
WATCOM Script/GML

Tutorial and Reference Manual

D.S. McKee

J.W. Welch

WATCOM International Corporation

Waterloo, Ontario, Canada

(c) Copyright 1992 by WATCOM International Corporation

All rights reserved. No part of this publication may be reproduced or used in any form or by any means - graphic,
electronic, or mechanical, including photocopying, recording, taping or information storage and retrieval systems -
without written permission of WATCOM International Corporation.

Disclaimer

WATCOM (WATCOM International Corp. and all of its subsidiaries) makes no representation or warranty with
respect to the adequacy of this documentation or the programs which it describes for any particular purpose or with
respect to its adequacy to produce any particular result. In no event shall WATCOM, its employees, its contractors or
the authors of this documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,
claims, demands or claim for lost profits, fees or expenses of any nature or kind.

Printed in Canada

WATCOM Telephone: (519) 886-3700
415 Phillip Street FAX: (519) 747-4971
Waterloo, Ontario BBS: (519) 884-2103
CANADA N2L 3X2

ii

Preface

This manual describes the text preparation language GML (Generalized Markup Language). The language was
originally developed by IBM for use with the DCF (Document Composition Facility) product distributed by IBM. The
language is used in many installations as a convenient means of specifying the components of the input text to be
formatted into documents.

WATCOM Script/GML may be used for all stages of document preparation. WATCOM Script/GML may also be used
as a "debugging" document processor during the draft stages of a document. The direct processing of GML tags
provides a precise diagnosis of errors and faster processing of the document. Waterloo Script or IBM DCF can then be
used to produce the final copy of the document.

This document was prepared using WATCOM Script/GML on an 486 PC with the Apple LaserWriter printer.

Notice of Copyright
Copyright C 2002-2025 the Open Watcom Contributors. Portions Copyright C 1984-2002 Sybase, Inc. and
its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2 .

iii

iv

Table of Contents

Preface .. iii

Tutorial ... 1

1 Introduction to GML .. 3
1.1 What is GML? ... 3

2 Getting Started ... 5
2.1 First Example Document ... 5
2.2 Processing the Examples ... 6

3 WATCOM Script/GML Screen Displays .. 9
3.1 Processing Displays ... 9

3.1.1 Display Areas ... 10
3.1.2 Error Screen .. 10

3.2 WATCOM Script/GML User Interface Displays ... 11
3.2.1 Obtaining Help ... 12
3.2.2 Control Menu .. 13
3.2.3 Selecting/Editing a Document .. 13
3.2.4 Printing a Document ... 14
3.2.5 Changing the Options ... 15
3.2.6 Selecting Device Information ... 16
3.2.7 Selecting Symbol Information .. 20
3.2.8 Saving Options ... 21
3.2.9 Changing the Configuration ... 22

4 Document Elements ... 25
4.1 Examples ... 25
4.2 Notes and Paragraph Continuation .. 26
4.3 Lists ... 28

4.3.1 Simple Lists .. 28
4.3.2 Unordered Lists .. 29
4.3.3 Ordered Lists .. 30
4.3.4 Definition Lists ... 31
4.3.5 Nesting lists .. 32
4.3.6 List Parts ... 33

5 Document Structure ... 35
5.1 Headings .. 35
5.2 Front Material .. 37

5.2.1 Title Page .. 37
5.2.2 Abstract ... 39
5.2.3 Preface .. 39
5.2.4 Table of Contents ... 39
5.2.5 List of Figures ... 39

5.3 Body .. 39
5.4 Appendices .. 39
5.5 Back Material .. 40
5.6 Large Documents .. 40

v

Table of Contents

6 Additional Document Elements ... 43
6.1 Highlighting Phrases ... 43
6.2 Citations .. 44
6.3 Quotations ... 45
6.4 Figures ... 46
6.5 Referencing ... 49
6.6 Indexing ... 51

7 Layouts ... 55
7.1 Specifying a Layout .. 55
7.2 General Modifications ... 56
7.3 Modifying Document Elements .. 56
7.4 Obtaining the Current Layout ... 56
7.5 Banners .. 57

7.5.1 Defining the Banner ... 57
7.5.2 Defining the Banner Region ... 58
7.5.3 Sample Banner Definition .. 59
7.5.4 Using Symbols in Banner Definitions .. 59

GML Reference .. 61

8 General Specifications ... 63
8.1 Processing Rules ... 63
8.2 Horizontal Space Unit ... 63
8.3 Vertical Space Unit ... 64
8.4 Font Linkage ... 64
8.5 Tag Attributes .. 65
8.6 Symbolic Substitution ... 65
8.7 Identifiers .. 66
8.8 Input Translation ... 66

9 GML Tags .. 69
9.1 ABSTRACT .. 69
9.2 ADDRESS ... 70
9.3 ALINE ... 70
9.4 APPENDIX ... 70
9.5 AUTHOR .. 70
9.6 BACKM .. 70
9.7 BINCLUDE ... 70
9.8 BODY ... 71
9.9 CIT .. 71
9.10 CMT .. 71
9.11 DATE .. 72
9.12 DD ... 72
9.13 DDHD ... 72
9.14 DL ... 72
9.15 DOCNUM ... 73
9.16 DT ... 73
9.17 DTHD .. 73
9.18 EADDRESS .. 73

vi

Table of Contents

9.19 ECIT .. 73
9.20 EDL ... 73
9.21 EFIG .. 74
9.22 EFN ... 74
9.23 EGDOC ... 74
9.24 EGL ... 74
9.25 EHP0, EHP1, EHP2, EHP3 ... 74
9.26 ELAYOUT .. 74
9.27 ELQ ... 75
9.28 EOL ... 75
9.29 EPSC ... 75
9.30 EQ ... 75
9.31 ESF .. 75
9.32 ESL .. 75
9.33 ETITLEP ... 75
9.34 EUL ... 76
9.35 EXMP .. 76
9.36 FIG .. 76
9.37 FIGCAP ... 77
9.38 FIGDESC .. 77
9.39 FIGLIST .. 77
9.40 FIGREF ... 77
9.41 FN .. 78
9.42 FNREF .. 78
9.43 FRONTM .. 78
9.44 GDOC ... 78
9.45 GL ... 79
9.46 GD ... 79
9.47 GRAPHIC ... 79
9.48 GT ... 80
9.49 H0, H1, H2, H3, H4, H5, H6 ... 80
9.50 HDREF .. 81
9.51 HP0, HP1, HP2, HP3 .. 81
9.52 I1, I2, I3 ... 82
9.53 IH1, IH2, IH3 .. 82
9.54 IMBED .. 83
9.55 INCLUDE ... 83
9.56 INDEX .. 83
9.57 IREF .. 84
9.58 LAYOUT .. 84
9.59 LI ... 84
9.60 LIREF .. 85
9.61 LP .. 85
9.62 LQ ... 85
9.63 NOTE .. 85
9.64 OL ... 86
9.65 P ... 86
9.66 PC .. 86
9.67 PREFACE ... 86
9.68 PSC .. 86
9.69 Q .. 87

vii

Table of Contents

9.70 SET .. 87
9.71 SF .. 87
9.72 SL .. 88
9.73 TITLE .. 88
9.74 TITLEP .. 88
9.75 TOC ... 88
9.76 UL ... 88
9.77 XMP .. 89

10 GML Letter Tags ... 91
10.1 ATTN .. 91
10.2 CLOSE .. 91
10.3 DATE .. 91
10.4 DIST .. 92
10.5 DISTRIB ... 92
10.6 DOCNUM ... 92
10.7 ECLOSE .. 92
10.8 EDISTRIB ... 92
10.9 FROM ... 92
10.10 OPEN .. 93
10.11 SUBJECT .. 93
10.12 TO ... 93

11 Script Support .. 95
11.1 Control Word Modifiers .. 95
11.2 DM Control Word ... 95

11.2.1 Invoking Macros ... 96
11.3 GA Control Word .. 96
11.4 GT Control Word .. 98

12 Layouts ... 101
12.1 Specifying and Using Layouts .. 101
12.2 Number Style .. 101
12.3 Layout Tags ... 102

12.3.1 ABSTRACT ... 102
12.3.2 ADDRESS .. 103
12.3.3 ALINE .. 104
12.3.4 APPENDIX .. 104
12.3.5 ATTN ... 106
12.3.6 AUTHOR ... 107
12.3.7 BACKM ... 108
12.3.8 BANNER .. 109
12.3.9 BANREGION ... 111
12.3.10 BODY ... 113
12.3.11 CIT .. 115
12.3.12 CLOSE ... 115
12.3.13 CONVERT ... 116
12.3.14 DATE ... 116
12.3.15 DD .. 117
12.3.16 DDHD ... 117
12.3.17 DEFAULT .. 117

viii

Table of Contents

12.3.18 DISTRIB ... 118
12.3.19 DOCNUM .. 119
12.3.20 DL ... 119
12.3.21 DT ... 121
12.3.22 DTHD ... 121
12.3.23 EBANNER ... 121
12.3.24 EBANREGION .. 121
12.3.25 ECLOSE ... 122
12.3.26 ELAYOUT ... 122
12.3.27 FIG .. 122
12.3.28 FIGCAP .. 123
12.3.29 FIGDESC ... 124
12.3.30 FIGLIST ... 124
12.3.31 FLPGNUM ... 125
12.3.32 FN ... 125
12.3.33 FNREF .. 126
12.3.34 FROM ... 127
12.3.35 GD .. 127
12.3.36 GL ... 127
12.3.37 GT ... 129
12.3.38 HEADING .. 129
12.3.39 Hn ... 130
12.3.40 INDEX .. 132
12.3.41 IXHEAD ... 133
12.3.42 IXMAJOR .. 134
12.3.43 IXPGNUM ... 134
12.3.44 In ... 135
12.3.45 LAYOUT .. 136
12.3.46 LETDATE .. 136
12.3.47 LP ... 136
12.3.48 LQ ... 137
12.3.49 NOTE ... 138
12.3.50 OL ... 139
12.3.51 OPEN .. 141
12.3.52 P .. 141
12.3.53 PAGE .. 141
12.3.54 PC ... 142
12.3.55 PREFACE ... 142
12.3.56 SAVE .. 144
12.3.57 SL ... 144
12.3.58 SUBJECT ... 145
12.3.59 TITLE ... 146
12.3.60 TITLEP ... 146
12.3.61 TO ... 147
12.3.62 TOC .. 147
12.3.63 TOCHn ... 148
12.3.64 TOCPGNUM .. 149
12.3.65 UL ... 149
12.3.66 WIDOW ... 151
12.3.67 XMP ... 151

ix

Table of Contents

13 GML Summary .. 153
13.1 Front Material .. 153

13.1.1 Title Page .. 154
13.1.2 Abstract ... 154
13.1.3 Preface .. 154
13.1.4 Table of Contents ... 154
13.1.5 List of Figures ... 154

13.2 Body .. 154
13.3 Appendix ... 155
13.4 Back Material .. 155

13.4.1 Index ... 155
13.5 Basic Document Elements .. 155
13.6 Paragraph Elements ... 155
13.7 Definitions ... 155
13.8 Examples and Figures ... 156

13.8.1 Example .. 156
13.8.2 Figure .. 156
13.8.3 Figure Reference .. 156

13.9 Headings .. 157
13.9.1 Heading ... 157
13.9.2 Heading Reference ... 157

13.10 Lists ... 157
13.10.1 Address ... 157
13.10.2 Definition List .. 157
13.10.3 Glossary List ... 158
13.10.4 Ordered List .. 158
13.10.5 Simple List .. 158
13.10.6 Unordered List .. 159
13.10.7 List Reference ... 159

13.11 Notes ... 159
13.11.1 Footnote .. 159
13.11.2 Footnote Reference ... 159
13.11.3 Note .. 159

13.12 Paragraphs ... 160
13.12.1 Paragraph .. 160
13.12.2 Paragraph Continuation .. 160

13.13 Quotes and Highlighted Phrases ... 160
13.13.1 Citation ... 160
13.13.2 Highlighted Phrase ... 160
13.13.3 Long Quotation ... 160
13.13.4 Quote .. 160
13.13.5 Set Font ... 161

13.14 Graphics .. 161
13.15 General Elements .. 161

13.15.1 Comment .. 161
13.15.2 Include .. 161
13.15.3 Set ... 161

13.16 Pre GDOC Elements ... 161
13.16.1 Imbedding Layouts ... 162
13.16.2 Defining Layouts .. 162

13.17 Post GDOC Elements .. 162

x

Table of Contents

13.17.1 Binary Include .. 162
13.17.2 Index Entries ... 162
13.17.3 Index Header .. 162
13.17.4 Index Reference .. 163
13.17.5 Process Specific Control ... 163

13.18 WATCOM Letter Format .. 163

14 Running WATCOM Script/GML .. 165
14.1 Command Lines with IBM VM/CMS and IBM PC/DOS .. 165

14.1.1 Command Files ... 166
14.1.2 IBM VM/CMS Specifics .. 166
14.1.3 IBM PC/DOS Specifics .. 166

14.2 Command Lines with DEC VAX/VMS .. 167
14.2.1 Command Files ... 167
14.2.2 DEC VAX/VMS Specifics ... 168

14.3 Options .. 168
14.3.1 ALTEXTension .. 168
14.3.2 Bind .. 168
14.3.3 CPInch .. 169
14.3.4 DELim .. 169
14.3.5 DESCription ... 169
14.3.6 DEVice ... 169
14.3.7 DUPlex/NODUPlex ... 169
14.3.8 FILE .. 170
14.3.9 FONT .. 170
14.3.10 FORMat .. 171
14.3.11 FROM ... 171
14.3.12 INCList/NOINCList ... 171
14.3.13 INDex/NOINDex ... 171
14.3.14 LAYout ... 172
14.3.15 LINEmode .. 172
14.3.16 LLength .. 172
14.3.17 LPInch .. 172
14.3.18 MAILmerge .. 172
14.3.19 OUTput ... 173
14.3.20 PASSes ... 174
14.3.21 PAUSE/NOPause ... 174
14.3.22 PROCess ... 174
14.3.23 QUIET/NOQuiet .. 174
14.3.24 RESETscreen .. 175
14.3.25 SCRipt/NOSCRipt .. 175
14.3.26 SETsymbol ... 175
14.3.27 STATistics/NOSTATistics ... 175
14.3.28 TERSE/VERBose ... 175
14.3.29 TO ... 176
14.3.30 VALUESet ... 176
14.3.31 WAIT/NOWAIT .. 176
14.3.32 WARNing/NOWARNing ... 176
14.3.33 WSCRipt ... 177

xi

Table of Contents

Device Reference .. 179

15 Devices ... 181
15.1 Output Devices in WATCOM Script/GML .. 181
15.2 Page Addressing .. 181
15.3 Augmented Device Definitions ... 181
15.4 Creating a Definition ... 182
15.5 Deleting a Definition ... 182
15.6 General Device Tags ... 183

15.6.1 CMT ... 183
15.6.2 INCLUDE ... 183

15.7 Device Functions ... 183
15.7.1 ADD ... 184
15.7.2 BINARY1 ... 184
15.7.3 BINARY2 ... 185
15.7.4 BINARY4 ... 185
15.7.5 CANCEL .. 185
15.7.6 CLEARPC .. 185
15.7.7 CLEAR3270 ... 185
15.7.8 DATE ... 185
15.7.9 DECIMAL .. 186
15.7.10 DEFAULT_WIDTH ... 186
15.7.11 DIVIDE .. 186
15.7.12 FLUSHPAGE ... 186
15.7.13 FONT_HEIGHT ... 186
15.7.14 FONT_SPACE ... 186
15.7.15 FONT_NUMBER ... 187
15.7.16 FONT_OUTNAME1 .. 187
15.7.17 FONT_OUTNAME2 .. 187
15.7.18 FONT_RESIDENT .. 187
15.7.19 HEX .. 187
15.7.20 IMAGE ... 188
15.7.21 LINE_HEIGHT .. 188
15.7.22 LINE_SPACE ... 188
15.7.23 PAGES ... 188
15.7.24 PAGE_DEPTH ... 188
15.7.25 PAGE_WIDTH .. 188
15.7.26 RECORDBREAK .. 189
15.7.27 REMAINDER .. 189
15.7.28 SLEEP .. 189
15.7.29 SUBTRACT ... 189
15.7.30 TAB_WIDTH ... 189
15.7.31 TEXT .. 189
15.7.32 THICKNESS .. 190
15.7.33 TIME .. 190
15.7.34 WAIT .. 190
15.7.35 WGML_HEADER ... 190
15.7.36 X_ADDRESS ... 190
15.7.37 X_SIZE ... 190
15.7.38 Y_ADDRESS ... 191
15.7.39 Y_SIZE ... 191

xii

Table of Contents

15.8 Defining a Font ... 191
15.8.1 Attributes of the Font Block ... 192
15.8.2 Width Block .. 194
15.8.3 InTrans Block ... 194
15.8.4 OutTrans Block .. 195

15.9 Defining a Driver .. 195
15.9.1 Attributes of the Driver Block .. 196
15.9.2 INIT Block .. 197
15.9.3 FINISH Block ... 198
15.9.4 NEWLINE Block ... 199
15.9.5 NEWPAGE Block .. 200
15.9.6 HTAB Block ... 200
15.9.7 BOLDSTART Block .. 201
15.9.8 BOLDEND Block .. 202
15.9.9 UNDERSTART Block ... 202
15.9.10 UNDEREND Block .. 203
15.9.11 FONTSWITCH Block .. 203
15.9.12 PAGEADDRESS Block ... 204
15.9.13 ABSOLUTEADDRESS Block ... 205
15.9.14 HLINE Block .. 205
15.9.15 VLINE Block .. 206
15.9.16 DBOX Block .. 207

15.10 Defining a Device ... 208
15.10.1 Attributes of the Device Block ... 209
15.10.2 PAUSE Block ... 210
15.10.3 DEVICEFONT Block .. 212
15.10.4 DEFAULTFONT Block ... 213
15.10.5 FONTPAUSE Block .. 214
15.10.6 RULE Block ... 215
15.10.7 BOX Block ... 215
15.10.8 UNDERSCORE Block ... 217
15.10.9 PAGESTART Block .. 218

16 Running WATCOM GENDEV ... 219
16.1 Options .. 219

16.1.1 ALTEXTension .. 219
16.1.2 DELim .. 220
16.1.3 INCList/NOINCList ... 220
16.1.4 WARNing/NOWARNing ... 220

17 Files .. 221
17.1 Introduction ... 221
17.2 File Specification .. 221
17.3 Files with IBM PC/DOS ... 221

17.3.1 Record Attributes .. 221
17.3.2 File Designation .. 222
17.3.3 Special Device Names .. 223
17.3.4 File Specification Examples ... 223

17.4 Files with IBM VM/CMS ... 224
17.4.1 Record Attributes .. 224
17.4.2 File Designation .. 224

xiii

Table of Contents

17.4.3 Special File Names ... 225
17.4.4 File Specification Examples ... 226

17.5 Files with DEC VAX/VMS ... 226
17.5.1 Record Attributes .. 226
17.5.2 File Designation .. 227
17.5.3 Writing to the Printer .. 229
17.5.4 Using the Terminal as a File ... 229
17.5.5 File Specification Examples ... 229

18 Libraries ... 231
18.1 Libraries with IBM VM/CMS ... 231

18.1.1 Creating and Updating a Library .. 231
18.1.2 Defining a Library List ... 232

18.2 Libraries with DEC VAX/VMS .. 233
18.2.1 Creating and Updating a Library .. 233
18.2.2 Defining a Library List ... 233

18.3 Libraries with IBM PC/DOS ... 234
18.3.1 Creating and Updating a Library .. 234
18.3.2 Defining a Library List ... 234

