start of the program) that the

section should be placed when loaded. The num_paras field contains the size of the section in

paragraphs, and the code_handle field is used for various purposes inside the dynamic overlay loader.

The fname field has the offset of the address of a zero terminated string for the name of the file containing

the overlay section data and relocations (The segment value is the same as the overlay table). If the top bit

of the offset is on, then the file is the original EXE file rather than a separate overlay file, and the overlay

manager should use the program file name obtained from DOS (if the version is 3.0. or greater). The

disk_addr field gives the starting offset the overlay data in the overlay file. The segment relocation

items immediately follow the data.

The end of the entries array is indicated when an element’s flags_anc field contains the value 0xffff.

The remaining fields in that element contain garbage values.

Overlay Table Structure 85