Appendices ... 235

A UnProcessed Script Control Words .. 237

B WATCOM Script/GML Error Messages .. 239

C WATCOM GENDEV Error Messages ... 249

xiv

List of Figures

Figure 1. First GML example ... 5
Figure 2. .. 6
Figure 3. WATCOM Script/GML Status Screen ... 9
Figure 4. WATCOM Script/GML Error Screen .. 10
Figure 5. Main Document Screen ... 11
Figure 6. Help about the Help Facility ... 12
Figure 7. Control menu .. 13
Figure 8. Select Document file browser ... 13
Figure 9. Print a Document .. 14
Figure 10. Option Screen ... 15
Figure 11. Option Changes ... 16
Figure 12. Device Screen ... 17
Figure 13. Default device information ... 17
Figure 14. Device browser ... 18
Figure 15. Selecting a new device .. 18
Figure 16. Available fonts .. 19
Figure 17. Define a new font .. 20
Figure 18. Define a symbol value .. 21
Figure 19. Define a mail merge file ... 21
Figure 20. Save the current options .. 22
Figure 21. Configuration Screen .. 23
Figure 22. Simple XMP example ... 25
Figure 23. .. 25
Figure 24. Illustration of Paragraph Continuation ... 26
Figure 25. .. 27
Figure 26. Illustration of the Note Entity ... 27
Figure 27. .. 27
Figure 28. Simple List .. 28
Figure 29. .. 29
Figure 30. Unordered List .. 29
Figure 31. .. 30
Figure 32. Ordered List .. 30
Figure 33. .. 31
Figure 34. Definition List ... 31
Figure 35. .. 32
Figure 36. Illustration of Nested List ... 32
Figure 37. .. 33
Figure 38. Illustration List Part .. 33
Figure 39. .. 34
Figure 40. Simplified Document Structure .. 35
Figure 41. Overall Structure of Document ... 35
Figure 42. Sample Headings .. 36
Figure 43. Sample Table of Contents ... 37
Figure 44. Sample Title Page ... 38
Figure 45. .. 38
Figure 46. Illustration of :include Tag ... 40
Figure 47. Illustration of Highlight tags ... 43
Figure 48. Tag at the end of a Sentence ... 44
Figure 49. .. 44
Figure 50. Illustration of a Citation .. 44
Figure 51. Illustration of a Short Quotation ... 45

xv

List of Figures

Figure 52. .. 45
Figure 53. Illustration of a Long Quotation ... 46
Figure 54. .. 46
Figure 55. Very Simple Figure ... 47
Figure 56. .. 47
Figure 57. Figure with Caption .. 47
Figure 58. .. 48
Figure 59. Illustration of a Description with Figure ... 48
Figure 60. .. 49
Figure 61. Illustration of the ID Attribute .. 49
Figure 62. Illustration of Referencing .. 50
Figure 63. .. 50
Figure 64. Illustration of the Indexing Tags ... 51
Figure 65. .. 51
Figure 66. A More Complex Index .. 52
Figure 67. .. 52
Figure 68. Illustration of Index Headings .. 52
Figure 69. .. 53
Figure 70. Symbolic Substitution ... 65
Figure 71. .. 65
Figure 72. Iterative Substitution ... 66
Figure 73. .. 66
Figure 74. Input Translation ... 67
Figure 75. .. 67
Figure 76. Overall Document Structure ... 153
Figure 77. Generating a Definition .. 182
Figure 78. Deleting a Definition .. 183
Figure 79. Example of a Definition Deletion ... 183
Figure 80. The FONT Block .. 191
Figure 81. Attributes of the FONT Block .. 192
Figure 82. Example of the FONT Block Attributes ... 192
Figure 83. The WIDTH Block ... 194
Figure 84. Example of the WIDTH Block ... 194
Figure 85. The INTRANS Block ... 194
Figure 86. Example of the INTRANS Block ... 194
Figure 87. The OUTTRANS Block ... 195
Figure 88. Example of the OUTTRANS Block ... 195
Figure 89. The DRIVER Block .. 196
Figure 90. Attributes of the DRIVER Block .. 196
Figure 91. Example of the DRIVER Block Attributes ... 196
Figure 92. The INIT Block ... 197
Figure 93. Example of the INIT Block ... 197
Figure 94. The FINISH Block .. 198
Figure 95. Example of the FINISH Block .. 198
Figure 96. The NEWLINE Block ... 199
Figure 97. Example of the NEWLINE Block .. 199
Figure 98. The NEWPAGE Block ... 200
Figure 99. Example of the NEWPAGE Block ... 200
Figure 100. The HTAB Block .. 200
Figure 101. Example of the HTAB Block .. 201
Figure 102. The BOLDSTART Block ... 201

xvi

List of Figures

Figure 103. Example of the BOLDSTART Block ... 201
Figure 104. The BOLDEND Block .. 202
Figure 105. Example of the BOLDEND Block ... 202
Figure 106. The UNDERSTART Block .. 202
Figure 107. Example of the UNDERSTART Block .. 202
Figure 108. The UNDEREND Block ... 203
Figure 109. Example of the UNDEREND Block ... 203
Figure 110. The FONTSWITCH Block ... 203
Figure 111. Example of the FONTSWITCH Block ... 204
Figure 112. The PAGEADDRESS Block .. 204
Figure 113. Example of the PAGEADDRESS Block .. 205
Figure 114. The ABSOLUTEADDRESS Block .. 205
Figure 115. Example of the ABSOLUTEADDRESS Block .. 205
Figure 116. The HLINE Block ... 206
Figure 117. Example of the HLINE Block ... 206
Figure 118. The VLINE Block ... 206
Figure 119. Example of the VLINE Block ... 207
Figure 120. The DBOX Block ... 207
Figure 121. Example of the DBOX Block ... 208
Figure 122. The DEVICE Block .. 209
Figure 123. Device Attributes .. 209
Figure 124. Example of the Device Attributes ... 209
Figure 125. The PAUSE Block .. 211
Figure 126. Example of the PAUSE Block .. 211
Figure 127. The DEVICEFONT Block .. 212
Figure 128. Example of the DEVICEFONT Block ... 212
Figure 129. The DEFAULTFONT Block .. 213
Figure 130. Example of the DEFAULTFONT Block .. 213
Figure 131. The FONTPAUSE Block .. 214
Figure 132. Example of the FONTPAUSE Block ... 214
Figure 133. The RULE Block .. 215
Figure 134. Example of the RULE Block .. 215
Figure 135. The BOX Block .. 216
Figure 136. Example of the BOX Block .. 216
Figure 137. The UNDERSCORE Block .. 217
Figure 138. Example of the UNDERSCORE Block .. 217
Figure 139. The PAGESTART Block .. 218
Figure 140. Example of the PAGESTART Block ... 218
Figure 141. Creating an IBM VM/CMS Library ... 232
Figure 142. Deleting an IBM VM/CMS Library Member ... 232
Figure 143. Adding an IBM VM/CMS Library Member ... 232
Figure 144. Defining the IBM VM/CMS Library List ... 232
Figure 145. .. 232
Figure 146. Creating a DEC VAX/VMS Library ... 233
Figure 147. Deleting a DEC VAX/VMS Library Member .. 233
Figure 148. Adding a DEC VAX/VMS Library Member .. 233
Figure 149. Defining the DEC VAX/VMS Library List .. 233
Figure 150. .. 234
Figure 151. Defining the IBM PC/DOS Library List ... 234
Figure 152. .. 234

xvii

xviii

Tutorial

Tutorial

2

1 Introduction to GML

1.1 What is GML?

GML (Generalized Markup Language) is a language by which the components of a document are
specified. A GML user creates a computer file containing a document specification, and then causes a
GML processor (a computer program) to be executed. As the GML processor executes, the specification
file is read and the document is produced for an output device such as the terminal or a printer.

Only in rare situations is the document completed at this point. Usually, there are revisions which must
be made. The user enters these revisions by modifying the original specification file and then causes the
GML processor to be executed to obtain a revised version of the document. This revision process is
typically repeated many times.

The method outlined above where an input file containing document content information is used to
produce a document is often called text formatting. GML and many text formatting languages use this
method. There are a number of benefits to using the GML Language:

1. A GML document is described using high-level entities such as headings, paragraphs and lists.
On the other hand, most text formatting languages have formatting commands which describe
how a document is formatted. This latter approach does not enforce consistency and often
restricts a document to one particular style.

2. GML is used to describe the components of a document. These component descriptions do not
contain specifications about the appearance of the components once they have been formatted.
Thus, the specification file is essentially independent of the layout used. A layout is a set of
rules to determine the way in which a document is to be formatted. Examples of these rules are
the number of lines to be displayed on a page, and the style and placement of page numbers on
each page. A default layout is supplied with the GML processor; optionally, a GML user may
create additional layouts for situations in which the default is not satisfactory. A common
method of document preparation is to use one layout to create a completed version of a
document and then to use a specialized layout in the final production run of the document.

3. The GML language has been found to be easy to learn. A user of the language seldom
becomes involved in details concerning layout specifications since there often exists a layout
suitable for use with a given document.

The file(s) containing the GML specifications for a document are usually prepared and revised using a
text editor. This manual does not describe the use of a specific editor.

What is GML? 3

Tutorial

4 What is GML?

2 Getting Started

The GML tutorial shows you how to use the GML language with WATCOM Script/GML. You are
encouraged to try the examples as they are introduced. Trying variations of the examples will also help in
understanding the GML language.

The tutorial does not describe every feature of the GML language. The intent is to "get you going"; once
some familiarity with the language has been achieved, the reference section may be used to obtain
complete details about other parts of the language.

Do not be concerned with the style of the document while you are learning the GML language. One of
the benefits of GML is the ability to change the style of a document after it has been entered. The
document style is defined by the layout feature in WATCOM Script/GML, and is described in a later
chapter.

Since any editor capable of creating and modifying text files may be used to prepare the GML input, this
manual does not describe the use of a specific editor. It is recommended that you become familiar with
the use of the editor before attempting the examples in this chapter.

2.1 First Example Document

The first example illustrates a number of the features in the GML language. The GML file is as follows:

:GDOC.
:BODY.
:H0.Simple Document
:P.This is the first sentence of the
very first paragraph.
This is the second sentence in
that paragraph.
:P.Here is the second paragraph.
This is the second
sentence in the second paragraph.
:eGDOC.

Figure 1. First GML example

The document, when processed, may appear as follows:

First Example Document 5

Tutorial

Simple Document

This is the first sentence of the
very first paragraph. This is the
second sentence in that paragraph.

Here is the second paragraph. This
is the second sentence in the second
paragraph.

Figure 2. : Output of Figure 1

The first example consists of a heading and two paragraphs.

It should be noted that the GML source contains two types of information.

Tags Each tag in the example starts with a colon(:) and ends with a period(.). Although
the period is usually optional, it is a good practice to always include it. This
convention avoids the necessity of learning the specific instances in which the
period would be required. The tags used in the first example are :gdoc, :body, :h0,
:p and :egdoc. Tags can be entered using either upper or lower case letters. The
tags will be shown in upper case in the tutorial examples. Ending tags, such as
:eGDOC., will be entered with the "e" in lower case to emphasize that they are used
in conjunction with other tags.

Text The words and punctuation to be processed is called text.

The following tags have been introduced in this example.

:gdoc This tag indicates the start of the GML document. It must precede all text to be
formatted.

:egdoc This tag indicates the end of the GML document. It must be the last tag in the GML
source file.

:body This tag indicates the start of the main text for the document. Since this is a simple
document, it precedes the specification of the document text.

:h0 This tag specifies a level zero heading. Heading tags define the structural divisions
of the document text, and are described in the section "Headings" on page 35.

:p This tag indicates the start of a paragraph. The sentences of the paragraph may start
on separate input lines; WATCOM Script/GML processes the text into a paragraph
for you. It is a common practice to start sentences on separate input lines to make it
easier to modify the text in future revisions of the document.

With most of the examples in the tutorial, the layout of the resulting output shown in this book will be
slightly different from the tutorial output you will see. This difference results from the use of a modified
version of the default layout for the examples in this book.

2.2 Processing the Examples

The simplest way to process the examples given in this tutorial is to use one of the command formats
shown below. The format of the command will depend on the system on which you are running the

6 Processing the Examples

Getting Started

WATCOM Script/GML processor. For a complete description of the WGML command and the
command line options, see "Running WATCOM Script/GML" on page 165.

Create the file EX1.GML with an editor, using the document text shown in Figure 1 on page 5. Note that
the source for these examples is supplied with the product distribution.

The WGML command is used to invoke the WATCOM Script/GML processor. The command line
option DEVICE selects the type of device for which the document is being processed.

IBM VM/CMS WGML EX1 (DEVICE TERM
DEC VAX/VMS WGML EX1/DEVICE=TERM
IBM PC/DOS WGML EX1 (DEVICE TERM

If you see an error message concerning invalid options or device/font member not found, there has
probably been an error in the installation of WATCOM Script/GML. Refer to the section of the
installation guide on setting up the device library for corrective action.

It is worthwhile attempting to create a simple document at this point. The document should consist of a
number of paragraphs. Include a sufficient amount of text so that more than one page of output is
generated. WATCOM Script/GML will automatically format the document into pages. With some
experimentation, it may also be noted that WATCOM Script/GML will not create a page in which only
the first line of a paragraph occurs at the bottom of the page. When this situation arises, the entire
paragraph is placed on the succeeding page. This is called widowing (widows are lonely items which
appear all by themselves; WATCOM Script/GML attempts to prevent widows as it formats documents).

Processing the Examples 7

Tutorial

8 Processing the Examples

3 WATCOM Script/GML Screen Displays

This chapter describes the screens presented by WATCOM Script/GML before and during the processing
of a document. These screen displays are presented when working on a IBM PC/DOS or compatible
computer system. You may omit reading this chapter if you are using WATCOM Script/GML on an IBM
VM/CMS or DEC VAX/VMS computer system.

The WATCOM Script/GML document processing system is composed of two programs. The WGML
program produces a formatted document for a specified output device. The screens displayed by this
program are discussed in the first section. The WGMLUI (WATCOM GML User Interface) program
provides a mechanism for working with your source document and selecting the options for the WGML
program. The screens displayed by WGMLUI are discussed in the second section.

You may choose to start either WGMLUI or the WGML program. It is suggested that you use WGMLUI
to process your documents until you have become familiar with the WGML options.

3.1 Processing Displays

A status screen is presented by WATCOM Script/GML while it is processing a document. Accumulated
statistics and information about the document section currently being processed is displayed.

Figure 3. WATCOM Script/GML Status Screen

To stop document processing before WGML has completed formatting:

Mouse:

Move the mouse pointer to the Escape area at the bottom left corner of the screen and click. An
error screen indicating that processing has been stopped will be displayed. Point to the Enter area
at the bottom right corner of the screen and click.

Processing Displays 9

Tutorial

Keyboard:

Press the Escape key. Alternatively, pressing the Ctrl and Break keys at the same time will stop
document processing. After pressing the key(s), an error screen will be displayed. Press the Enter

key to continue.

NOTE: WATCOM Script/GML can be used with or without a mouse pointer device. Throughout this
chapter both methods are illustrated using the style shown above. If you are using a mouse, read
the paragraph marked "Mouse:", otherwise, read the paragraph marked "Keyboard:".

3.1.1 Display Areas

The top third of the screen displays the status of the document being processed. Each information area is
updated to indicate the part of the document WATCOM Script/GML is processing.

The middle third of the screen displays document statistics. When processing is completed, this area will
show the statistics for the entire document. The message ’Text lines produced’ reflects the number of
lines in the formatted document which are not blank. The message ’Output records’ reflects the number
of records sent to the output device. With some devices, many formatted document lines may be sent to
the device in one output record.

The bottom third of the screen displays WATCOM Script/GML messages. These messages are warnings
about possible errors in the source document.

3.1.2 Error Screen

When an error is detected in the GML document, an error screen of the following form is displayed:

Figure 4. WATCOM Script/GML Error Screen

In this example the ending tag of a definition list is missing. WATCOM Script/GML shows where in the
document source the error occurs and at what point in the document the starting tag (:DL in this case) was
specified. After reading the message:

10 Processing Displays

WATCOM Script/GML Screen Displays

Mouse:

Move the mouse pointer to the Enter area at the bottom right corner of the screen and click.

Keyboard:

Press the Enter key.

3.2 WATCOM Script/GML User Interface Displays

The main document screen is displayed when WGMLUI is first started. There is one input area where
you may enter the name of the GML source document. In the following document screen, the file name
manual has been entered.

Figure 5. Main Document Screen

At this point you can process the document with the selected options.

Mouse:

Point to the highlighted area near the bottom of the screen labeled ’F7=Format and Print Document’
and click.

Keyboard:

Press the F7 key.

NOTE: The highlighted areas with labels such as ’F7=Format and Print Document’ are called hotspots.
The actions indicated by the hotpots can be activated by either selecting on the hotspot with a
mouse pointer, or by pressing the key indicated by the label. Further references to hotspots in
this document will be of the form ’select the Format and Print Document hotspot’.

The formatted document is directed to a specific output location. This may be a physical device such as
the printer or terminal screen, or a file on the disk. The device selected for this tutorial is the PostScript

WATCOM Script/GML User Interface Displays 11

Tutorial

printer, which directs the output to a file with the same name as the source document and a PS file type.
In the previous example, the disk file manual.ps would contain the formatted output.

Pressing the F7 key causes the document to be formatted. If there are no errors, the resulting document
file is printed. If the printing process seems to take a very long time, the most common reason is that a
printer is not connected to your computer. In most cases, an error will be reported after approximately
ninety seconds.

3.2.1 Obtaining Help

While you are learning WGMLUI, the most useful feature of the system will probably be the help facility.
Pressing the F1 key will give you help on the area of the screen which is currently selected. Pressing the
F1 key again will tell you how to use the help facility. After pressing the F1 key twice you will see the
following screen:

Figure 6. Help about the Help Facility

Press the Escape key to remove the help screen. Note that the bottom line on the screen contains an area
displaying a hint on how to proceed. The hint line is updated as you select different areas on the screen.

Help on the current area may also be obtained by selecting Help from the Control menu. The menu bar
appears on the top line of the screen. Each menu name can be ’pulled down’ to select from a number of
menu item choices.

Mouse:

Point to the Control menu and press the mouse button. Drag the mouse to the Help item and release
the button. Pressing the Escape key will return you to the document screen.

Keyboard:

While pressing the Alt key, pressing the C key will pull down the Control menu. Use the cursor
keys to select the Help item and press EnterPressing the Escape key will return you to the
document screen.

While pressing the Alt key, pressing the highlighted letter of a menu name will pull down that
menu.

12 WATCOM Script/GML User Interface Displays

WATCOM Script/GML Screen Displays

3.2.2 Control Menu

All of the screens displayed by WGMLUI have Control as the first menu on the menu bar. The Help
menu item was described in the previous section.

Figure 7. Control menu

Selecting the DOS services menu item will place you in the DOS environment. Enter the exit
command to return from DOS. The Configure menu item is selected when you wish to change some of
the default values used by the WGMLUI program, and is discussed in more detail in a later section (see
"Changing the Configuration" on page 22). The About... menu item displays some information about the
WGMLUI program. Selecting Quit is the same as pressing the Escape key, except while in the main
document screen. Selecting Quit in the main screen will exit the WGMLUI program.

3.2.3 Selecting/Editing a Document

Selecting the Select a different document menu item from the Document menu will display on the screen a
file browser for GML source files.

Figure 8. Select Document file browser

The file browser presents you with an area at the top of the browser where you may enter a new name.
The available files are shown in a list, with the file extension of ’gml’ being used to selectively display
the files in the directory. If your files have an extension other than ’gml’, you may edit the file pattern to

WATCOM Script/GML User Interface Displays 13

Tutorial

specify a different pattern (such as *.doc) by pressing the F3 key. You may also choose a new file from
the list displayed on the screen.

Mouse:

Move the mouse pointer to the appropriate file name and click. If there are more source files than
can be displayed at one time, click on the bar along the right side of the browser screen to view the
other files.

Keyboard:

Use the Tab and cursor keys to select the appropriate file name. The file name area at the top of the
browser will be updated to show the currently selected file. The cursor down (↓) and cursor up (↑)
keys may be used to view files beyond the browser window.

After entering or selecting the appropriate file name, press Enter to place the name in the document file
name area.

Selecting the Edit Document hotspot will also bring up the file browser. The name area of the browser
will contain the name of the last edit file (or the main document name if you are using the edit function
for the first time). Pressing Enter after selecting a file name will edit the file. If you are using the
WATCOM Editor, entering exit will save the file and return you to WATCOM Script/GML.

A number of different select operations will use the file browser to obtain a file name. Selecting a file is
performed in the same way for each case.

3.2.4 Printing a Document

An output file is usually created as the document is processed. By selecting the Print a document file
menu item from the Control menu, the document may be reprinted at a later time.

Figure 9. Print a Document

The name area of the browser will contain the name of the output file for the currently selected document.
Your may enter or select from the browser file list another name for printing. Pressing the Enter key will
copy the file to the printer.

14 WATCOM Script/GML User Interface Displays

WATCOM Script/GML Screen Displays

NOTE: Some network systems require a separate command to actually send the file to the printer. You
must issue this command yourself by selecting DOS Services from the Control menu. This will
place you in DOS where you can issue the command. Entering the exit command will return
you to WATCOM Script/GML. See "Changing the Configuration" on page 22 for information
on configuring the print action.

3.2.5 Changing the Options

Selecting the Edit current options menu item from the Options menu will display the option screen.
Options determine how the WGML processor will format the document, select different methods for
displaying processing information, select device and font information, and define symbols before
processing begins. See "Running WATCOM Script/GML" on page 165 for a detailed description of the
options and their usage.

Figure 10. Option Screen

The current area on the screen is for entering the name of a layout file. Pressing F3 will invoke the file
browser for selecting the layout name. Some of the other areas on the screen are check boxes and radio
buttons. Check boxes have an indicator at the left side to show if the option is ON or OFF. Radio buttons
are similar to check boxes, but appear in groups. Only one of the buttons may be ON at any one time.

Mouse:

Move the mouse pointer to the LETTER button in the Format group and click.

Keyboard:

Press the Tab key twice. You will be positioned in the Format group at the LETTER button. Press
the ↓ key.

This will select letter tag processing for your document.

WATCOM Script/GML User Interface Displays 15

Tutorial

Mouse:

Move the mouse pointer to the Line mode check box in the Screen group and click.

Keyboard:

Press the Tab key. You will be positioned in the Screen group at the Line mode check box. Press
the space bar.

This will select the line mode for displaying information. Each message from the WGML processor is
displayed individually on the standard DOS screen.

After these changes, your screen should appear as follows:

Figure 11. Option Changes

Pressing the Enter key will accept the changes and return you to the main document screen. Pressing the
Escape key will return you to the document screen without the changes.

3.2.6 Selecting Device Information

WATCOM Script/GML must produce the output for a specific device when a document is formatted.
Associated with a device is a default output file and a set of fonts. The default output file is either a
device (such as lpt1), a full file name, or a file pattern (such as *.ps) which specifies how to create the
output file name from the document name. The set of fonts define the character sets and their attributes
used to produce the text in the document. The fonts numbered zero through three are used by the GML
tags :HP0 through :HP3. Font numbers greater than three may be referenced in the layout or by the :SF
GML tag.

NOTE: The device and font lists shown in the following examples may not be the same as the lists shown
on your screen. As part of the WATCOM Script/GML product installation, the devices and fonts
available at your site are selected. Although the PostScript fonts are used in the following
examples to illustrate font selection, the operations performed are the same for any device.

From the option screen, select the Device Information hotspot.

16 WATCOM Script/GML User Interface Displays

WATCOM Script/GML Screen Displays

Figure 12. Device Screen

The first two areas specify the device name and default output file. The rest of the screen specifies the
fonts to be used in the document.

NOTE: The previous screen has no fonts specified in the font area. The fonts numbered zero through
three are always defined by the device. If one or all of these fonts are not specified, the device
defaults are implied.

Press the Tab key and enter doc.ps. The output file name will now be ’doc.ps’ for all document files
processed. Select Load device defaults from the Device-Options menu.

Figure 13. Default device information

The value of the output file area will be returned to the default value. The font area is also filled in with
the default fonts for the device. Selecting this menu item will delete any existing font definitions and
reset the font area to the defaults.

3.2.6.1 Selecting a New Device

You may enter a new device name in the device area or select the Device List hotspot. If you select the
device list function, a device browser will display a list of available devices.

WATCOM Script/GML User Interface Displays 17

Tutorial

Figure 14. Device browser

Mouse:

Move the mouse pointer to the line with ’hplaserplus’ and click.

Keyboard:

Press the ↓ key eight times and press the Enter key.

The device name HPLASERPLUS will be placed in the device area. You are also asked if you want to
set the device defaults. In most cases you will press Enter to reset the defaults.

Figure 15. Selecting a new device

3.2.6.2 Select Device Fonts

Delete the name ’hplaserplus’ from the device area, enter the device name ps, and press the Enter key.
Press Enter when asked about loading the defaults. The default fonts for the device will be loaded into
the font display area.

18 WATCOM Script/GML User Interface Displays

WATCOM Script/GML Screen Displays

Mouse:

Move the mouse pointer to the number area with a value of ’1’ and click. Select the Font List
hotspot.

Keyboard:

Press the Tab three times followed by the ↓ key. Select the Font List hotspot.

Figure 16. Available fonts

The fonts available for the current device are displayed in a font browser.

Mouse:

Move the mouse pointer to the line with ’helvetica’ and click.

Keyboard:

Press the ↓ key twelve times and press Enter

The ’helvetica’ font will be placed in the font name area, overwriting the previous font name.

Move to the last font line and select the Insert hotspot. A new font line area will be created on the screen.
Enter the number four (4) and press the Tab key. Use the font list function to select a font name for the
new area. Press the Tab and enter uline. This will select the underlining attribute for the font. The value
plain is usually used when a device has enough variations in the available font style (for example,
selecting an italic font instead of underlining a roman font).

The next two columns specify the font space and height values. These values are numbers with up to two
decimal places, and represent point values. A point is a unit of measurement used in typography.
WATCOM Script/GML sets 72 points per inch.

The font space defines the amount of space between lines of text which are in the font. If no space was
specified, the lines of text would be too close together. Small fonts (1 to 8 points) may require a one

WATCOM Script/GML User Interface Displays 19

Tutorial

point space. Medium fonts (9 to 13 points) may require a two point space. Larger fonts may require
three or more points of line space. The amount of line space is adjustable to meet individual
requirements. Although this value can be entered for all devices, it is usually applicable to imaging
printers such as a laser printer. Line or matrix printers usually have a built in line space value.

The font height defines the height of the font characters. This value may only be specified with scaleable
fonts. Scaleable fonts are those for which you select a font name and specify its height. Non-scaleable
fonts have a built in height value which cannot be adjusted. For example, all of the LaserJet device fonts
are non-scaleable.

Enter the numbers two and eleven in the space and height columns. The screen should appear as follows:

Figure 17. Define a new font

Positioning to a font line and selecting the Delete hotspot will delete a font from the list. Pressing Enter

will accept the device and font changes and return you to the options screen. Pressing Escape will return
you to the options screen without the changes.

3.2.7 Selecting Symbol Information

Symbols may be used in the GML source document to ensure a text fragment is specified the same way in
different places. For example,

:SET symbol=’product’ value=’WATCOM Script/GML’.

will result in the text WATCOM Script/GML being placed in the document wherever &product.
is specified (the period is necessary when specifying a symbol name in the document). The symbol
screen is used to define symbol values before processing the document. These values may then be
changed without editing the GML source.

From the options screen, select the Symbol Definitions hotspot. The symbol screen is organized in a
similar manner as the device screen discussed previously. Select the Insert Symbol hotspot. Enter the
text product and press the Tab key. Enter the text WATCOM Script/GML. The screen should
appear as follows:

20 WATCOM Script/GML User Interface Displays

WATCOM Script/GML Screen Displays

Figure 18. Define a symbol value

The symbol name product will now have the value WATCOM Script/GML if used in the source
document.

WATCOM Script/GML has a form letter capability. When a values file containing a list of names and
addresses is specified, WATCOM Script/GML will produce one document for each record in the file
(although this capability is usually used for producing form letters, it may be used with regular documents
as well). The individual values in each record are assigned to pre-defined symbol names (&value1.,
through to &valuen.). (See "MAILmerge" on page 172 for more information.)

Press the Tab twice and enter the text customer. The screen should appear as follows:

Figure 19. Define a mail merge file

3.2.8 Saving Options

After modifying the options and selecting device and symbol information, the document may be
processed. However, performing this procedure every time you wish to process the document would be
tedious, and likely result in a mistake. Saving the options for future use will allow you to reset all of the
options easily.

If you are still in the symbol definitions screen, press Enter twice to return to the main document screen.
Select Save current options from the Options menu. The name of the current option file is displayed in

WATCOM Script/GML User Interface Displays 21

Tutorial

the file name area of a browser screen. Enter the name formletr.opt. The screen should appear as
follows:

Figure 20. Save the current options

Pressing Enter will save the options into the specified file.

3.2.8.1 Selecting New Options

Selecting Select a new set of options from the Options menu will present an options file browser. You
may select an existing option file to reset the current options.

3.2.8.2 Default Options

When WATCOM Script/GML starts (both WGMLUI and WGML), the special option file
default.opt is searched for on the disk. If found, it is loaded before any other options are
processed. The default option file may contain small option adjustments from which other option files are
based, or contain major changes as demonstrated by the options entered through this tutorial. Placing a
default.opt file in directories containing similar documents can remove the need to load different
option files for different situations. Select Make current options the default from the Options menu to
make the current options your default.

If you have different option files for different documents in one directory, you can load an option file and
make it your default when you are going to work on a document over a period of time.

3.2.9 Changing the Configuration

Selecting Configure from the Control menu presents a dialogue on the screen for changing the defaults
used by the WGMLUI program.

22 WATCOM Script/GML User Interface Displays

WATCOM Script/GML Screen Displays

Figure 21. Configuration Screen

When you have finished making the configuration changes, pressing the Enter key will finish the
dialogue. The configuration changes will not be saved when you leave the WGMLUI program. If you
wish to make the changes permanent, leave the dialogue by pressing the F2 key instead.

When options are saved to a file, the first check box in the dialogue specifies if the full document and
option file names are to be displayed. If the files are not found in the current directory, the WGMLUI
program will redisplay these names with the full path name when this check box is selected.

The second check box will cause the name of the output document file to be displayed on the main
document screen. The third check box reduces the number of hotspots on the main document screen. All
functions are still available from the menu bar. The fourth check box specifies if the document file name
is saved with the options. The fifth check box specifies the method for printing files when more than one
copy is requested. If copy iteration is not selected, a print processor program must be specified. The
name of the print file, printer port, and the number of copies required are passed as command line
parameters to the program. If copy iteration is selected, the print file is processed the number of times
specified by the print copies configuration value.

The three processor fields specify programs (or batch files) to run when the Format, Edit File or Print
actions are selected. When a print processor is not specified, a copy is performed by the WGMLUI
program. The printer name field specifies the device or file name of the printer.

WATCOM Script/GML User Interface Displays 23

Tutorial

24 WATCOM Script/GML User Interface Displays

4 Document Elements

4.1 Examples

Text is often included in situations where it is desired that the separate lines in the input are not processed
together as they are in a paragraph. One entity for which text is processed like this is called an example

in the GML language. Consider the following:

:GDOC.
:BODY.
:H0.Simple Example
:P.
This is a paragraph which precedes
an example.
Note how WATCOM Script/GML processes the
text in the paragraph.
:XMP.
Lines in an example are
not processed like in a paragraph.

===
:eXMP.
:P.
This text follows the
example and has its words processed in
the same way as the preceding paragraph.
:eGDOC.

Figure 22. Simple XMP example

The example text which is to be placed in the output is found between the :xmp and :exmp tags.

The document, when processed, may appear as follows:

Simple Example

This is a paragraph which precedes an
example. Note how WATCOM Script/GML
processes the text in the paragraph.

Lines in an example are
not processed like in a paragraph.

===

This text follows the example and has
its words processed in the same way as
the preceding paragraph.

Figure 23. : Output of Figure 22

Examples 25

Tutorial

The lines in the example entity have not been processed in the same way as in a paragraph. The layout
with which the document is formatted determines aspects such as the indentation and the number of lines
skipped before and after the example.

The following tags have been introduced in this section:

:xmp This tags marks the start of an example. Text in an example is not processed in the
same way as in a paragraph. With the layout used for this document, the document
source lines of a paragraph are processed together and justified. The source lines of
an example are not processed together and are not justified.

:exmp This tag marks the end of an example.

Examples always appear in a single column on a page. When there is insufficient room on a page to
contain an example, it is placed at the start of the next page.

Once the material in this section is understood, WATCOM Script/GML may be used to format most
documents. The remaining features of the language may be viewed as ease-of-use features: the other
entities are used to identify specific types of document elements more precisely.

4.2 Notes and Paragraph Continuation

There are other GML entities which process words and input lines in a way that is similar to paragraphs.
This section introduces two other entities: paragraph continuation (:pc) and note (:note).

Paragraph continuation is used when you wish to continue a paragraph which has been interrupted by
another GML entity. If the text following the example introduced in the preceding section is a
continuation of the paragraph before the example, then the GML source should be altered as follows:

:GDOC.
:BODY.
:H0.Simple Example
:P.This is a paragraph which precedes
an example.
Note that words in the paragraph are
processed together.
:XMP.
Lines in an example are
not processed together.
===
:eXMP.
:PC.This text follows the
example and has its input lines processed in
much the same way as a paragraph.
:eGDOC.

Figure 24. Illustration of Paragraph Continuation

Note that the :pc tag has been used instead of the :p tag in the text following the example document
element.

The document, when processed, may appear as follows:

26 Notes and Paragraph Continuation

Document Elements

Simple Example

This is a paragraph which precedes an
example. Note that words in the
paragraph are processed together.

Lines in an example are
not processed together.
===

This text follows the example and has
its input lines processed in much the
same way as a paragraph.

Figure 25. : Output of Figure 24

With the layout used for this tutorial, the first line of the text following the example is not indented,
causing it to appear as if it were a continuation of the paragraph which precedes the example.

It is tempting to use the :p and :pc tags interchangeably when it is known that they are processed in an
indistinguishable fashion with a given layout. This practice is to be discouraged since it may prevent a
document from being formatted properly should the layout be changed.

The paragraph and paragraph continuation tags process input lines together. When the end of an input
line is reached, the input text on the next input line is considered to be the start of a new word.

Another GML entity which processes input lines together is a note. Consider the following GML
specification:

:GDOC.
:BODY.
:H0.Simple Note
:NOTE.This is a sample note.
The text within it is processed together.
The words "NOTE: " (or something
similar) precede the text which is
indented.
:eGDOC.

Figure 26. Illustration of the Note Entity

The document, when processed, may appear as follows:

Simple Note

NOTE: This is a sample note. The text
within it is processed together.
The words "NOTE: " (or something
similar) precede the text which is
indented.

Figure 27. : Output of Figure 26

The :note tag is used for a block of text that is to be specially noted.

The following tags have been introduced in this section:

Notes and Paragraph Continuation 27

Tutorial

:pc The tag for paragraph continuation is used to indicate the continuation of a
paragraph interrupted by another GML entity.

:note This tag is used for a paragraph which is to be specially noted. The text "Note: " is
generated by WATCOM Script/GML.

A number of tags are said to be followed by paragraph elements. Paragraph elements are certain GML
tags and words of text. The words of text are processed together according to the style dictated by the
layout with which the document is being formatted. The :p, :pc and :note tags are all assumed to be
followed by paragraph elements.

4.3 Lists

Documents often contain lists. With GML, there are a number of entities that may be used to specify
these lists. The entity used depends upon the general type of list. Four of the list types which can be
specified in GML are:

Simple Items in the list are not annotated. A simple list, such as a list of recipe ingredients,
do not usually have a particular order.

Unordered List order is not important. Each item is emphasized by an annotation symbol such
as a bullet or asterisk.

Ordered The list items are annotated by a sequence of numbers. The style of the numbers,
such as Roman numerals or Arabic, is determined by the layout.

Definition Each item in the list is annotated by a term that is specified in the GML source. The
definitions that you are reading were entered using a definition list.

The content of a list item may be started with a paragraph element. If you do not specify a tag at the
beginning of a list item, the text for the list item will be processed together in the same way as with
paragraphs. The following subsections illustrate each of these list types.

4.3.1 Simple Lists

Simple lists consist of list items which are displayed in the order entered in the GML source file. The list
item is not annotated.

:GDOC.
:BODY.
:H0.Illustration of Simple List
:SL.
:LI.This is the first list item.
:LI.This is the second list item.
:LI.This is the last list item.
It is a very long item, in order to
illustrate how text is processed
together.
:eSL.
:eGDOC.

Figure 28. Simple List

The document, when processed, may appear as follows:

28 Lists

Document Elements

Illustration of Simple List

This is the first list item.

This is the second list item.

This is the last list item. It is a
very long item, in order to
illustrate how text is processed
together.

Figure 29. : Output of Figure 28

The three list items are presented in blocks separated by a blank line. The blocks are indented from the
document text, before and after the list, in a layout-dependent fashion to emphasize that they are list
items.

The following tags have been introduced:

:sl This tag signifies the start of a simple list.

:li This tag identifies a list item. The text for the list item may be given as a paragraph
element.

:esl This tag signifies the end of a simple list.

4.3.2 Unordered Lists

Unordered lists consist of list items which are displayed in the order given in the GML source. Each item
is annotated with some layout-dependent text such as a bullet or asterisk. The presence of the annotation
text in the resulting document provides an extra emphasis to each list item.

:GDOC.
:BODY.
:H0.Illustration of Unordered List
:UL.
:LI.This is the first list item.
:LI.This is the second list item
in the unordered list.
:P.This is a paragraph
in the second list item.
:LI.This is the last list item.
It is a very long item, in order to
illustrate how text is processed
together.
:eUL.
:eGDOC.

Figure 30. Unordered List

The document, when processed, may appear as follows:

Lists 29

Tutorial

Illustration of Unordered List

* This is the first list item.

* This is the second list item in the
unordered list.

This is a paragraph in the second
list item.

* This is the last list item. It is a
very long item, in order to
illustrate how text is processed
together.

Figure 31. : Output of Figure 30

Each list item is preceded by the annotation symbol. The second item consists of two paragraphs. The
text of the list items has been indented in a layout-dependent fashion.

The following tags have been discussed:

:ul This tag signifies the start of an unordered list.

:li This tag identifies a list item. The text for the list item may be given as a paragraph
element.

:eul This tag signifies the end of an unordered list.

4.3.3 Ordered Lists

Ordered lists consist of list items which are displayed in the order given in the GML source. Each item is
annotated in a sequence. The annotation distinguishes each list item and is often used to itemize steps in a
procedure.

:GDOC.
:BODY.
:H0.Illustration of Ordered List
:OL.
:LI.This is the first list item.
:LI.This is the second list item
in the ordered list.
:P.This is a paragraph
in the second list item.
:LI.This is the last list item.
It is a very long item, in order to
illustrate how text is processed
together.
:eOL.
:eGDOC.

Figure 32. Ordered List

The document, when processed, may appear as follows:

30 Lists

Document Elements

Illustration of Ordered List

1. This is the first list item.

2. This is the second list item in the
ordered list.

This is a paragraph in the second
list item.

3. This is the last list item. It is a
very long item, in order to
illustrate how text is processed
together.

Figure 33. : Output of Figure 32

The three list items are each preceded by a list item number. The second item consists of two paragraphs.
The text of the list items has been indented in a layout-dependent fashion.

The following tags have been discussed:

:ol This tag signifies the start of an ordered list.

:li This tag identifies a list item. The text for the list item may be given as a paragraph
element.

:eol This tag signifies the end of an ordered list.

4.3.4 Definition Lists

Definition lists are similar to the other lists, except that the annotation text which is to precede a list item
is supplied by a :dt (Definition Term) tag. The contents of the list item follows a :dd (Definition
Description) tag. List items may contain a number of paragraphs.

:GDOC.
:BODY.
:H0.Illustration of Definition List
:DL.
:DT.Term-1
:DD.This is the first list item.
:DT.Term-2
:DD.This is the second list item
in the definition list.
:P.This is the second paragraph
of the second list item.
:DT.Last Term
:DD.This is the last list item.
It is a very long item, in order to
illustrate how text is processed
together.
:eDL.
:eGDOC.

Figure 34. Definition List

The document, when processed, may appear as follows:

Lists 31

Tutorial

Illustration of Definition List

Term-1 This is the first list item.

Term-2 This is the second list item
in the definition list.

This is the second
paragraph of the second list
item.

Last Term This is the last list item.
It is a very long item, in
order to illustrate how text
is processed together.

Figure 35. : Output of Figure 34

The three list items are each preceded by the term given in the :dt tag. The second item consists of two
paragraphs. The text of the list items has been indented in a layout-dependent fashion.

The following tags have been discussed:

:dl This tag signifies the start of a definition list.

:dt This tag specifies the term to precede the text for the list item. The text of the
definition term is given as a text line.

:dd This tag identifies the start of the text for a list item. The text for the list item may
be given as a paragraph element.

:edl This tag signifies the end of a definition list.

4.3.5 Nesting lists

A list can appear as part of a list item. The "inner" list is said to be nested inside the outer list. This is
illustrated by the following:

:GDOC.
:BODY.
:H0.Illustration of Nested Lists.
:OL.
:LI.Outer level -- item(1)
:LI.Outer level -- item(2)
:OL.
:LI.Inner level -- item(1)
:LI.Inner level -- item(2)
:eOL.
:LI.Outer level -- item(3)
:LI.Outer level -- item(4)
:eOL.
:eGDOC.

Figure 36. Illustration of Nested List

The document, when processed, may appear as follows:

32 Lists

Document Elements

Illustration of Nested Lists.

1. Outer level -- item(1)

2. Outer level -- item(2)

i) Inner level -- item(1)

ii) Inner level -- item(2)

3. Outer level -- item(3)

4. Outer level -- item(4)

Figure 37. : Output of Figure 36

Note that an ordered list is nested inside the second item of the outside ordered list. All list types may be
nested as part of another list item. The nesting can take place to arbitrary depth, although excessive
nesting will tend to make the document hard to read.

4.3.6 List Parts

A list part is a special entity which may be included to temporarily suspend a list. This entity is used to
provide an explanation for the list items which follow. The list part entity causes the indentation to be
reset to the value at the start of the current list. A paragraph element is then formatted at this indentation
until the next list item is encountered with a :li or :dt tag. Consider the following example:

:GDOC.
:BODY.
:H0.Illustration of List Part
:OL.
:LI.This is item(1).
:LI.This is item(2).
:LP.This is the list part.
Note that it contains paragraph elements
with the input lines processed together.
:P.This is the second paragraph of the
list part.
:LI.This is item(3).
:LI.This is item(4).
:eOL.
:eGDOC.

Figure 38. Illustration List Part

The document, when processed, may appear as follows:

Lists 33

Tutorial

Illustration of List Part

1. This is item(1).

2. This is item(2).

This is the list part. Note that it
contains paragraph elements with the
input lines processed together.

This is the second paragraph of the
list part.

3. This is item(3).

4. This is item(4).

Figure 39. : Output of Figure 38

The list part in the example consists of two paragraphs. The annotation of the list items is continued
following the list part. List parts may be used with any of the list types.

34 Lists

5 Document Structure

To this point in the tutorial, the general structure of a document has been simplified as summarized in the
following figure.

:GDOC.
:BODY.

. . . body of document
:eGDOC.

Figure 40. Simplified Document Structure

The complete structure of a document may be summarized as follows.

:GDOC.
:FRONTM.

. . . front material
:BODY.

. . . main body of document
:APPENDIX.

. . . appendices
:BACKM.

. . . back material
:eGDOC.

Figure 41. Overall Structure of Document

As illustrated in Figure 41, there are four major segments with the following contents:

Front Material This segment contains entities such as the title page, abstract, preface, table of
contents and list of figures.

Body This segment contains the main text for the document.

Appendix This segment contains the appendices for the document.

Back Material This segment contains any ending text which follows the appendices, such as the
index.

Each of the four segments is optional. The complexity of a document determines which segments will be
used.

5.1 Headings

The GML language considers a document to be composed of major sections with further levels of
subdivision. GML has seven levels of document division. These divisions are indicated with the heading
tags(:h0, :h1, ..., :h6).

The following restrictions apply to the use of headings:

Headings 35

Tutorial

abstract :h0 and :h1 tags may not be used.

preface :h0 and :h1 tags may not be used.

body All heading tags may be used.

appendix :h0 tags may not be used.

back material :h0 tags may not be used.

Consider the following example:

:GDOC.
:BODY.
:H0.Arithmetic Primer
:H1.Addition
:H2.Adding two digits
:H2.Adding multiple digits

:H1.Subtraction
:H2.Subtracting two digits
:H3.Positive Results
:H3.Negative Results

:H2.Subtracting multiple digits
:H3.Borrowing not required
:H3.Borrowing required
:H4.Positive Results
:H4.Negative Results

:H0.Arithmetic Reference
:H1.Numbers
:H1.Addition
:H1.Subtraction

:eGDOC.

Figure 42. Sample Headings

The preceding example shows the structure of a fictitious document. One or more document elements
could have been specified following any of the :h0, :h1, :h2 :h3 or :h4 tags. A common convention is to
have the heading tags represent the following entities:

:h0 major parts of a document

:h1 chapters or appendices

:h2 sections

:hn (n<7) subsections of sections defined with :h(n-1) tags.

With an appropriate layout, the following table of contents would be produced by the example:

36 Headings

Document Structure

Arithmetic Primer

1 Addition

1.1 Adding two digits
1.2 Adding multiple digits

2 Subtraction

2.1 Subtracting two digits
2.1.1 Positive Results
2.1.2 Negative Results

2.2 Subtracting multiple digits
2.2.1 Borrowing not required
2.2.2 Borrowing required

2.2.2.1 Positive Results
2.2.2.2 Negative Results

Arithmetic Reference

1 Numbers

2 Addition

3 Subtraction

Figure 43. Sample Table of Contents

Each heading level can be formatted in a different way. The level zero headings have not been numbered,
while the heading levels one through four have been numbered as directed by the layout.

The layout with which the document is formatted determines the format of headings. Some of the
formatting actions determined by the layout are the number of lines skipped before a heading is displayed
and whether the heading at a particular level is to be included in the table of contents. The GML tag used
to obtain a table of contents will be discussed later in the tutorial.

The heading tags are immediately followed by the words which make up the heading. This heading text
is called a text line in the reference section of this manual. When a text line is presumed to follow a tag,
the text is usually given on the same line, immediately following the period(.) after the tag. The
paragraph tag, :p, introduced earlier in the tutorial does not have a text line associated with it; the text
which follows the tag is used to form a paragraph, and may be given on any number of lines.

5.2 Front Material

The front material starts with the :frontm tag and may contain up to five entities: title page (:titlep),
abstract (:abstract), preface (:preface), table of contents (:toc) and list of figures (:figlist). The
particular entities to be included will depend upon the requirements of a document. When none of the
five entities are necessary, the entire front material segment may be omitted from the document. The
following subsections discuss each of the entities in the front material.

5.2.1 Title Page

A title page specification begins with a :titlep tag and concludes with an :etitlep tag. Between these two
tags the document title (:title), the document number (:docnum), the date of publication (:date) and the
author(s) (:author) with their address(es) (:address) may be specified. These tags may be given in any
order; the :author, :title and :address tags may be specified a number of times. The layout with which a
document is formatted establishes the style used to prepare the title page.

Front Material 37

Tutorial

A title page is illustrated in the following example:

:GDOC.
:FRONTM.

:TITLEP.
:TITLE.My Summer Vacation
:DOCNUM.765
:DATE.September 25, 1985
:AUTHOR.J.W.Welch
:AUTHOR.B.J.Welch
:ADDRESS.

:ALINE.University of Waterloo
:ALINE.Waterloo, Ontario, Canada

:eADDRESS.
:eTITLEP.

:eGDOC.

Figure 44. Sample Title Page

The document, when processed, may appear as follows:

My Summer Vacation

Document Number 765

September 25, 1985

J.W.Welch

B.J.Welch

University of Waterloo

Waterloo, Ontario, Canada

Figure 45. : Output of Figure 44

The following tags have been introduced in this section:

:titlep This tag indicates the start of the title page specification.

:etitlep This tag indicates the end of the title page specification.

:title This tag is used to give the title of the document, and may be specified more than
once for mulitiple title lines.

:docnum This tag is used to specify the document number.

:date This tag is used to specify the date printed on the document. The date on which the
document is processed is used when date text is not specified with the date tag.

38 Front Material

Document Structure

:author This tag may be used to specify the name of an author. It may be specified a
number of times in the title page.

:address This tag is used to specify the start of an address entity. The entity consists of a
number of address lines given by :aline tags.

:eaddress This tag is used to indicate the end of an address entity.

:aline This tag specifies an address line in an address entity, and may be specified more
than once.

5.2.2 Abstract

An abstract may be specified following the :abstract tag. Heading tags (except :h0 and :h1) may be used
within the abstract. The abstract section is implicitly terminated by the next major document section.

5.2.3 Preface

A preface may be specified following the :preface tag. Heading tags (except :h0 and :h1) may be used
within the preface. The preface section is implicitly terminated by the next major document section.

5.2.4 Table of Contents

The inclusion of the :toc tag causes the table of contents to be printed. The GML source files of some
documents are processed more than once before they are actually printed. In this case, the table of
contents is placed in the front material of the document. When the source files of the GML document are
processed only once, the table of contents cannot be placed in the front material. For a one pass
document where a table of contents is requested, WATCOM Script/GML will create the table of contents
at the end of the document. Documents are processed more than once when WATCOM Script/GML is
instructed to use a number of passes (see "PASSes" on page 174).

5.2.5 List of Figures

The :figlist tag causes a list of figures to be created. The figure list is processed in the same way as the
table of contents when dealing with single versus multiple pass documents.

5.3 Body

Most documents will contain a main body, which starts after the :body tag. The complexity of the
document determines how many levels of headings should be used.

A simple document may contain very few headings. A major document, such as this book, may contain
major parts and numerous subsections.

5.4 Appendices

The appendix segment of a document occurs following the :appendix tag. The appendix segment is very
similar to the body segment, except that :h0 tags may not be specified. The usual convention is to use

Appendices 39

Tutorial

:h1 tags to name the appendices and to use higher-numbered heading tags for the sections and subsections
within an appendix.

5.5 Back Material

The back material consists of a text portion followed by the index, and is started with the :backm tag.
The text and index are both optional.

The text portion is intended for the specification of any closing comments (such as an epilogue) which
pertains to a document. The text area is similar to that of the body, except that :h0 tags may not be
specified.

The :index tag causes an index to be printed as part of the back material. The index command line option
must be specified for the index to be created (see "INDex/NOINDex" on page 171).

5.6 Large Documents

It is often convenient when preparing large documents to use more than one GML source file. For
example, each chapter in a book may be a separate GML file. The entire book is prepared by causing
WATCOM Script/GML to process a primary input file containing :include tags which cause the
individual chapters to be included into the document.

:GDOC.
:BODY.
:INCLUDE file=’chap1’.
:INCLUDE file=’chap2’.
:INCLUDE file=’chap3’.

:APPENDIX.
:INCLUDE file=’app1’.
:INCLUDE file=’app2’.

:eGDOC.

Figure 46. Illustration of :include Tag

The preceding figure illustrates one such organization for a book. The :include tag has been used to
include the text for three chapters and two appendices. Replacing each :include tag with the contents of
the referenced file would produce the same document.

The :include tag causes WATCOM Script/GML to process the associated file at the place the tag occurs.
An included file may itself cause other files to be included. This capability allows the author to organize
the document into separate data files. Using a number of files is important in complex documents since a
number of small files is usually easier to maintain than would be the case if the entire document were
specified as a single large file.

When a document is organized into small files, a subset of the input files may be included into a
"skeleton" file containing the major tags (such as :gdoc., :body and :egdoc). The subset of input files
may then be processed independently from the rest of the document as it is being written and revised.
This capability is useful for a number of reasons:

1. WATCOM Script/GML will format a small document in less time than would be required for a
large document.

2. Several authors may work simultaneously on independent parts of a document.

40 Large Documents

Document Structure

3. WATCOM Script/GML runs on a number of different machines. A document can be prepared
on a micro-computer in sections, and then transferred to a mainframe computer for final
production of the document.

Consequently, most documents of a non-trivial nature are specified using a number of input files.

The :include tag is not a standard tag; it has been added to the tags accepted by WATCOM Script/GML
to provide the capability to include GML source files. Other GML processors may use alternative tags or
methods to include additional files.

Large Documents 41

Tutorial

42 Large Documents

6 Additional Document Elements

6.1 Highlighting Phrases

The GML language provides a mechanism to highlight phrases to emphasize fragments of text. Four
levels of highlighting may be specified:

Highlight level(0)
Highlight level(1)
Highlight level(2)

Highlight level(3)

The levels are illustrated in the preceding list. This list was created with the following GML input:

:SL.
:LI.:HP0.Highlight level(0):eHP0.
:LI.:HP1.Highlight level(1):eHP1.
:LI.:HP2.Highlight level(2):eHP2.
:LI.:HP3.Highlight level(3):eHP3.
:eSL.

Figure 47. Illustration of Highlight tags

The highlighting is started with a :hpn (n = 0, 1, 2, 3) tag and terminated with a corresponding :ehpn tag.
The formatted result of a particular highlighting tag is determined when the document is processed. The
type of output device for which the document is being prepared and the character sets being used are
important factors in determining the formatted result. In the preceding simple list, the formatted result is
a mixture of the different character sets which are used to produce this manual. After the GML source
has been entered, the selection of the output device or character sets can be changed until the formatted
output is produced as desired.

Most text, such as the text which composes a paragraph, is at highlighting level zero. Some document
elements, such as an example, may have a layout-determined highlighting level different from that of the
basic text of the document. The :hp0 tag is therefore a means of ensuring that the highlighting level of
zero is used. The other main use of the :hp0 tag is to obtain the highlighting level of zero while in the
midst of other highlighting levels.

It should be noted that the highlight phrase tags may be used with a portion of a word. The GML
specification

:HP2.G:eHP2.eneralized

will cause the word "Generalized" to be output, with the first letter emphasized with the level two
highlighting.

Highlight tags may not occur with tags having text lines for which the GML layout determines the
highlighting. Examples of such tags include :title, :dt and the heading tags.

Highlighting Phrases 43

Tutorial

When a tag ends a sentence, make sure that you use two periods. The first period will be processed as
part of the tag. The second period will be treated as part of the text to be processed. If only one period is
specified, the period to end the sentence will not appear in the resulting document.

:GDOC.
:BODY.
:H0.Tag at the end of a Sentence
:P.
Care must be taken with a tag at
the end of a :HP0.sentence:eHP0..
Note that the previous sentence is
specified with two periods, but
only one is used as text.
:eGDOC.

Figure 48. Tag at the end of a Sentence

The document, when processed, may appear as follows:

Tag at the end of a Sentence

Care must be taken with a tag at the
end of a sentence. Note that the
previous sentence is specified with two
periods, but only one is used as text.

Figure 49. : Output of Figure 48

6.2 Citations

Citations are used to refer to titles of books. Although the highlighting tags could be used to emphasize
the title, the use of the citation entity means that WATCOM Script/GML can process the title in a
different manner than the regular highlighting tags. The following figure illustrates a citation:

:P.
The GML language is described in
:CIT.WATCOM Script/GML Tutorial
and Reference Manual:eCIT..

Figure 50. Illustration of a Citation

A citation starts with a :cit tag and is completed by an :ecit tag. For each :cit tag there must be a
corresponding :ecit tag. Note that there are two periods after the :ecit tag. The first period ends the tag.
The second period is text to end the sentence.

The same restrictions apply to citations as were given with highlighting; citations should not be given
where the GML layout determines the emphasis given to a phrase.

44 Citations

Additional Document Elements

6.3 Quotations

GML provides two types of quotations: short quotations (inline quotations) and long quotations (or
excerpts). Short quotations are used to quote a few phrases or sentences within a block of text; long
quotations are used to identify a block of text which is a quote.

The following example illustrates a short quotation:

:GDOC.
:BODY.
:H0.Short Quotation
:P.Wes has often said to us,
:Q.Never do a project within another project.:eQ.
:P.We have often replied,
:Q.We need the second project to accomplish the
first.
You wouldn’t want us to operate
:Q.in a technological vacuum:eQ.,
would you?:eQ.
:eGDOC.

Figure 51. Illustration of a Short Quotation

The document, when processed, may appear as follows:

Short Quotation

Wes has often said to us, "Never do a
project within another project."

We have often replied, "We need the
second project to accomplish the first.
You wouldn’t want us to operate ’in a
technological vacuum’, would you?"

Figure 52. : Output of Figure 51

Note that the first quoted phrase, enclosed by the :q and :eq tags, has been placed within quotation
characters. The second quoted phrase has another quoted phrase nested inside it. Note the nested phrase
is emphasized with apostrophe (’) characters. The use of short quotations is encouraged, where
applicable, for a number of reasons:

1. It encourages uniformity.

2. Different quotation styles may be used depending upon the layout used and the device which is
used to print the document.

A short quotation may be used whenever text is being processed.

The following example illustrates a long quotation:

Quotations 45

Tutorial

:GDOC.
:BODY.
:H0.Long Quotation
:P.This will serve as an example
of a long quotation.
Suppose the following came from a memo:
:LQ.
:P.Wes has often said to us,
:Q.Never do a project within another
project.:eQ.
:P.We have often replied,
:Q.We need the second project to
accomplish the first.
You wouldn’t want us to operate
:Q.in a technological vacuum:eQ.,
would you?:eQ.
:eLQ.
:PC.That sums it pretty well.
:eGDOC.

Figure 53. Illustration of a Long Quotation

The document, when processed, may appear as follows:

Long Quotation

This will serve as an example of a
long quotation. Suppose the following
came from a memo:

Wes has often said to us, "Never
do a project within another
project."

We have often replied, "We need
the second project to accomplish the
first. You wouldn’t want us to
operate ’in a technological vacuum’,
would you?"

That sums it pretty well.

Figure 54. : Output of Figure 53

It may be noted that the text of the preceding example, enclosed by the :lq and :elq tags, has been
indented according to the style of the layout used. A long quotation will cause the implicit end of a
paragraph entity.

6.4 Figures

Figures are used to create space for illustrated material to be placed in the document. If you enter text
within the figure, it is processed in the same manner as the input text in an example.

A figure is illustrated in the following example:

46 Figures

Additional Document Elements

:GDOC.
:BODY.
:H0.Simple Figure
:P.This is a paragraph which precedes
a figure.
Note that words in the paragraph are
processed together.
:FIG.
Lines in a figure are
not processed together.
===
:eFIG.
:P.This text follows the
figure and has its words processed
together.
:eGDOC.

Figure 55. Very Simple Figure

The document, when processed, may appear as follows:

Simple Figure

This is a paragraph which precedes a
figure. Note that words in the
paragraph are processed together.

Lines in a figure are
not processed together.
===

This text follows the figure and has
its words processed together.

Figure 56. : Output of Figure 55

The figure begins with the :fig tag and is completed by the :efig tag. The lines between these tags are not
processed together.

Most figures will have captions. The caption is supplied by the :figcap tag as illustrated in the following
example:

:GDOC.
:BODY.
:H0.Illustration of the Figure Caption
:P.This is a paragraph which precedes
a figure.
Note that words in the paragraph are
processed together.
:FIG.
Lines in a figure are
not processed together.
===
:FIGCAP.Illustration of Caption
:eFIG.
:P.This text follows the
figure and has its words processed
together.
:eGDOC.

Figure 57. Figure with Caption

Figures 47

Tutorial

The document, when processed, may appear as follows:

Illustration of the Figure Caption

This is a paragraph which precedes a
figure. Note that words in the
paragraph are processed together.

Lines in a figure are
not processed together.
===

Figure 1. Illustration of Caption

This text follows the figure and has
its words processed together.

Figure 58. : Output of Figure 57

Note that the caption is included in the figure and that WATCOM Script/GML automatically supplied a
number for the figure. When a figure list is created in the front material, the figure caption is used to
create a figure list entry.

A description of the figure may be included following the caption. This is illustrated as follows:

:GDOC.
:BODY.
:H0.Illustration of the Figure Description
:P.This is a paragraph which precedes
a figure.
Note that words in the paragraph are
processed together.
:FIG.
Lines in a figure are
not processed together.
===
:FIGCAP.Illustration of a Caption
:FIGDESC.This description illustrates
how a description may be associated
with the caption of a figure.
:eFIG.
:P.This text follows the
figure and has its words processed
together.
:eGDOC.

Figure 59. Illustration of a Description with Figure

The description, specified with the :figdesc tag, follows the caption.

48 Figures

Additional Document Elements

Illustration of the Figure Description

This is a paragraph which precedes a
figure. Note that words in the
paragraph are processed together.

Lines in a figure are
not processed together.
===

Figure 1. Illustration of a Caption:
This description illustrates
how a description may be
associated with the caption of
a figure.

This text follows the figure and has
its words processed together.

Figure 60. : Output of Figure 59

The text associated with the description is processed together following the caption. WATCOM
Script/GML automatically supplied a colon after the caption to separate it from the description.

6.5 Referencing

A reference is used to direct the reader to a specific place in the document for more information. During
the creation and revision of a document, the location of the referenced entity may shift, making it difficult
to correctly maintain such reference information as the page number. The GML reference tags automate
this function by creating the reference for you. This section will illustrate the use of simple referencing
with headings and figures.

When a GML entity is referenced, there must be a way to uniquely identify the entity being referenced.
This is done with the use of an attribute. Attributes modify the action of the tag or supply additional
information, such as an identifier name. All attributes are entered before the period which ends the tag.

The id attribute allows you to assign a unique identifier to an entity. The following example illustrates
the use of the id attribute:

:GDOC.
:BODY.
:H0 id=’firsth0’.Illustrate ID with a Heading
:FIG id=’myfig’.
This figure has
an ID attribute
:FIGCAP.
:eFIG.
:eGDOC.

Figure 61. Illustration of the ID Attribute

The text firsth0 is the value of the heading id attribute. This value is assigned to the heading, and must be
unique within the document. The text myfig is the identifier name for the figure. When a figure is
assigned an identifier, a figure caption must also be specified.

Referencing 49

Tutorial

A reference to a heading or figure can be made with the :hdref and :figref tags respectively. Both of
these tags may appear anywhere in your input text, and require the presence of the refid attribute. This
attribute is used to reference a particular entity. The following example illustrates the use of the two
referencing tags:

:GDOC.
:BODY.
:H0 id=’firsth0’.Illustrate ID with a Heading
:P.
In this section we deal with some
arbitrary topic.
:FIG id=’myfig’.
This figure has
an ID attribute
:FIGCAP.
:eFIG.
:H0.New Section
:P.
Now we are in a new part of the document.
At this point, we can say:
For more information,
see :HDREF refid=’firsth0’.
and :FIGREF refid=’myfig’..
The heading text will be inserted for the
heading reference, and the figure number
will be used with the figure reference.
:eGDOC.

Figure 62. Illustration of Referencing

The document, when processed, may appear as follows:

Illustrate ID with a Heading

In this section we deal with some
arbitrary topic.

This figure has
an ID attribute

Figure 1.

New Section

Now we are in a new part of the
document. At this point, we can say:
For more information, see "Illustrate ID
with a Heading" and Figure 1. The
heading text will be inserted for the
heading reference, and the figure number
will be used with the figure reference.

Figure 63. : Output of Figure 62

The attribute value for the refid attribute is the identifier name of the entity we wish to reference. Note
that there are two periods after the figure reference. The first period ends the tag, while the second period
is text to end the sentence.

The text "Illustrate ID with a Heading" is inserted where the heading reference tag was specified. The
text Figure 1 is inserted where the figure reference tag was specified. If the reference was on a different
page than the referenced entity, the page number of the referenced entity is also inserted. For example, if

50 Referencing

Additional Document Elements

the figure reference was on page 12 and the referenced figure was on page 9, the text to be inserted would
be Figure 1 on page 9.

Referencing of headings allows you to change the wording of a heading at any time and still have the
correct heading text used when you reference the heading in other parts of the document. Figure
referencing removes any dependence upon the ordering of the figures in the document.

6.6 Indexing

GML will create an index for you using information gathered during the processing of the document. The
index information is supplied by index tags. This section will illustrate the use of the indexing tags to
create a simple index.

With a large document, working drafts can be produced faster without the index. To process the index
information, the INDEX option (see "INDex/NOINDex" on page 171) must be specified on the
WATCOM Script/GML command line.

When an index tag is specified, the text line following the tag and the current page number are saved. If
the :index tag is specified in the back material, and the INDEX option is specified, the saved information
is processed and output as an index. The following example illustrates the use of the index tags:

:GDOC.
:BODY.
:I1.primary index
:I2.primary index subentry
:I2.another subentry
:I3.subentry of an I2 entry
:BACKM.
:INDEX.
:eGDOC.

Figure 64. Illustration of the Indexing Tags

The document, when processed, may appear as follows:

+---+
| P |
+---+

primary index 1

another subentry 1
subentry of an I2 entry 1

primary index subentry 1

Figure 65. : Output of Figure 64

The :i1 tag causes the creation of a primary index entry. The :i2 tags cause the creation of index
subentries for the last primary index entry. The :i3 tag causes the creation of index subentries for the last
level two index entry. Note that WATCOM Script/GML automatically sorted the index subentries. All
index entries are sorted when the index is created.

If an index entry is specified more than once, the entries are merged. The following example illustrates
index entry merging:

Indexing 51

Tutorial

:GDOC.
:BODY.
:H0.Start of the document
:I1.primary index
:I2.primary index subentry
:H0.More of the same document
:I1.second primary
:I2.subentry
:I3.subentry of an I2
:I2.subentry
:I1.primary index
:BACKM.
:INDEX.
:eGDOC.

Figure 66. A More Complex Index

The document, when processed, may appear as follows:

+---+
| P |
+---+

primary index 1-2

primary index subentry 1

+---+
| S |
+---+

second primary 2

subentry 2
subentry of an I2 2

Figure 67. : Output of Figure 66

The two index subentries created by the :I2 tags with the text "subentry" were merged together. Note that
since they were both for the same output page, the page number was only displayed once. The level one
index entries with the text "primary index" were also merged together. However, since they were for
different output pages, the page number for each entry was displayed.

A different method to create an index entry is with the index heading tag. The index heading tags
generate results similar to the index tags described above. The main difference is that the page number is
not saved. The following example illustrates the index heading tags:

:GDOC.
:BODY.
:IH1.primary index
:I2.primary index subentry
:I1.second primary
:I2.subentry
:IH1.primary index
:I2.another subentry
:BACKM.
:INDEX.
:eGDOC.

Figure 68. Illustration of Index Headings

52 Indexing

Additional Document Elements

The document, when processed, may appear as follows:

+---+
| P |
+---+

primary index

another subentry 1
primary index subentry 1

+---+
| S |
+---+

second primary 1

subentry 1

Figure 69. : Output of Figure 68

Note that the level one index with the text "primary index" does not have any page numbers displayed. It
can also be seen that the subentry for the second :ih1 tag is merged with the subentry for the first :ih1 tag.

Indexing 53

Tutorial

54 Indexing

7 Layouts

Information about the document style is not specified when a GML document file is created. Style
information such as indentation on the first line of a paragraph does not change the paragraph into a
different type of document entity. Examples of information considered part of the document style are:

1. The maximum number of lines on a page.

2. The number of spaces to indent the first line in a paragraph.

3. The maximum number of characters on a line, including the space characters.

4. The number of lines to leave between paragraphs.

5. Justify text by adding space between words.

With WATCOM Script/GML, the document style is specified in the layout section. A document is
produced by associating a layout with the document source when it is processed by WATCOM
Script/GML. By specifying different layouts, the document style can be changed without modifying the
document text.

NOTE: The layout determines how many columns of text are on an output page. Widows and most
document elements are placed on the next available column when the current column is full. For
the purposes of this book, a one column layout is assumed.

7.1 Specifying a Layout

Initial values for all of the layout items are defined in WATCOM Script/GML, and is called the default

layout. A new layout is created by modifying the initial values of the default layout. Only those values
that you wish to change need to be specified.

The layout section starts with the :layout tag and ends with the :elayout tag. The layout values are
grouped into sections, and are specified in the same way as the GML tags. The sections are identified by
layout tags, with the individual layout values specified by tag attributes. Most of the GML document
elements have corresponding layout tags.

The layout section is specified before the :gdoc tag. The best way to do this is with the layout option on
the WATCOM Script/GML command line (see "LAYout" on page 172). You may also choose to include
the layout specification directly into your source document. Specifying the layout on the command line
makes it easier to switch layouts.

The layout section may be specified more than once. Authors can share a common layout and still
specify layout changes for their own document. Each layout section modifies the values defined by the
default layout plus the cumulative modifications of previous layout sections.

Specifying a Layout 55

Tutorial

7.2 General Modifications

Some of the layout items control general aspects of the document instead of specific document elements.
One of these is the :page layout tag.

:LAYOUT
:PAGE

left_margin = ’.5i’
right_margin = 80

:eLAYOUT.
:GDOC.

.

.

.

The :page layout tag defines information about the page you are printing on. The attributes used in the
example above define the left and right margins. The other attributes of this tag do not have to be
specified if you do not need to change their values.

The right_margin attribute value is eighty(80) characters. The actual amount of space that this value
represents depends on the size of the characters used to produce the document. The left_margin attribute
is half of one inch, and does not have any dependency on the character set used. For more information on
the possible width values, see "Horizontal Space Unit" on page 63.

7.3 Modifying Document Elements

Many of the tags in the WATCOM Script/GML layout relate directly to the tags used in specifying the
document. The following example illustrates a modification to the way in which the example tag is
formatted:

:LAYOUT
:XMP

pre_skip = 3
post_skip = 2

:eLAYOUT.

The attributes pre_skip and post_skip define the amount of space to leave before (pre) and after (post) the
example tag. The attribute values are in line units, which means the amount of space will depend on the
height of a text line within an example. For more information on the possible vertical space values, see
"Vertical Space Unit" on page 64.

The skip attributes imply certain actions. Skip values which are specified as line units are multiplied by
the current spacing value. For example, if the example is double spaced, the skip value will be doubled.
Skips are also merged. If an example was to follow another example, the amount of skip between them
would be three.

7.4 Obtaining the Current Layout

The current layout definitions may be obtained by converting the definitions into a text file.

:LAYOUT.
:CONVERT file=’currlay’.
:eLAYOUT.

56 Obtaining the Current Layout

Layouts

The file CURRLAY.GML will be created by processing the above text with WATCOM Script/GML.
Since no other layout sections are specified, the produced information will be the default layout which is
built into WATCOM Script/GML.

7.5 Banners

With WATCOM Script/GML, banners define the text content at the top and/or bottom of the output page.
Banners are also called running titles and running footers. Most of the default layout consists of banner
definitions.

The most common use of a banner is to define the place on the output page to display the current heading
and page number. The following illustrates what might appear at the bottom of a document page.

WATCOM Script/GML 3

The current heading starts at the left hand side of the page, and the current page number is set to the right
hand side of the page. The banner therefore consists of two distinct types of information. Banners are
subdivided into regions which contain different types of information. The regions for the above example
would look as follows:

+------------------------+
| WATCOM Script/GML | 3 |
+------------------------+

The banner starts with the :banner tag, and defines the size and placement of the banner. Within the
banner definition, each region is defined with the :banregion tag. Since each region contains only one
type of information, the banner region tag and its attributes must be specified for each area of the banner.

7.5.1 Defining the Banner

The banner tag has a number of attributes which define the area of the output page to place the banner.
The following shows how to define the banner area for our previous example.

:BANNER
left_adjust = 0
right_adjust = 0
depth = 3
docsect = body
place = botodd

The left_adjust and right_adjust attributes allow you to change the banner margins relative to the page
margins. The value of the left adjust attribute is added to the left margin of the page. The value of the
right adjust attribute is subtracted from the page right margin.

The depth attribute specifies the depth of the entire banner. The banner regions can be placed through
more than one output line, or placed above one another.

The docsect attribute determines the document section in which the banner will be used. In this example,
the value BODY means that the banner will appear in the body section of the document. If the value
HEAD0 was specified, the banner would only be used when a heading of level zero appears on the output
page.

The place specifies the page position of the banner. The value BOTODD means the bottom of odd
numbered pages. The values that can be specified are:

Banners 57

Tutorial

top top of all pages
topodd top of odd pages
topeven top of even pages
bottom bottom of all pages
botodd bottom of odd pages
boteven bottom of even pages

7.5.2 Defining the Banner Region

The banner region tag has a number of attributes which define the area of the banner in which the region
is placed. The following shows how to define one of the banner regions for our previous example.

:BANREGION
indent = 0
hoffset = left
width = extend
voffset = 2
depth = 1
font = 0
refnum = 1
region_position = left
pouring = last
contents = headtext0

:eBANREGION.

The horizontal position of the banner region within the banner is defined by the hoffset and indent
attributes. The horizontal offset attribute (hoffset) defines the offset from the left edge of the banner. In
this case, the value LEFT specifies that the region should start at the left side of the banner. The indent
attribute supplies an indentation to be applied to the region position after the horizontal offset is
determined.

The width attribute defines the width of the banner. The value EXTEND sets the region width to be from
the start point to the right edge of the banner or the next region, whichever comes first. Use this value for
regions with a large width. If the page margins change, the region widths will automatically be adjusted
for the new margins.

The voffset attribute defines the vertical offset from the top of the banner area to the top of the region. If
the banner depth is "3", a vertical offset of "2" will start the region on the last line of the banner. This
would put the text on the last line of the page and ensure that at least two blank lines are left between the
main body of text and the banner text.

The depth attribute defines the depth of the region within the banner. If it specifies more than one line
space, text which does not fit on the first line of the region will be split to the following region lines.

Each region must be uniquely identified by the value of the refnum attribute. These values are later used
if one region of a banner is replaced. The font attribute defines the character set used in the region.

Within the banner region, text can be placed with the region_position attribute. The value LEFT specifies
that the text should be placed starting at the left side of the region.

The pouring attribute is used to specify how headings are placed in a banner. If the requested heading
does not appear on the page, the value LAST obtains the last heading used in the document of the same
level (in the previous example, this would be level zero). This attribute is ignored if the region contents
does not contain heading information.

The contents attribute specifies the content of the banner region. The value HEADTEXT0 requests the
text component of the last heading zero produced in the document. This value would not include the
heading number. A number of different values may be specified with this attribute, including constant
string data.

58 Banners

Layouts

7.5.3 Sample Banner Definition

The following shows the banner definition which would create the bottom banner for the example output
shown earlier.

:BANNER
left_adjust = 0
right_adjust = 0
depth = 3
docsect = body
place = topodd

:BANREGION
indent = 0
hoffset = left
width = extend
voffset = 2
depth = 1
font = 0
refnum = 1
region_position = left
pouring = last
contents = headtext0

:eBANREGION.
:BANREGION

indent = 0
hoffset = right
width = 3
voffset = 2
depth = 1
font = 0
refnum = 2
region_position = right
pouring = none
contents = pgnuma

:eBANREGION.
:eBANNER.

7.5.4 Using Symbols in Banner Definitions

Symbol names may be specified in the string value of a banner definition content attribute. A number of
symbol names are defined when a banner is created to contain special values. To create a bottom banner
with the page number centered and surrounded by dashes as shown in the following,

+------------------------+
| - 1 - |
+------------------------+

create the following banners:

Banners 59

Tutorial

:BANNER
left_adjust = 0
right_adjust = 0
depth = 3
place = bottom
docsect = body

:BANREGION
indent = 0
hoffset = left
width = extend
voffset = 2
depth = 1
font = 0
refnum = 1
region_position = center
pouring = last
contents = ’- &.$pgnuma. -’

:eBANREGION
:eBANNER

60 Banners

GML Reference

GML Reference

62

8 General Specifications

8.1 Processing Rules

WATCOM Script/GML processes the source document text in a particular sequence. Each input record is
divided into smaller logical records, each containing a specific type of information. The following rules
are applied to the input record in sequence.

1. The input record is searched for GML tags. The input record is split into a new logical record
at each GML tag. The one exception to this rule is the :CMT tag which results in the entire
input line, including other GML tags, to be treated as a comment and not processed.
Recognition of a GML tag in the text may be defeated by using the &GML. symbol instead of
the GML tag separator.

2. As each logical record is needed for processing, substitution of symbols is performed.

If the SCRIPT or WSCRIPT option has been specified on the command line.

3. If the value of a symbol starts with the Script control word separator (default of ’;’), the input
record is split into two logical records and substitution stops. The separator character does not
appear in either logical record.

4. If the first character of a logical record is the Script control word indicator (default of ’.’), the
record must be a Script control word or macro line. The control word indicator will be
recognized if it is the first character in a symbol value being substituted at the beginning of the
record.

5. When a Script control line is specified, the list of defined macros is searched. If a macro with
the given name is not found, the value must be a Script control word.

6. If a Script control line is specified with a second control word indicator (..\bat the beginning of
the logical record), the list of defined macros is not searched.

7. If a Script control line is specified with an apostrophe after the control word indicator, control
word separators are not recognized in the logical record.

8. Control word separators in a Script control line will cause a split into a new logical record at
that point and stop symbol substitution. The separator character does not appear in either
logical record.

NOTE: When there is more than one pass over the document source, the layout section is only processed
on the first pass.

8.2 Horizontal Space Unit

The term horizontal space unit is used throughout this document to indicate the use of one of the
following forms of measurement:

Horizontal Space Unit 63

GML Reference

Centimeter The number of centimeters followed by the CM symbol. The number
may have up to two decimal digits specified. Example: 5.23CM

Characters The number of characters. The width of a character is determined by the
CPINCH command line option. The default option for this value is 10
characters per inch. Example: 23

Cicero The number of ciceros followed by the C symbol and up to two didot
point digits. There are twelve didot points in a cicero, with 72 points in
an inch. Example: 9C9

Device Units The number of characters. The width of the character zero (0) in the
current font is used. Example: 23DV

Ems The number of ems followed by the M symbol. The width of an em
space is the width of the character ’M’ in the current font. Example: 9M

Inch The number of inches followed by the I symbol. The number may have
up to two decimal digits specified. Example: 1.25I

Millimeter The number of millimeters followed by the MM symbol. The number
may have up to two decimal digits specified. Example: 25.75MM

Pica The number of picas followed by the P symbol and up to two point digits.
There are twelve points in a pica, with 72 points in an inch. Example:
6P12

To prevent a period from indicating the end of the tag, single quotes may be used to enclose the space unit
value. Since enclosing the space value with quotes is always correct, it is best to use them in all cases.

8.3 Vertical Space Unit

A vertical space unit is specified in the same way as a horizontal space unit. An EM space specifies the
number of lines, the height of a line determined by the current font, adjusted for the document spacing
value currently in effect. For example, a vertical space value of ’2M’ with double spacing in effect
results in four lines worth of space.

An integer number specifies the number of lines, the height of a line determined by the LPINCH
command line option, adjusted for the document spacing value currently in effect. The default lines per
inch value is 6.

A device unit space(DV) specifies the number of lines without the current document spacing accounted
for. For example, a vertical space value of ’2DV’ with double spacing in effect results in two lines worth
of space.

8.4 Font Linkage

Attributes in the GML tag set and the layout which accept vertical or horizontal space values are linked to
specific fonts. When values are specified in terms of characters (such as 12 or 5M), the absolute amount
of space is determined using a font assigned to that attribute value. All values not explicitly linked to a
font use the default font.

64 Font Linkage

General Specifications

8.5 Tag Attributes

A tag attribute is used to modify or define the behaviour of the tag. For example, the depth=’5i’ attribute
is used with the figure tag to specify the depth of the figure. This attribute will reserve five inches of
space in the document for pasting in a figure. The value of the attribute (ie ’5i’) must not be split across
input records.

Attribute values may be enclosed in quotes. Either single or double quotes may be used. If the value
contains a quote character which is the same as the enclosing quotes, the quote can be specified twice to
enter it into the value. Accents are also accepted as a quoting character. A character string must be
enclosed in quotes.

The attributes of a tag may be specified over a number of input records, and are separated from the tag
and each other by a space. Although the attributes are separated from the tag, they are considered part of
the tag specification and must precede the period which ends the tag. Attribute values which contain a
period should be enclosed in quotes to prevent the termination of the tag specification.

8.6 Symbolic Substitution

A symbol is a name which represents an arbitrary string of text. Once a symbol is assigned a text value,
the symbol can be used in the document source in place of that text. Consider the following:

:SET symbol=’product’
value=’WATCOM Script/GML’.

:GDOC.
:BODY.
:P.
Symbolic substitution is quite
simple with &product..
:eGDOC.

Figure 70. Symbolic Substitution

The document, when processed, may appear as follows:

Symbolic substitution is quite simple
with WATCOM Script/GML.

Figure 71. : Output of Figure 70

A symbol name is defined and assigned a string of text with the :set tag (see "SET" on page 87). The
value of the symbol name can be defined at any point in the document file. Any valid character string
may be assigned to the symbol name. When the symbol is referenced later, the value is substituted into
the input text. The substitution is done before the source text or input translation is processed by
WATCOM Script/GML.

A symbol name is preceded by an ampersand(&) when referenced, and is terminated by any character not
valid in a symbol name. If the terminating character is a period, it is considered part of the symbol
specification (you must therefore remember to specify two periods if a symbol ends a sentence). The
recognition of a symbol name is case insensitive.

Symbolic Substitution 65

GML Reference

The symbol name should not have a length greater than ten characters, and may only contain letters,
numbers, and the characters @, #, $ and underscore(_). Specifying the letters SYS as the first three
characters of the symbol name is equivalent to specifying a dollar($) sign.

Recursive substitution is performed on a symbol. This means that the text substituted for a symbol is
checked for the presence of more symbol names. As well, if the symbol name is immediately followed by
another symbol name (no intervening period or blanks), new names can be constructed from the
successive substitutions. For example:

:SET symbol=’prodgml’
value=’WATCOM Script/GML’.

:SET symbol=’prodname’
value=’gml’.

:GDOC.
:BODY.
:P.
Symbolic substitution is quite
simple with &prod&prodname...
:eGDOC.

Figure 72. Iterative Substitution

The first part of the symbol sequence, &prod, does not exist as a defined symbol. However, when
&prodname. is substituted, the resulting symbol name &prodgml exists. The resulting substitution
produces the following:

Symbolic substitution is quite simple
with WATCOM Script/GML.

Figure 73. : Output of Figure 72

If an asterisk is specified immediately before the symbol name (ie symbol=’*prodname’ or
&*prodname.), then the symbol is local. Local symbols may not be referenced outside the file or macro
in which they are defined. If an undefined local symbol is referenced in a macro, it is replaced with an
empty value.

8.7 Identifiers

Identifiers are used to "identify" certain types of document elements so that they may be referenced. For
example, identifiers are useful with headings. If an identifier is assigned to a heading with the id
attribute, the heading can be referenced with the :hdref tag. The heading to be referenced is "identified"
by the identifier name assigned to the heading. If the heading text is later changed, the heading reference
will still be valid, and automatically use the new heading text.

An identifier name should not be longer than seven characters and must consist of letters and numbers. If
the identifier name is longer than seven characters, a warning message will be issued.

8.8 Input Translation

Some of the characters available with a particular output device may not be characters that can be entered
into the input text. Input translation provides a way to enter this type of data. A special escape character
may be selected in the layout. (See "DEFAULT" on page 117). If this escape character is entered into

66 Input Translation

General Specifications

the GML input text, the character immediately following it will be translated to the value specified as the
input translation value for that character. Most characters are defined to be unchanged by input
translation. Consider the following:

:GDOC.
:BODY.
:P.
Input translation is useful for
entering characters not available
on the keyboard, such as the
bullet (/*) character.
It can also be used to prevent
the normal space(/) expansion.
:eGDOC.

Figure 74. Input Translation

If the input translation escape character is the slash(/), the processed document may appear as follows:

Input translation is useful for
entering characters not available on the
keyboard, such as the bullet (*)
character. It can also be used to
prevent the normal space() expansion.

Figure 75. : Output of Figure 70

Note that the bullet character in the output is the asterisk. The example output for this manual was
produced with the terminal device, which does not have special characters. If the value ’/*’ is used within
the text of this document, the character ’•’ is produced.

Input translation is performed when text is separated into words. The translated character is not examined
during these operations, providing a method for bypassing the normal processing rules of WATCOM
Script/GML. The values which result from an input translation are defined in the device character sets
(see "InTrans Block" on page 194).’.

Input Translation 67

GML Reference

68 Input Translation

9 GML Tags

This chapter contains a subsection on each of the tags supported by the WATCOM Script/GML language.
The tags are presented in alphabetical order and in several forms:

1. tag.

This form is used when other data is not associated with the tag. For example, the :body tag is
used when defining the structure of the document, but has no text specified with it.

2. tag.<paragraph elements>

This form is used when paragraph elements, such as text, are assumed to follow the tag. The
:pc tag is an example of this type of tag.

3. tag.<text line>

Some tags have a single line of text associated with it, such as with the :h0 tag. In this
situation, the processing rules are as follows:

1. When nothing follows the tag, except an optional period(.), the next input line is
used.

2. Otherwise, the text following the period or space after the tag is used.

As these rules are somewhat complicated, it is best to always place the text line on the same
line as the tag, immediately following a period.

Use two periods when a tag ends a sentence. The first period will be processed as part of the tag. The
second period will be treated as part of the text. If only one period is specified, the period to end the
sentence will not appear in the resulting document.

Basic document elements, such as highlighting tags, cannot appear as part of a <text line>. If a tag is
specified, it will be processed as if it had been entered on the next input record.

Some tags have attributes which are used to modify or define the behavior of the tag. Tag attributes will
be presented in the following way:

:tag attribute-one
[attribute-two]

Attributes not enclosed in brackets([), such as attribute-one, are required and must be present with the tag.
Most attributes are optional, and will have brackets as illustrated by attribute-two. No other text is
allowed between a tag and its attributes.

9.1 ABSTRACT
Format: :ABSTRACT.

ABSTRACT 69

GML Reference

This tag signals the start of the abstract in the front material of a GML document. The abstract is
optional, but must follow the title page section if specified. Basic document elements and heading levels
two through six (:h2-:h6) may be specified in the abstract.

9.2 ADDRESS
Format: :ADDRESS.

An address entity may be used as a basic document element or as part of the title page. Each line of the
address entity is specified by the :aline tag. A corresponding :eaddress tag must be specified for each
:address tag.

9.3 ALINE
Format: :ALINE.<text>

The address line tag specifies a line in an address entity (:address). The :aline tag is specified for each
line of a multiple line address.

9.4 APPENDIX
Format: :APPENDIX.

The appendix section is optional, and follows the body section of a GML document. The appendix causes
an implicit end to the body section, and may contain basic document elements and heading levels one
through six (:h1-:h6).

9.5 AUTHOR
Format: :AUTHOR.<text line>

This tag specifies the name of an author, and may only appear within the title page specification. The
:author tag is specified for each author when there is more than one.

9.6 BACKM
Format: :BACKM.

The back material is the last section in a GML document. Basic document elements, and heading levels
one through six (:h1-:h6) and the :index tag may be specified. The index tag must be the last tag
specified in the back material.

9.7 BINCLUDE
Format: :BINCLUDE file=’file name’

depth=’vert-space-unit’
reposition=start

end.

70 BINCLUDE

GML Tags

The binary include tag causes the data in the specified file to be included into the document without being
processed by WATCOM Script/GML. This tag provides the means to include graphic or non-textual data
in the document (see also "GRAPHIC" on page 79).

The required attribute file specifies the name of the file to include. The value of the attribute is a
character string, and may be any valid file name. The input file is processed as containing binary data. If
the input is text data, a record type such as "(t:80)" must be prefixed to the file name (see "Files" on page
221).

The required attribute depth specifies the vertical size of the contents of the file. The value of the
attribute is any non-zero vertical space unit. This depth value must be the exact depth of the file contents
when placed in the formatted output, and is used to reserve the required amount of space on the page.
The depth attribute is linked to the current font being used in the document (see "Font Linkage" on page
64).

The required attribute reposition specifies the place in the formatted output that new text would be placed
after the content of the file is processed. With some devices, a graphic will not change the current
position on the output page when it is processed. In this case, WATCOM Script/GML must ensure that
following text is started on the output page after the graphic. The attribute value start indicates that the
current position on the output page will be unchanged after the graphic is processed. The attribute value
end indicates that the current position on the output page will be immediately following the graphic after
the graphic is processed. If the included data is within a framed figure, and the frame is formed with
characters, the value of the reposition attribute must be the value start.

9.8 BODY
Format: :BODY.

This tag signals the start of the main body of a GML document. The document body is composed of
headings and basic document elements.

9.9 CIT
Format: :CIT.

This tag starts the highlighting of a citation (e.g., the title of a book). The actual highlighting to be
performed is determined by the layout and the type of output device the document is processed for.
Examples of highlighting include underlining, displaying in bold face, or using a different character shape
(such as italics).

A citation may not be used where the GML layout explicitly determines the emphasis to be used, such as
in the text of a heading.

The citation tag is a paragraph element. It is used with text to create the content of a basic document
element, such as a paragraph. A corresponding :ecit tag must be specified for each :cit tag.

9.10 CMT
Format: :CMT.

CMT 71

GML Reference

The information following the comment tag on the input line is treated as a comment. Text data and
GML tags following the comment tag are not processed. Except between tag attributes, this tag may
appear at any point in the GML source.

9.11 DATE
Format: :DATE.<text line>

The date tag appears in the title page specification. The current date is used if the optional date text line
is not specified. If the date text line is specified, the entered text is used in other parts of the document
when the date is required.

9.12 DD
Format: :DD.<paragraph elements>

<basic document elements>

This tag signals the start of the text for an item description in a definition list. The definition description
tag must be preceded by a corresponding :dt tag, and may only appear in a definition list.

9.13 DDHD
Format: :DDHD.<text line>

The definition description heading tag is used to specify a heading for the definition description of a
definition list. It must be preceded by a corresponding :dthd tag, and may only appear in a definition list.
The heading tag may be used more than once within a single definition list.

9.14 DL
Format: :DL [compact]

[break]
[headhi=head-highlight]
[termhi=term-highlight]
[tsize=’hor-space-unit’].

The definition list tag signals the start of a definition list. Each list item in a definition list has two parts.
The first part is the definition term and is defined with the :dt tag. The second part is the definition
description and is defined with the :dd tag. A corresponding :edl tag must be specified for each :dl tag.

The compact attribute indicates that the list items should be compacted. Blank lines that are normally
placed between the list items will be suppressed. The compact attribute is one of the few WATCOM
Script/GML attributes which does not have an attribute value associated with it.

The break attribute indicates that the definition description should be started on a new output line if the
size of the definition term exceeds the maximum horizontal space normally allowed for it. If this attribute
is not specified, the definition description will be placed after the definition term. The break attribute is
one of the few WATCOM Script/GML attributes which does not have an attribute value associated with
it.

The headhi attribute allows you to set the highlighting level of the definition list headings. Non-negative
integer numbers are valid highlighting values.

72 DL

GML Tags

The termhi attribute allows you to set the highlighting level of the definition term. Non-negative integer
numbers are valid highlighting values.

The tsize attribute allows you to set the minimum horizontal space taken by the definition term. Any
valid horizontal space unit may be specified. The attribute value is linked to the font of the :DT tag if the
termhi attribute is not specified (see "Font Linkage" on page 64).

9.15 DOCNUM
Format: :DOCNUM.<text line>

This document number tag appears in the title page specification, and specifies the number associated
with the document. The default text "Document Number " is generated before the text line.

9.16 DT
Format: :DT.<text line>

This tag is used to specify the term which is defined for each item in a definition list. It is always
followed by a :dd tag, which specifies the start of the text to define the term, and may only appear in a
definition list.

9.17 DTHD
Format: :DTHD.<text line>

The definition term heading tag is used to specify a heading for the definition terms of a definition list. It
is always followed by a :ddhd tag, and may only appear in a definition list. The heading tag may be used
more than once within a single definition list.

9.18 EADDRESS
Format: :eADDRESS.

This tag signals the end of an address entity. An address entity may be used as a basic document element
or as part of the title page. A corresponding :address tag must be previously specified for each :eaddress

tag.

9.19 ECIT
Format: :eCIT.

This tag ends the highlighting of a citation. A corresponding :cit tag must be previously specified for
each :ecit tag.

9.20 EDL
Format: :eDL.

EDL 73

GML Reference

This tag signals the end of a definition list. A corresponding :dl tag must be previously specified for each
:edl tag.

9.21 EFIG
Format: :eFIG.

This tag signals the end of a figure. A corresponding :fig tag must be previously specified for each :efig

tag.

9.22 EFN
Format: :eFN.

This tag signals the end of a footnote. A corresponding :fn tag must be previously specified for each :efn

tag.

9.23 EGDOC
Format: :eGDOC.

This tag signals the end of a GML document. It must be the last tag specified in the input source. A
corresponding :gdoc tag must be specified at the beginning of the document.

9.24 EGL
Format: :eGL.

This tag signals the end of a glossary list. A corresponding :gl tag must be previously specified for each
:egl tag.

9.25 EHP0, EHP1, EHP2, EHP3
Format: :eHPn.

(n=0,1,2,3)

These tags end the highlighting of phrases at one of the four levels provided by GML. Each :ehpn tag
must be preceded by a corresponding :hpn tag.

9.26 ELAYOUT
Format: :eLAYOUT.

This tag signals the end of a layout section. A corresponding :layout tag must be previously specified for
each :elayout tag.

74 ELAYOUT

GML Tags

9.27 ELQ
Format: :eLQ.

This tag signals the end of a long quote. A corresponding :lq tag must be previously specified for each
:elq tag.

9.28 EOL
Format: :eOL.

This tag signals the end of an ordered list. A corresponding :ol tag must be previously specified for each
:eol tag.

9.29 EPSC
Format: :ePSC.

This tag signals the end of a process specific control section. A corresponding :psc tag must be
previously specified for each :epsc tag.

9.30 EQ
Format: :eQ.

This tag signals the end of a quote. A corresponding :q tag must be previously specified for each :eq tag.

9.31 ESF
Format: :eSF.

This tag ends the highlighting of phrases started by the last :sf tag.

9.32 ESL
Format: :eSL.

This tag signals the end of a simple list. A corresponding :sl tag must be previously specified for each
:esl tag.

9.33 ETITLEP
Format: :eTITLEP.

This tag signals the end of the GML document title page. A corresponding :titlep tag must be previously
specified for the :etitlep tag.

ETITLEP 75

GML Reference

9.34 EUL
Format: :eUL.

This tag signals the end of an unordered list. A corresponding :ul tag must be previously specified for
each :eul tag.

9.35 EXMP
Format: :eXMP.

This tag signals the end of an example. A corresponding :xmp tag must be previously specified for each
:exmp tag.

9.36 FIG
Format: :FIG [depth=’vert-space-unit’]

[frame=box
rule
none
’character string’]

[id=’id-name’]
[place=top

bottom
inline]

[width=page
column
’hor-space-unit’].

<paragraph elements>
<basic document elements>

This tag signals the start of a figure. Each line of source text following the figure tag is placed in the
output document without normal text processing. Spacing between words is preserved, and the input text
is not right justified. Input source lines which do not fit on a line in the output document are split into
two lines on a character, rather than a word basis. A figure may be used where a basic document element
is permitted, except within a figure, footnote, or example.

If the figure does not fit on the current page or column, it is forced to the next one. If the current column
is empty, the figure will be split into two parts.

The depth attribute accepts vertical space units as possible values. The amount of specified vertical
space is created in the output before any source input text is processed. The value of the depth attribute is
linked to the current font (see "Font Linkage" on page 64).

The frame attribute will determine the framing value for the figure. The layout for the document
specifies a default frame value if the frame attribute is not specified. The frame is created with the
appropriate characters for the output device selected. The attribute value box will cause the entire figure
to be enclosed by a box. The attribute value rule will cause a line to be created before the top and after
the bottom of the figure. The sides of the figure will not be enclosed. The rule line at the top of the
figure is not produced if the place of the figure is top. The bottom rule is not produced if the place of the
figure is bottom. The attribute value none will cause no framing to occur. If a character string is used as
the framing value, a framing value of rule will be in effect, using the specified character string to create
the rule lines.

76 FIG

GML Tags

The id attribute will associate an identifier name to the figure. If an identifier name is specified, the
figure caption tag (:figcap) must also be specified in the figure. The quoted name is used by the :figref

tag to generate a figure reference to the figure.

The place attribute determines the page position of the figure. The layout for the document specifies a
default place value if the place attribute is not specified. A place value of top causes the figure to be
placed at the top of the next available page or column. Any text which follows the figure in the input may
’float’ before the figure to fill up the previous page. A place value of bottom causes the figure to be
placed at the bottom of the next available page or column. Any text which follows the figure in the input
may float before the figure to fill up the previous page and before the figure on the current page. A place
value of inline causes the figure to be output within the context of the input text which surrounds it. Text
which follows the figure in the input will not float before the figure.

The width attribute allows you to specify the width of the figure. The attribute value page specifies that
the figure will be as wide as the page, even if the document is formatted for more than one column. The
attribute value column specifies that the figure shall be one column wide. If a horizontal space unit is
used as the attribute value, the figure will have the width specified by the attribute value. The width
attribute value is linked to the font of the figure (see "Font Linkage" on page 64).

9.37 FIGCAP
Format: :FIGCAP.<text line>

The figure caption tag is used within a figure to specify the caption for the figure. The figure caption tag
must be specified if the figure has an identifier name associated with it. Layout defined text followed by
the figure number and a delimiter is inserted before the caption text (the default text and delimiter is
"Figure" and a period). The figure caption follows the main text of the figure.

9.38 FIGDESC
Format: :FIGDESC.<paragraph elements>

<basic document elements>

This tag signals the start of the description for a figure. The tag is placed after the optional :figcap tag
within a figure. The GML processor automatically adds a colon(:) following the caption when a figure
description is present.

9.39 FIGLIST
Format: :FIGLIST.

This tag may be used in the front material of a GML document to request that the list of figures be
formatted. More than one pass will be required to create the figure list. When there is only one pass over
the document, WATCOM Script/GML will create the figure list at the end of the document.

9.40 FIGREF
Format: :FIGREF refid=’id-name’

[page=yes
no].

FIGREF 77

GML Reference

This tag causes a figure reference to be generated. The text "Figure" followed by the figure number will
be generated at the point where the :figref tag is specified. The figure reference tag is a paragraph
element, and is used with text to create the content of a basic document element. The figure being
referenced must have a figure caption specified.

The refid attribute will determine the figure for which the reference will be generated. The specified
identifier name must be the value of the id attribute on the figure you wish to reference.

The page attribute controls the output of the figure page number. If the attribute value yes is specified,
the text "on page" followed by the page number of the referenced figure is placed after the figure
reference text. If the attribute value no is specified, the page number of the referenced figure is not
generated. If the page attribute is not specified, the figure page number is generated when the figure and
the reference to it are not on the same output page.

9.41 FN
Format: :FN [id=’id-name’].

<paragraph elements>
<basic document elements>

The footnote tag causes a note to be placed at the bottom of the page. The footnote text is preceded by a
footnote number which is generated by the WATCOM Script/GML processor. Footnotes may be used
where a basic document element is permitted to appear, with the exception of a figure, footnote, or
example. The :efn tag terminates a footnote.

The id attribute assigns an identifier name to the footnote. The identifier name is used when processing a
footnote reference, and must be unique within the document.

9.42 FNREF
Format: :FNREF refid=’id-name’.

This tag causes a footnote reference to be generated. The number of the referenced footnote will be
generated at the point where the :fnref tag is specified. The footnote reference tag is a paragraph
element, and is used with text to create the content of a basic document element.

The refid attribute will determine the footnote for which the reference will be generated. The identifier
name must be specified as the value for the id attribute on the footnote you wish to reference.

9.43 FRONTM
Format: :FRONTM.

This tag signals the start of the front material of a GML document, and must be preceded by the :gdoc

tag.

9.44 GDOC
Format: :GDOC [sec=’character string’].

78 GDOC

GML Tags

This tag signals the start of a GML document and must precede all other document tags. All layout tags
must precede the :gdoc tag.

The sec attribute will assign a security classification to the document. The attribute value may be used in
the creation of banners which appear at the top and/or bottom of an output page.

9.45 GL
Format: :GL [compact]

[termhi=term-highlight].

The glossary list tag signals the start of a glossary list, and is usually used in the back material section.
Each list item in a glossary list has two parts. The first part is the glossary term and is defined with the
:gt tag. The second part is the glossary description and is defined with the :gd tag. A corresponding :egl

tag must be specified for each :gl tag.

The compact attribute indicates that the list items should be compacted. Blank lines that are normally
placed between the list items will be suppressed. The compact attribute is one of the few WATCOM
Script/GML attributes which does not have an attribute value associated with it.

The termhi attribute allows you to set the highlighting level of the glossary term. Non-negative integer
numbers are valid highlighting values.

9.46 GD
Format: :GD.<paragraph elements>

<basic document elements>

The glossary description tag signals the start of the text for an item in a glossary list. The glossary
description tag must be preceded by a corresponding :gt tag, and may only appear in a glossary list.

9.47 GRAPHIC
Format: :GRAPHIC file=’file name’

[depth=’vert-space-unit’]
[width=page

column
’hor-space-unit’]

[scale=number]
[xoff=’hor-space-unit’]
[yoff=’vert-space-unit’].

This tag is used to include a graphic image file into the document. WATCOM Script/GML supports two
types of graphic include files. If the first two characters in the file are percent(%) followed by an
exclamation mark(!), then the file is a PostScript graphic. A PostScript graphic file will only produce an
image if the document is produced for a PostScript device. If the image file is not a PostScript graphic, a
special validity check is performed on the file to determine if it is a WATCOM GKS PXA image file. If
it is not a PXA file, it is assumed to be a PostScript graphic file. PXA files are supported with PostScript,
HP LaserJet Plus, and IBM PC Graphic printers, although grey scales are only supported with a
PostScript device. Documents can be proofed on devices which are not supported by the graphic tag. If
the device is not supported, the appropriate amount of white space is left for the graphic. All space value
attributes are linked to the current font being used in the document (see "Font Linkage" on page 64).

GRAPHIC 79

GML Reference

The required attribute file specifies the name of the graphic file to include. The value of the attribute is a
character string, and may be any valid file name.

The depth attribute specifies the vertical size of the graphic image. The value of the attribute is any valid
vertical space unit, and must be specified if the graphic is a PostScript image. If the specified depth is
less than the size of the actual graphic, the difference in size is taken off the top of the graphic image. If
the depth is not specified when including a PXA file, the graphic depth is obtained from information
within the image file. A PXA file is assumed to be defined in a vertical direction with 150 dots per inch
(dpi) for PostScript and HP LaserJet devices, and 72dpi for PC Graphics printers.

The width attribute allows you to specify the width of the graphic. The attribute value page specifies that
the graphic will be as wide as the page, even if the document is formatted for more than one column. The
attribute value column specifies that the graphic shall be one column wide. If a horizontal space unit is
used as the attribute value, the graphic will have the width specified by the attribute value. If the graphic
is larger than the specified width, the difference in size is taken off the right hand side of the graphic
image. A PXA file is assumed to be defined in a horizontal direction with 150 dots per inch (dpi) for
PostScript and HP LaserJet devices, and 120dpi for PC Graphics printers.

The scale attribute allows you to alter the size of the graphic. The scale operation is performed after all
depth and offset calculations are completed, and is supported with PostScript and HP LaserJet devices
only. The attribute value is a positive integer number which represents a percentage of the original
graphic size. Therefore, the value ’100’ will result in no scaling. With the HP LaserJet, only the values
50, 100, 150 and 200 are valid.

The xoff and yoff attributes specify an offset into the graphic. Some images are saved so that they will
print in the middle of a blank page. By specifying the amount of space from the lower left corner of this
blank page to the lower left hand corner of the printable graphic with the offset attributes, WATCOM
Script/GML can shift the graphic to position it properly on the page. The value of the attributes can be a
vertical space unit, with negative values being allowed.

9.48 GT
Format: :GT.<text line>

This tag is used to specify the term which is defined for each item in a glossary list. It is always followed
by a :gd tag, which specifies the start of the text to define the term, and may only appear in a glossary list.

9.49 H0, H1, H2, H3, H4, H5, H6
Format: :Hn [id=’id-name’]

[stitle=’character string’].<text line>

(n=0,1)
Format: :Hn [id=’id-name’].<text line>

(n=0,1,2,3,4,5,6)

These tags are used to create headings for sections and subsections of text. A common convention uses
the headings as follows:

:H0 Major part of document.

:H1 Chapter.

:H2 Section.

80 H0, H1, H2, H3, H4, H5, H6

GML Tags

:H3, :H4, :H5, :H6 Subsections.

The specific layout with which a document is formatted will determine the format of the headings. Some
layouts cause the headings to be automatically numbered according to a chosen convention. The heading
text specified with the tag may also be used in the creation of top and/or bottom page banners.

A heading may be used where a basic document element is permitted to appear, with the following
restrictions:

1. :h0 tags may only be used in the body of a document.

2. :h1 tags may not be used in the preface or the abstract.

The stitle attribute allows you to specify a short title for the heading. The short title will be used instead
of the heading text when creating the top and/or bottom page banners. The short title attribute is valid
with a level one or level zero heading.

The id attribute assigns an identifier name to the heading. The identifier name is used when processing a
heading reference, and must be unique within the document.

9.50 HDREF
Format: :HDREF refid=’id-name’

[page=yes
no].

This tag causes a heading reference to be generated. The heading reference tag is a paragraph element,
and is used with text to create the content of a basic document element. The heading text from the
referenced heading is enclosed in double quotation marks and inserted into the formatted document.

The refid attribute will determine the heading for which the reference will be generated. The specified
identifier name must be the value of the id attribute on the heading tag you wish to reference.

The page attribute controls the output of the heading page number. If the attribute value yes is specified,
the text "on page" followed by the page number of the referenced heading is placed after the heading text.
If the attribute value no is specified, the page number of the referenced heading is not generated. If the
page attribute is not specified, the heading page number is generated when the heading and the reference
to it are not on the same output page.

9.51 HP0, HP1, HP2, HP3
Format: :HPn.

(n=0,1,2,3)

These tags start the highlighting of phrases at one of the four levels provided by GML. The actual
highlighting to be performed is determined by the type of device for which the document is being
formatted. Examples of highlighting include underlining, displaying in bold face, or using a different
character shape (such as italics).

Highlighting may not be used when the GML layout explicitly determines the emphasis to be used, such
as in the text of a heading.

HP0, HP1, HP2, HP3 81

GML Reference

The highlighting tags are paragraph elements. They are used with text to create the content of a basic
document element, such as a paragraph. A corresponding :EHPn tag must be specified for each :HPn

tag.

9.52 I1, I2, I3
Format: :In [id=’id-name’]

[pg=start
end
major
’character string’]

[refid=’id-name’].<text line>

(n=1,2,3)

These tags will cause an index entry to be created. Index entry tags may be used at any point in the
document after the :gdoc tag. The text line with the index entry tag is used to create an index term for the
index entry. The index command line option must be specified for the index entry tags to be processed.
The :I1 tag is used to create a primary index entry. The :I2 tag is used to create an index subentry for the
previous primary index entry. The :I3 creates an index subentry for the previously specified :I2 tag.

The id attribute assigns an identifier name to the created index entry. The identifier name is used by other
tags when processing an index reference, and must be unique within the document.

The pg attribute determines the way in which the page number for the index entry is presented. If the
attribute value is start, the index entry will have a page range. The end attribute value on an index entry
will mark the end of a previously started page range. The attribute value major makes the page number
reference of higher priority than the other page references in the index entry, and causes it to be listed
first. If a character string is specified as the attribute value, the character string is placed in the index
instead of a page number.

The refid attribute will cause the index entry to be associated with a specific higher level index entry
rather than the index entry which directly precedes it in the document. The refid attribute may be used
with the :I2 and the :I3 tags.

9.53 IH1, IH2, IH3
Format: :IHn [id=’id-name’]

[ix=x]
[print=’character string’]
[see=’character string’]
[seeid=’id-name’].<text line>

(n=1,2,3)
(x=0 -> 8)

The index heading tags will cause an index entry to be created. Index headings may be used at any point
in the document. The text line with the index entry tag is used to create an index term for the index entry.
The index heading tag does not generate a page number reference with the index term in the index. The
index command line option must be specified for the index entry tags to be processed. The :IH1 tag is
used to create a primary index entry. The :IH2 tag is used to create an index subentry for the previous
primary index entry. The :IH3 creates an index subentry for the previously specified :IH2 tag.

The id attribute assigns an identifier name to the created index entry. The identifier name is used by other
tags when processing an index reference, and must be unique within the document.

82 IH1, IH2, IH3

GML Tags

The ix attribute selects one of the index groups (from zero through eight), with zero being the default.

The print attribute causes the specified character string to be displayed in the index instead of the index
term. The index term is still used to determine where in the index the entry should be placed.

The see attribute will cause the supplied character string to be used as a page number reference. The
character text "See" will prefix the character string in the index if there are no references in the index
entry. If there are index subentries or page references, the string "See also" will be prefixed to the
character string. It is your responsibility to ensure that index entries specified in the character string are
actually in the index. The see attribute may only be used when the index entry is of level one or two.

The seeid attribute is used to reference an index entry. The index term created by the referenced index
entry is used instead of a page number. If the referenced index entry has the print attribute specified, the
character string value of the print attribute will be used instead of the index term. The character string
"See" will prefix the index term in the index if there are no page references in the index entry. If there are
index subentries or page references, the string "See also" will be prefixed to the index term. The seeid

attribute may only be used when the index entry is of level one or two.

9.54 IMBED
Format: :IMBED file=’file name’.

The value of the required attribute file is used as the name of the file to imbed. This tag is equivalent to
the :include tag.

9.55 INCLUDE
Format: :INCLUDE file=’file name’.

The value of the required attribute file is used as the name of the file to include. The content of the
included file is processed by WATCOM Script/GML as if the data was in the original file. This tag
provides the means whereby a document may be specified using a collection of separate files. Entering
the source text into separate files, such as one file for each chapter, may help in managing the document.

If the specified file does not have a file type, the default document file type is used. For example, if the
main document file is manual.doc, doc is the default document file type. If the file is not found, the
alternate extension supplied on the command line is used. If the file is still not found, the file type GML is
used.

When working on a PC/DOS system, the DOS environment symbol GMLINC may be set with an
include file list. This symbol is defined in the same way as a library definition list (see "Defining a
Library List" on page 234), and provides a list of alternate directories for file inclusion. If an included
file is not defined in the current directory, the directories specified by the include path list are searched
for the file. If the file is still not found, the directories specified by the DOS environment symbol PATH

are searched.

9.56 INDEX
Format: :INDEX [ix=n].

(n=0 -> 8)

This tag may be used in the back material of a GML document to create the formatted index.

INDEX 83

GML Reference

The ix attribute selects one of the index groups (from zero through eight), with zero being the default.

The index command line option must be specified for the index tag to be processed. All index tags are
ignored if the option is not specified, allowing for faster draft document creation.

9.57 IREF
Format: :IREF refid=’id-name’

[pg=start
end
major
’character string’]

[see=’character string’]
[seeid=’id-name’].

This tag will cause an index entry to be created. The entry will be similar to the one referenced by the
refid attribute, which must be specified. Index references may be placed anywhere in the document. The
index command line option must be specified for the index reference tag to be processed.

The refid attribute is used to reference an index entry identified by the specified identifier name.

The pg attribute determines the way in which the page number for the index entry is presented. If the
attribute value is start, the index entry will have a page range. The end attribute value on an index entry
will mark the end of a previously started page range. The attribute value major makes the page number
reference of higher priority than the other page references in the index entry, and causes it to be listed
first. If a character string is specified as the attribute value, the character string is placed in the index
instead of a page number.

The see attribute will cause the supplied character string to be used as a page number reference. The
character text "See" will prefix the character string in the index if there are no references in the index
entry. If there are index subentries or page references, the string "See also" will be prefixed to the
character string. It is your responsibility to ensure that index entries specified in the character string are
actually in the index. The see attribute may only be used when the index entry is of level one or two.

The seeid attribute is used to reference an index entry. The index term created by the referenced index
entry is used instead of a page number. If the referenced index entry has the print attribute specified, the
character string value of the print attribute will be used instead of the index term. The character string
"See" will prefix the index term in the index if there are no page references in the index entry. If there are
index subentries or page references, the string "See also" will be prefixed to the index term. The seeid

attribute may only be used when the index entry is of level one or two.

9.58 LAYOUT
Format: :LAYOUT.

This tag starts a layout section. The layout tag is a special WATCOM Script/GML tag used to modify the
default layout of the output document. More than one layout section may be present, but all layout
sections must appear before the :gdoc tag. The :elayout tag terminates a layout section. See "Layouts"
on page 101 for more information on the layout tag.

9.59 LI
Format: :LI [id=’id-name’].<paragraph elements>

<basic document elements>

84 LI

GML Tags

This tag signals the start of an item in a simple, ordered, or unordered list. The unordered list items are
preceded by an annotation symbol, such as an asterisk. The ordered list items are annotated by an ordered
sequence.

The id attribute associates an identifier name with the list item, and may only be used when the list item is
in an ordered list. The identifier name is used when processing a list item reference, and must be unique
within the document.

9.60 LIREF
Format: :LIREF refid=’id-name’

[page=yes
no].

This tag generates a reference to an item in an ordered list. The list item reference tag is a paragraph
element, and is used with text to create the content of a basic document element. The number text from
the referenced list item is inserted into the output.

The refid attribute will determine the list item for which the reference will be generated. The specified
identifier name must be the value of the id attribute on the list item tag you wish to reference.

The page attribute controls the output of the list item page number. If the attribute value yes is specified,
the text "on page" followed by the page number of the referenced list item is placed after the annotation
text. If the attribute value no is specified, the page number of the referenced list item is not generated. If
the page attribute is not specified, the list item page number is generated only if the list item reference is
not on the same page as the list item.

9.61 LP
Format: :LP.<paragraph elements>

The list part tag is used to insert an explanation into the middle of a list. It may be used in simple,
ordered, unordered, definition and glossary lists.

9.62 LQ
Format: :LQ.<basic document elements>

This tag starts a long quotation. WATCOM Script/GML does not surround a long quotation with quotes.
The long quote is made distinct from the rest of the text by the way in which it is formatted. The :elq tag
terminates a long quotation.

9.63 NOTE
Format: :NOTE.<paragraph elements>

This tag signals the start of a note. The paragraph elements are formatted with some emphasizing text,
such as the default text "Note: ", in front of the paragraph elements.

A note may be used wherever a basic document element is permitted to appear.

NOTE 85

GML Reference

9.64 OL
Format: :OL [compact].

This tag signals the start of an ordered list. Items in the list are specified using the :li tag. The list items
are preceded by the number of the list item. The layout determines the style of the number.

An ordered list may be used wherever a basic document element is permitted to appear. A corresponding
:eol tag must be specified for each :ol tag.

The compact attribute indicates that the list items should be compacted. Blank lines that are normally
placed between the list items will be suppressed. The compact attribute is one of the few WATCOM
Script/GML attributes which does not have an attribute value associated with it.

9.65 P
Format: :P.<paragraph elements>

This tag signals the start of a paragraph. Many layouts cause the first line of a paragraph to be indented.

A paragraph may occur wherever a basic document element is permitted.

9.66 PC
Format: :PC.<paragraph elements>

The paragraph continuation tag signals the start of a paragraph continuation. A paragraph continuation
tag will be necessary when another basic document element, such as an example, is placed in the middle
of a paragraph. Most layouts do not indent the first line of a paragraph continuation.

The tag may be used wherever a basic document element is permitted.

9.67 PREFACE
Format: :PREFACE.

This tag signals the start of the preface in the front material of a GML document. The preface is optional,
but if specified it must follow the abstract and precede the table of contents. Basic document elements
and heading levels two through six (:h2-:h6) may be specified in the preface.

9.68 PSC
Format: :PSC [proc=’character string’].

This tag allows you to specify process-specific controls in your document. The :psc tag may be used
anywhere in the document, and is terminated by the :epsc tag.

The proc attribute determines when the text in the psc block will be processed. If the proc attribute is not
specified, the text in the psc block will always be processed. When the proc attribute is specified, the
attribute value is a character string composed of device names separated by blanks. If the device being

86 PSC

GML Tags

used to format the document matches one of the specified names in the list, the process control block is
processed. In addition to the device names, one other process name may be specified in the proc list.
This name is checked against the name set by the process command line option.

9.69 Q
Format: :Q.

This tag starts a quote. The quote is enclosed in double quotation marks. When quotes are specified
within other quotes, they are alternately enclosed by single and double quotation marks.

The quote tag is a paragraph element. It is used with text to create the content of a basic document
element, such as a paragraph. A corresponding :eq tag must be specified for each :q tag.

9.70 SET
Format: :SET symbol=’symbol-name’

value=’character-string’
delete.

This tag defines and assigns a value to a symbol name.

The symbol attribute must be specified. The value of this attribute is the name of the symbol being
defined, and cannot have a length greater than ten characters. The symbol name may only contain letters,
numbers, and the characters @, #, $ and underscore(_).

The value attribute must be specified. The attribute value delete or a valid character string may be
assigned to the symbol name. If the attribute value delete is used, the symbol referred to by the symbol
name is deleted. Refer to "Symbolic Substitution" on page 65 for more information about symbol
substitution.

9.71 SF
Format: :SF font=number.

The set font tag starts the highlighting of phrases at the level specified by the required attribute font. The
actual highlighting to be performed is determined by the type of device for which the document is being
formatted. Examples of highlighting include underlining, displaying in bold face, or using a different
character shape (such as italics).

The value of the font attribute is a non-negative integer number. If the specified number is larger than the
last defined font for the document, font for zero is used.

Highlighting may not be used when the GML layout explicitly determines the emphasis to be used, such
as in the text of a heading.

The set font tag is a paragraph element. It is used with text to create the content of a basic document
element, such as a paragraph. A corresponding :ESF tag must be specified for each :SF tag.

SF 87

GML Reference

9.72 SL
Format: :SL [compact].

This tag signals the start of a simple list. Items in the list are specified using the :li tag.

A simple list may occur wherever a basic document element is permitted to appear. A corresponding :esl

tag must be specified for each :sl tag.

The compact attribute indicates that the list items should be compacted. Blank lines that are normally
placed between the list items will be suppressed. The compact attribute is one of the few WATCOM
Script/GML attributes which does not have an attribute value associated with it.

9.73 TITLE
Format: :TITLE [stitle=’character string’].<text>

This tag is used to specify the title of the document. It may only appear in the front material title page.
The :title tag is specified for each line of a multiple line title. The title text specified with the tag may
also be used in the creation of top and/or bottom page banners. When more than one title line is
specified, the first one is used in banner creation.

The stitle attribute allows you to specify a short title. When a short title is specified, it may be used
instead of the title text when creating the top and/or bottom page banners.

9.74 TITLEP
Format: :TITLEP.

This tag signals the start of the title page of a GML document. It may only appear in the front material of
a document. A corresponding :etitlep tag must be specified for the :titlep tag.

9.75 TOC
Format: :TOC.

This tag may be used in the front material of a GML document to create a formatted table of contents.
More than one pass will be required to properly place the table of contents. When there is only one pass
over the document, WATCOM Script/GML will create the table of contents at the end of the document.

9.76 UL
Format: :UL [compact].

This tag signals the start of an unordered list. Items in the list are specified using the :li tag. The list
items are preceded by a symbol such as an asterisk or a bullet.

This tag may be used wherever a basic document element is permitted to appear. A corresponding :eul

tag must be specified for each :ul tag.

88 UL

GML Tags

The compact attribute indicates that the list items should be compacted. Blank lines that are normally
placed between the list items will be suppressed. The compact attribute is one of the few WATCOM
Script/GML attributes which does not have an attribute value associated with it.

9.77 XMP
Format: :XMP [depth=’vert-space-unit’].

<paragraph elements>
<basic document elements>

This tag signals the start of an example. Each line of source text following the example tag is placed in
the output document without normal text processing. Spacing between words is preserved, and the input
text is not right justified. Input source lines which do not fit on a line in the output document are split
into two lines on a character, rather than a word basis. An example may be used where a basic document
element is permitted to appear, except within a figure, footnote, or example. A corresponding :exmp tag
must be specified for each :xmp tag.

If the example does not fit on the current page or column, it is forced to the next one. If the current
column is empty, the example will be split into two parts.

The depth attribute accepts vertical space units as possible values. The amount of specified vertical
space is created in the output before any source input text is processed. The value of the depth attribute is
linked to the current font (see "Font Linkage" on page 64).

XMP 89

GML Reference

90 XMP

10 GML Letter Tags

This section contains a subsection on each of the tags supported with the WATCOM Script/GML letter
format. The tags are presented in alphabetical order, and are presented in the same format as the standard
WATCOM Script/GML tags. Also note that the FORM command line option must be specified with the
value LETTER (see "FORMat" on page 171).

10.1 ATTN
Format: :ATTN.attention name

The optional attention tag is used to identify a specific person or department at a general address. The
default text "Attention: " followed by the attention name text is placed in the output document. The
attention tag must be specified after the :to tag. The tags :attn, :open, and :subject may be specified in
any order.

10.2 CLOSE
Format: :CLOSE [depth=’vert-space-unit’].<text line>

<author lines>

This tag closes the letter, and must be specified after the main body of the document. The close text line
specifies the closing salutation. The closing salutation text is placed in the output document followed by
a layout-determined delimiter (such as a comma). Each line following the close tag will be an output line
of the author’s signature and position. The :eclose tag will terminate the CLOSE.

The depth attribute accepts any valid vertical space unit. The specified amount of space is placed
between the closing salutation and the author lines.

10.3 DATE
Format: :DATE [align=left

right]
[depth=’vert-space-unit’].<text line>

This tag specifies the date associated with the letter, and is specified after the :from tag. The current date
is used if the optional date text line is not specified. The :date tag may be omitted from the letter.

The align attribute positions the date text on the output page. The attribute value left causes the date text
to appear at the left margin of the letter. The attribute value right causes the date text to appear at the
right margin of the letter. The value of the align attribute will be determined by the layout if it has not
been specified.

The depth attribute accepts any valid vertical space unit. The specified amount of space is placed before
the date text.

DATE 91

GML Reference

10.4 DIST
Format: :DIST.label

<name lines>

The :dist tag starts a list of distribution destinations or enclosures, and is specified after the :distrib tag.
The label text associated with the tag identifies the type of the distribution list. Each line following the
dist tag is a distribution destination.

10.5 DISTRIB
Format: :DISTRIB.

The optional distribution tag starts a distribution or enclosure list after the close of the letter. The :dist

tag is used to start each category in the distribution list.

10.6 DOCNUM
Format: :DOCNUM.document number

The optional document number tag specifies the number associated with the document, and is specified
after the :date tag. The document number is not displayed on the letter page. It may be used in the
banners at the top and/or bottom of the page.

10.7 ECLOSE
Format: :eCLOSE.typist mark

The :eclose tag is used to indicate the end of the close section. The optional text following the eclose tag
is the typist mark, and is used to identify the person producing the letter.

10.8 EDISTRIB
Format: :eDISTRIB.

The :edistrib tag is used to indicate the end of the distribution section.

10.9 FROM
Format: :FROM.

<address lines>

The :from tag starts an address entity. Each line following the tag will be a line in the address of the
letter author. The first GML tag encountered will terminate the FROM address. If the paper on which the
letter will be printed has the author’s address on it, the :from tag may be omitted.

92 FROM

GML Letter Tags

10.10 OPEN
Format: :OPEN.opening salutation

<basic document elements>

The :open tag specifies the opening salutation text and must be specified. The salutation text is placed in
the output document followed by a layout-determined delimiter (such as a colon). The body of the letter
follows the open tag. The tags :attn, :open, and :subject may be specified in any order.

10.11 SUBJECT
Format: :SUBJECT.subject text

The optional subject tag is used to indicate the subject of the letter. The subject text is placed in the
output document. The tags :attn, :open, and :subject may be specified in any order.

10.12 TO
Format: :TO [compact].

<recipient lines>

The optional :to tag starts an address entity. Each line following the tag will be a line in the address of
the letter recipient. The first GML tag encountered will terminate the TO address.

The optional attribute compact will suppress the printing of blank lines in the address. The option is
most useful when printing form letters from a database which contains some empty fields.

TO 93

GML Reference

94 TO

11 Script Support

Script is a formatting language used at many installations for creating documents. The Script commands
(control words) are format directives which define how a document is formatted. This is in contrast with
the GML tags, which define the content of a document.

The Script directives are recognized and processed when the SCRIPT command line option is specified.
Each document record which begins with a period in the first column is a Script control line. The period
is called the control word indicator. A Script control line must contain a valid Script directive. All of the
directives defined by the Waterloo Script product are recognized. Those control words not implemented
are ignored. See "Processing Rules" on page 63 for details on the processing rules for a source document,
and " UnProcessed Script Control Words" on page 237 for a list of Script control words which are not
processed.

The control words have been implemented based on version 90.1 of the Waterloo Script product. The
documentation for this product is included with the WATCOM Script/GML package to provide the
documentation for the Script support. The control words for define macro (.DM), gml tag (.GT), and gml
attribute (.GA) are also described in this document. These control words are the fundamental tools
needed to build your own set of GML tags.

Many of the Script directives cause a break. A break will cause any text currently formatted on an output
line to be sent to the output device. Any new text will not be joined with the previously processed
document text.

11.1 Control Word Modifiers

Modifiers change the processing of the Script control line, and are placed immediately after the control
word indicator. There are two modifiers for a control word specification.

The single quote(’) modifier directs the processor to ignore control word separators(;) in the input line.
The separator character will be treated as text data, and included in the processing of the control word
operand.

If there are two control word indicators at the beginning of the logical record, the list of macros is not
searched. The characters which follow must be a Script control word.

11.2 DM Control Word
.DM name BEGIN

macro data
.DM name END

or

.DM name DELETE | OFF

or

.DM name /data line1/data line2/.../data linen[/]

DM Control Word 95

GML Reference

The define macro control word is used to create or remove a macro definition, and does not cause a
break. Macros contain source fragments which may be processed by specifying the name of the macro.
See "Processing Rules" on page 63 for details on the processing rules of a source document.

The first form of the .dm control word creates a macro. The name of a macro may be one to eight
characters in length. All macro data lines are saved without processing (including symbol substitution)
until the define macro END is recognized. The ending define macro control word must start at the
beginning of the physical input line in the document source.

The DELETE macro option removes the specified macro name from the list of defined macros.

The last form of the .dm control word creates a macro from the operand line. The first character of the
operand (in this case the / character) is used to delimit individual lines in the macro definition.

11.2.1 Invoking Macros

Macros are invoked in the document source by entering the control word indicator(.) in the first column
of a logical record immediately followed by the name of the macro. All of the logical record text after the
macro name is processed as parameter data for the macro. Invoking a macro does not cause a break.

Each operand value is separated by a space. Operand values may be enclosed in quotation marks if they
contain a blank space. If a valid symbol name is immediately followed by an equals(=) sign, the value to
the right hand side of the equals is assigned to the symbol name. All other operands are assigned to
symbols local to the macro. The symbol names used for these values are &*1, &*2, &*3, ..., &*n until
all values have been assigned to a symbol. The symbol &*0 contains the number of local symbols that
have been created. The symbol &* contains the entire macro operand line.

If screen is the name of a defined macro, then it could be invoked as follows:

.screen file=’example’ ’2.5i’

The first operand value defines the symbol &file with the value example. The second operand
value assigns 2.5i to the local macro symbol &*1. See "Symbolic Substitution" on page 65 for more
information on symbols and symbol substitution.

11.3 GA Control Word
.GA tagname | * attname | * [options(A)] [options(B)]

where options(A) are:

OFF | ON
UPpercase
REQuired

where options(B) are:

AUTOmatic ’string’
LENgth integer number
RANge minvalue maxvalue [default1 [default2]]
VALue ’valname’ [USE ’string’] [DEFault]
ANY [’string’]
RESET ’valname’ | ’string’ | integer

The GML attribute control word defines or modifies an attribute for a GML tag. The tagname value
must have been previously defined by a .GT control word. If an asterisk(*) is used, the last GML tag
defined or operated on will be referenced. The attname value defines a new or modifies an existing tag

96 GA Control Word

Script Support

attribute name. An attribute name must contain no more than nine alphanumeric characters. If an
asterisk(*) is used, the last attribute name specified for the current tag will be referenced.

One or more of the option(A) values may be specified with the GML attribute control word.

OFF The attribute will be ignored when specified on a GML tag by the user.

ON Processing of an attribute which was previously ignored due to the OFF option is
restarted.

UPpercase The value of the attribute is converted to uppercase before being processed.

REQuired The attribute must always be specified when the GML tag is used.

More than one option(B) value may be specified for a GML attribute, each of which must be specified by
a separate .GA control word.

AUTOmatic The string value specified with this option is processed as the value of the attribute
as if it was specified by the user. An automatic attribute may not be actually
specified by the user with the GML tag.

LENgth The number specified with this option is the maximum number of characters
accepted as an attribute value.

RANge The first two numbers specify the minimum and maximum numeric values allowed
with the current attribute. The optional number default1 provides a default value if
the attribute is not specified with the tag. If the attribute is specified without a
value, the optional number default2 provides a default value (default1 will be the
default if default2 is not specified).

VALue The option operand valname is defined as one of the possible values for an attribute.
The VALUE option must be specified for each possible VALNAME you wish to
define as a possible attribute value. If the USE keyword is specified, the USE string
value is processed as the attribute value when the VALNAME value is specified.
The DEFault keyword defines the default attribute value if the attribute is not
specified with the GML tag.

ANY Any character string may be specified as the attribute value. If the optional string
operand is also specified, it is used as the default value if the attribute is not
specified with the GML tag.

RESET The reset option resets the current attribute values. With an AUTOMATIC or ANY
attribute, the default string operand is reset. With a RANGE attribute, two numbers
may be specified to reset the two default range numbers. With a VALUE attribute,
the option will reset the default value to the specified value name.

GA Control Word 97

GML Reference

11.4 GT Control Word
.GT tagname ADD macro-name [tag options]

or

.GT tagname CHAnge macro-name

or

.GT tagname | * DELete | PRint

or

.GT tagname OFF | ON

where tag options are:

ATTributes
CONTinue
CSOFF
NOCONTinue
TAGnext
TEXTDef ’string’
TEXTError
TEXTReqd

The GML tag control word defines or modifies a GML tag. The tagname value must have been
previously defined by a .GT control word for all but the ADD operand, and may not contain more than
fifteen alphanumeric characters.

ADD Specifies a new GML tag and assigns the macro ’macro-name’ to process the tag
information. The tag options ’continue’, ’nocontinue’, and ’tagnext’ are recognized
but not currently supported.

ATTributes The GML tag has one or more attributes.

CONTinue Each tag is treated as though it starts on a new input line. The
’continue’ option causes a continue character to be generated
before processing the tag.

CSOFF This option will terminate any active process control (or
conditional) sections.

NOCONTinue The current tag cannot be continued by a previous tag.

TAGnext Document text is not allowed after the current tag. Another
GML tag must follow in the input.

TEXTDef The specified character string is used if tag text is not specified
with the tag.

TEXTError Tag text is not allowed with the tag.

TEXTLine All data to the end of the input line is treated as tag text.

TEXTReqd Tag text must be specified with the tag.

CHAnge The macro processor for the current GML tag is reassigned to be the macro
’macro-name’.

98 GT Control Word

Script Support

DELete The current GML tag and its associated attributes are deleted, and will no longer be
recognized as a GML tag. If an asterisk(*) is specified as the tag name, all GML
tags are deleted.

OFF The GML tag will be not be processed if found in the document.

ON Processing of a tag which was previously ignored due to the OFF option is restarted.

PRint The current GML tag and its associated attributes are printed on the output screen.
If an asterisk(*) is specified as the tag name, all GML tags are printed.

GT Control Word 99

GML Reference

100 GT Control Word

12 Layouts

12.1 Specifying and Using Layouts

The layout determines the way in which the document elements specified by the GML tags are formatted
on the output page. Many of the formatting actions may be modified through the supplied layout tags.
The layout tags are specified in much the same way as the GML tags are specified in the document.
Some of the layout tags, such as :fig, have the same name as the GML tags which they modify.

A layout section starts with the :layout tag, and must appear before the :gdoc tag. The layout section is
terminated with an :elayout tag. Only the portions of the layout you wish to change need to be specified,
as the changes modify the default layout which is built into WATCOM Script/GML. If more than one
layout is specified, the changes are cumulative. With the exception of the :banner and :banregion tags,
the attributes of the layout tags are all optional.

The layout section may be stored in a separate file. This file may be included at the start of the document
with the :include tag, or specified when you run WATCOM Script/GML with the LAYOUT command
line option. Including the layout with either of these two methods makes it easier to select a different
layout.

The :convert tag may be used to determine the attribute values in the current layout.

12.2 Number Style

The term number style is used throughout the layout section of this document. The number style is a
sequence of up to three codes which defines the style of a generated number. The first code indicates the
form of the number digits.

A The number is formed with lower case alphabetic characters. Example: 28 is
represented by ab while 29 is represented by ac. (a=1, b=2,..., z=26, aa=27, ab=28)

B The number is formed with upper case alphabetic characters. Example: 28 is
represented by AB while 29 is represented by AC. (A=1, B=2,..., Z=26, AA=27,
AB=28)

H The number is formed with hindu-arabic characters. Example: The number twenty
eight is represented by 28.

R The number is formed with lower case roman numerals. Example: The number 28

is represented by xxviii.

C The number is formed with upper case roman numerals. Example: The number 28

is represented by XXVIII.

The second code, which does not have to be specified, defines how the number is separated from other
numbers or text.

Number Style 101

GML Reference

D The number is followed by a decimal point.

P The number is surrounded by parentheses.

The third code may be specified if parentheses were specified in the second code.

A The number is preceded by a left parenthesis and is not followed by a right
parenthesis.

B The number is followed by a right parenthesis and is not preceded by a left
parenthesis.

12.3 Layout Tags

This section contains a subsection on each of the layout tags supported by WATCOM Script/GML. The
tags are presented in alphabetical order, each with an example. Most of the example values are the values
used with the default layout. The :convert tag can be used to determine the exact values.

12.3.1 ABSTRACT

Define the characteristics of the abstract section and the abstract heading.

:ABSTRACT
post_skip = 1
pre_top_skip = 1
font = 1
spacing = 1
header = yes
abstract_string = "ABSTRACT"
page_eject = yes
page_reset = yes
columns = 1

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the abstract heading. The post-skip will be merged with the
next document entity’s pre-skip value. If a post-skip occurs at the end of an output
page, any remaining part of the skip is not carried over to the next output page. If
the abstract heading is not displayed (the header attribute has a value of NO), the
post-skip value has no effect.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the abstract heading. The pre-top-skip will be merged
with the previous document entity’s post-skip value. The specified space is still
skipped at the beginning of a new page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the abstract heading. The font value is linked to the pre_top_skip and post_skip
attributes (see "Font Linkage" on page 64).

102 Layout Tags

Layouts

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the abstract section.

header The header attribute accepts the keyword values yes and no. If the value yes is
specified, the abstract heading is generated. If the value no is specified, the header
text is not generated.

abstract_string This attribute accepts a character string. If the abstract header is generated, the
specified string is used for the heading text.

page_eject This attribute accepts the keyword values yes, no, odd, and even. If the value no is
specified, the heading is one column wide and is not forced to a new page. The
heading is always placed on a new page when the value yes is specified. Values
other than no cause the heading to be treated as a page wide heading in a
multi-column document.

The values odd and even will place the heading on a new page if the parity (odd or
even) of the current page number does not match the specified value. When two
headings appear together, the attribute value stop_eject=yes of the :heading layout
tag will normally prevent the the second heading from going to the next page. The
odd and even values act on the heading without regard to the stop_eject value.

page_reset This attribute accepts the keyword values yes and no. If the value yes is specified,
the page number is reset to one at the beginning of the section. With the
:ABSTRACT tag only, a value of yes will cause the page number to always be reset
after the title page.

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created for the abstract.

12.3.2 ADDRESS

Define the characteristics of the address entity.

:ADDRESS
left_adjust = 0
right_adjust = ’1i’
page_position = right
font = 0
pre_skip = 2

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

page_position This attribute accepts the values left, right, center, and centre. The position of the
address between the left and right margins is determined by the value selected. If
left is the attribute value, the text is output at the left margin. If right is the attribute
value, the text is output next to the right margin. When center or centre is specified,
the text is centered between the left and right margins.

Layout Tags 103

GML Reference

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the address. The font value is linked to the left_adjust, right_adjust and pre_skip
attributes of the :ADDRESS tag, and the skip attribute of the :ALINE tag (see "Font
Linkage" on page 64).

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the address. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

12.3.3 ALINE

Define the characteristics of the address line entity.

:ALINE
skip = 1

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between address lines.

12.3.4 APPENDIX

Define the characteristics of the appendix section and appendix heading. All of the attributes, with the
exception of the spacing value, apply to the :h1 tag while in the appendix section.

:APPENDIX
indent = 0
pre_top_skip = 0
pre_skip = 0
post_skip = 3
spacing = 1
font = 3
number_font = 3
number_form = new
page_position = left
number_style = b
page_eject = yes
line_break = yes
display_heading = yes
number_reset = yes
case = mixed
align = 0
header = yes
appendix_string = "APPENDIX "
page_reset = no
section_eject = yes
columns = 1

indent The indent attribute accepts any valid horizontal space unit. The indent value is
added to the offset determined by the page position attribute, giving the starting
offset from the left margin for the appendix heading.

104 Layout Tags

Layouts

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the appendix heading. The pre-top-skip will be merged
with the previous document entity’s post-skip value. The specified space is still
skipped at the beginning of a new page.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the appendix heading. The post-skip will be merged with
the next document entity’s pre-skip value. If a post-skip occurs at the end of an
output page, any remaining part of the skip is not carried over to the next output
page. If the appendix heading is not displayed, the post-skip is ignored.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the appendix section.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the appendix heading. The font value is linked to the indent, post_skip and
pre_top_skip attributes (see "Font Linkage" on page 64).

number_font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The number font attribute defines
the font of the appendix number.

number_form This attribute accepts the values none, prop, and new. The specified value
determines the format of the appendix heading number. The value none indicates
that no number is to be output. The value prop indicates that the number is
composed of the number for the current level prefixed by the number for the
previous level and the number delimiter specified in the heading layout tag. The
value new indicates that only the number of the current level is to be output.

page_position This attribute accepts the values left, right, center, and centre. The position of the
appendix heading between the left and right margins is determined by the value
selected. If left is the attribute value, the text is output at the left margin. If right is
the attribute value, the text is output next to the right margin. When center or centre
is specified, the text is centered between the left and right margins.

number_style This attribute sets the number style of the appendix heading number. (See "Number
Style" on page 101).

page_eject This attribute accepts the keyword values yes, no, odd, and even. If the value no is
specified, the heading is one column wide and is not forced to a new page. The
heading is always placed on a new page when the value yes is specified. Values
other than no cause the heading to be treated as a page wide heading in a
multi-column document.

Layout Tags 105

GML Reference

The values odd and even will place the heading on a new page if the parity (odd or
even) of the current page number does not match the specified value. When two
headings appear together, the attribute value stop_eject=yes of the :heading layout
tag will normally prevent the the second heading from going to the next page. The
odd and even values act on the heading without regard to the stop_eject value.

line_break This attribute accepts the keyword values yes and no. If the value yes is specified,
the skip value specified by the post_skip attribute will be issued. If the value no is
specified, the skip value specified by the post_skip attribute will be ignored. If a
paragraph follows the heading, the paragraph text will start on the same line as the
heading.

display_heading This attribute accepts the keyword values yes and no. The heading is not produced
when the value no is specified. The heading pre and post skips are still generated.

number_reset This attribute accepts the keyword values yes and no. When a heading is processed,
all heading levels after it have their heading numbers reset. When the value ’no’ is
specified, the number of the next level of heading is not reset.

case This attribute accepts the keyword values mixed, upper and lower. When a heading
is processed, the text is converted to upper or lower case when the values UPPER or
LOWER are used. The text is left unchanged when the value MIXED is used.

align This attribute accepts any valid horizontal space unit. The align value specifies the
amount of space reserved for the appendix heading. After the appendix heading is
produced, the align value is added to the current left margin. The left margin will be
reset to its previous value after the appendix heading.

header The header attribute accepts the keyword values yes and no. If the value yes is
specified, the appendix header (specified by the appendix_string attribute) is
generated at the beginning of the heading text specified by a :h1 tag. If the value no
is specified, the header text is not generated.

appendix_string This attribute accepts a character string. If the appendix header is generated, the
specified string is inserted before the :h1 heading text.

page_reset This attribute accepts the keyword values yes and no. If the value yes is specified,
the page number is reset to one at the beginning of the section.

section_eject This attribute accepts the keyword values yes, no, odd, and even. If the value no is
specified, the section is not forced to a new page. The section is always placed on a
new page when the value yes is specified.

The values odd and even will place the section on a new page if the parity (odd or
even) of the current page number does not match the specified value.

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created for the appendix.

12.3.5 ATTN

Define the characteristics of the attention entity in the letter format.

106 Layout Tags

Layouts

:ATTN
left_adjust = 0
page_position = left
pre_top_skip = 1
font = 1
attn_string = "Attention: "
string_font = 1

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

page_position This attribute accepts the values left, right, center, and centre. The position of the
attention text between the left and right margins is determined by the value selected.
If left is the attribute value, the text is output at the left margin. If right is the
attribute value, the text is output next to the right margin. When center or centre is
specified, the text is centered between the left and right margins.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the attention text. The pre-top-skip will be merged with
the previous document entity’s post-skip value. The specified space is still skipped
at the beginning of a new page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the attention text. The font value is linked to the left_adjust and pre_top_skip
attributes (see "Font Linkage" on page 64).

attn_string This attribute accepts a character string. The specified string precedes the attention
text in the output document.

string_font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The string_font attribute defines the
font of the the attention string defined by the attn_string attribute.

12.3.6 AUTHOR

Define the characteristics of the author entity.

:AUTHOR
left_adjust = 0
right_adjust = ’1i’
page_position = right
font = 0
pre_skip = 25
skip = 1

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

Layout Tags 107

GML Reference

page_position This attribute accepts the values left, right, center, and centre. The position of the
author line between the left and right margins is determined by the value selected. If
left is the attribute value, the text is output at the left margin. If right is the attribute
value, the text is output next to the right margin. When center or centre is specified,
the text is centered between the left and right margins.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the author lines. The font value is linked to the left_adjust, right_adjust, pre_skip
and skip attributes (see "Font Linkage" on page 64).

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the author lines. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between author lines.

12.3.7 BACKM

Define the characteristics of the back material section.

:BACKM
post_skip = 0
pre_top_skip = 0
header = no
backm_string = ""
page_eject = yes
page_reset = no
columns = 1
font = 1

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the back material. The post-skip will be merged with the
next document entity’s pre-skip value. If a post-skip occurs at the end of an output
page, any remaining part of the skip is not carried over to the next output page. If
the back material heading is not displayed (the header attribute has a value of NO),
the post-skip value has no effect.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the back material. The pre-top-skip will be merged with
the previous document entity’s post-skip value. The specified space is still skipped
at the beginning of a new page.

108 Layout Tags

Layouts

header The header attribute accepts the keyword values yes and no. If the value yes is
specified, the back material heading is generated. If the value no is specified, the
header text is not generated.

backm_string This attribute accepts a character string. If the back material header is generated, the
specified string is used for the heading text.

page_eject This attribute accepts the keyword values yes, no, odd, and even. If the value no is
specified, the heading is one column wide and is not forced to a new page. The
heading is always placed on a new page when the value yes is specified. Values
other than no cause the heading to be treated as a page wide heading in a
multi-column document.

The values odd and even will place the heading on a new page if the parity (odd or
even) of the current page number does not match the specified value. When two
headings appear together, the attribute value stop_eject=yes of the :heading layout
tag will normally prevent the the second heading from going to the next page. The
odd and even values act on the heading without regard to the stop_eject value.

page_reset This attribute accepts the keyword values yes and no. If the value yes is specified,
the page number is reset to one at the beginning of the section.

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created for the back material.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the header attribute value. The font value is linked to the pre_top_skip and
post_skip attributes (see "Font Linkage" on page 64).

12.3.8 BANNER

Defines a page banner. A page banner appears at the top and/or bottom of a page. Information such as
page numbers, running titles and the current heading would be defined in a banner. Banners may be
defined for the top and/or bottom of a page in each section of the document. The banner attributes
specify the size of the banner and the document section in which it is to be used.

A banner definition begins with the :banner tag and ends with the :ebanner tag. The banner is divided
into a number of regions, each defined by the :banregion tag. The banner region definitions are placed
after the banner attributes and before the :ebanner tag.

:BANNER
left_adjust = 0
right_adjust = 0
depth = 3
place = bottom
refplace = bottom
docsect = head0
refdoc = body

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

Layout Tags 109

GML Reference

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

depth The depth attribute accepts as its value any valid vertical space unit. It specifies the
vertical depth of the banner.

place The place attribute specifies where on the odd or even numbered output page the
banner is to be placed. The following values may be specified for this attribute:

top The top of pages.
bottom The bottom of pages.
topodd The top of odd pages.
topeven The top of even pages.
botodd The bottom of odd pages.
boteven The bottom of even pages.

refplace The refplace attribute specifies the place value of an existing banner.

docsect The document section for which the banner will be used. The following values may
be specified for this attribute:

abstract The banner will appear in the abstract section of the document.
appendix The banner will appear in the appendix section of the

document.
backm The banner will appear in the back material section of the

document.
body The banner will appear in the body section of the document.
figlist The banner will appear in the figure list section of the

document.
HEADn The banner will appear when a heading of level n, where n

may have a value of zero through six inclusive, appears on the
output page.

letfirst The banner will appear on the first page of the letter when the
letter format is used. If the letter has only one page, only the
banner defined for the top of the page will be used. Even page
banners are not allowed if letfirst is the document section
value.

letlast The banner will appear on the last page of the letter when the
letter format is used. If the letter has only one page, only the
banner defined for the bottom of the page will be used.

letter The banner will appear on the pages between the first and last
page of the letter when the letter format is used.

index The banner will appear in the index section of the document.
preface The banner will appear in the preface section of the document.
toc The banner will appear in the table of contents section of the

document.

refdoc The refdoc attribute specifies the docsect value of an existing banner.

The refplace and refdoc attributes are used in combination to specify an existing banner. The referenced
banner is copied to the banner being defined. These attributes are most commonly used when duplicating
a banner for an odd or even page. When these attributes are specified, only the place and docsect
attributes are required. All other attributes will override the attribute values of the banner being copied.
If the two reference attributes are not specified, all of the other attributes are required.

To delete a banner, specify only the place and docsect attributes, and delete the individual banner regions.

110 Layout Tags

Layouts

12.3.9 BANREGION

Define a banner region within a banner. Each banner region specifies a rectangular section of the banner.
A banner region begins with a :banregion tag and ends with an :ebanregion tag. All banner regions are
defined after the banner tag attributes and before the :ebanner tag.

:BANREGION
indent = 0
hoffset = left
width = extend
voffset = 2
depth = 1
font = 0
refnum = 1
region_position = left
pouring = last
script_format = yes
contents = ’/&$htext0.// &$pgnuma./’

indent The indent attribute accepts any valid horizontal space unit. The specified space
value is added to the value of the horizontal offset attribute (hoffset) to determine
the start of banner region in the banner if the horizontal offset is specified as left,
centre, or center. If the horizontal offset is specified as right, the indent value is
subtracted from the right margin of the banner.

hoffset The hoffset attribute specifies the horizontal offset from the left side of the banner
where the banner region will start. The attribute value may be any valid horizontal
space unit, or one of the keywords left, center, centre, or right. The keyword values
remove the dependence upon the left and right adjustment settings of the banner that
occurs when using an absolute horizontal offset.

width This attribute may be any valid horizontal space unit, or the keyword extend. If the
width of the banner region is specified as extend, the width of the region will be
increased until the start of another banner region or the right margin of the banner is
reached.

voffset This attribute accepts any valid vertical space unit. It specifies the vertical offset
from the top of the banner for the start of the banner region. A value of zero will be
the first line of the banner, while the value one will be the second line of the banner.

depth The depth attribute accepts a vertical space unit value. The attribute value specifies
the number of output lines or vertical space of the banner region.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the banner region’s contents.

refnum This attribute accepts a positive integer number. Each banner region must have a
unique reference number. If this is the only attribute specified, the banner region is
deleted from the banner.

region_position This attribute specifies the position of the data within the banner region. The
attribute value may be one of the keywords left, center, centre, or right.

pouring When the value of the contents attribute is a heading, and a heading of the specified
level does not appear on the output page, the contents can be ’poured’ back to a

Layout Tags 111

GML Reference

previous heading level. When the attribute value none is specified, no pouring
occurs. In this case, the region will be empty. When the attribute value last is
specified, the last heading appearing in the document with the same level as the
heading specified by the contents attribute is used. The attribute value headn, where
n may have a value of zero through six inclusive, may be specified. In this case, the
last heading appearing in the document which has a level between zero and the
pouring value is used.

script_format This attribute determines if the contents region is processed as a Script content
string in the same way as the operand of a Script running title control word. If the
attribute value is yes, then the value of the content attribute is treated as a Script
format title string.

contents This attribute defines the content of the banner region. If the content value does not
fit in the banner region, the value is truncated. Symbols containing the values for
each of the content keywords are also listed. Specifying these symbols as part of the
string content may be used to create more complex banner region values. Note that
when using a symbol in a content string of a banner definition, you will need to
protect it from being substituted during the definition with the & symbol (ie
&.AUTHOR.). The possible values are:

author The first author of the document will be used. The symbol
$AUTHOR is also defined with this value.

bothead The last heading on the output page is used. The symbol
$BOTHEAD is also defined with this value.

date The current date will be used.

docnum The document number will be the content of the banner region.
The symbol $DOCNUM is also defined with this value.

HEADn The last heading of level n, where n may have a value of zero
through six inclusive. Both the heading number and heading
text are both used. The symbols $HEAD0 through $HEAD6
are also defined with this value.

HEADNUMn The heading number from the last heading of level n, where n

may have a value of zero through six inclusive. The symbols
$HNUM0 through $HNUM6 are also defined with this value.

HEADTEXTn The text of the heading from the last heading of level n, where
n may have a value of zero through six inclusive. If the stitle
attribute was specified for the selected heading, the stitle value
is used. The symbols $HTEXT0 through $HTEXT6 are also
defined with this value.

none The banner region will be empty.

pgnuma The content of the banner region will be the page number of
the output page in the hindu-arabic numbering style. The
symbol $PGNUMA is also defined with this value.

pgnumad The content of the banner region will be the page number of
the output page in the hindu-arabic numbering style followed

112 Layout Tags

Layouts

by a decimal point. The symbol $PGNUMAD is also defined
with this value.

pgnumr The content of the banner region will be the page number of
the output page in the lower case roman numbering style. The
symbol $PGNUMR is also defined with this value.

pgnumrd The content of the banner region will be the page number of
the output page in the lower case roman numbering style
followed by a decimal point. The symbol $PGNUMRD is also
defined with this value.

pgnumc The content of the banner region will be the page number of
the output page in the upper case roman numbering style. The
symbol $PGNUMC is also defined with this value.

pgnumcd The content of the banner region will be the page number of
the output page in the upper case roman numbering style
followed by a decimal point. The symbol $PGNUMCD is also
defined with this value.

rule The content of the banner region will be a rule line which fills
the entire region.

sec The security value specified by the sec attribute on the :gdoc

tag is used. The symbol $SEC is also defined with this value.

stitle The stitle attribute value from the first title tag specified in the
front material of the document is used. If the stitle attribute
was not specified, the title text is used. The symbol $STITLE
is also defined with this value.

title The text of the first title tag specified in the front material of
the document is used. The symbol $TITLE is also defined
with this value.

string Any character string enclosed in quotation marks.

time The current time will be used.

tophead The first heading on the output page is used. The symbol
$TOPHEAD is also defined with this value.

If a banner region does not already exist, then all attributes must be specified. If you wish to modify an
existing banner region, the refnum attribute will uniquely identify the region. When the reference number
is that of an existing banner region, all other attributes will modify the values of the existing banner
region.

To delete a banner region, specify only the refnum attribute. All banner regions must be deleted before a
banner definition will be removed.

12.3.10 BODY

Define the characteristics of the body section.

Layout Tags 113

GML Reference

:BODY
post_skip = 0
pre_top_skip = 0
header = no
body_string = ""
page_eject = yes
page_reset = yes
font = 1

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the body. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page. If the
body heading is not displayed (the header attribute has a value of NO), the post-skip
value has no effect.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the body. The pre-top-skip will be merged with the
previous document entity’s post-skip value. The specified space is still skipped at
the beginning of a new page.

header The header attribute accepts the keyword values yes and no. If the value yes is
specified, the body heading is generated. If the value no is specified, the header text
is not generated.

body_string This attribute accepts a character string. If the body header is generated, the
specified string is used for the heading text.

page_eject This attribute accepts the keyword values yes, no, odd, and even. If the value no is
specified, the heading is one column wide and is not forced to a new page. The
heading is always placed on a new page when the value yes is specified. Values
other than no cause the heading to be treated as a page wide heading in a
multi-column document.

The values odd and even will place the heading on a new page if the parity (odd or
even) of the current page number does not match the specified value. When two
headings appear together, the attribute value stop_eject=yes of the :heading layout
tag will normally prevent the the second heading from going to the next page. The
odd and even values act on the heading without regard to the stop_eject value.

page_reset This attribute accepts the keyword values yes and no. If the value yes is specified,
the page number is reset to one at the beginning of the section.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the header attribute value. The font value is linked to the pre_top_skip and
post_skip attributes (see "Font Linkage" on page 64).

114 Layout Tags

Layouts

12.3.11 CIT

Define the characteristics of the citation entity.

:CIT
font = 1

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the citation text.

12.3.12 CLOSE

Define the characteristics of the close entity in the letter format.

:CLOSE
pre_skip = 2
depth = 6
font = 0
page_position = centre
delim = ’,’
extract_threshold = 2

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the close. The pre-skip will be merged with the previous
document entity’s post-skip value. If a pre-skip occurs at the beginning of an output
page, the pre-skip value has no effect.

depth The depth attribute accepts as its value any valid vertical space unit. The value
specifies the amount of space to be left after the text of the :close tag.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the closing statements. The font value is linked to the depth and pre_skip
attributes (see "Font Linkage" on page 64).

page_position This attribute accepts the values left, right, center, and centre. The position of the
closing statements between the left and right margins is determined by the value
selected. If left is the attribute value, the text is output at the left margin. If right is
the attribute value, the text is output next to the right margin. When center or centre
is specified, the text is centered between the left and right margins.

delim The delimiter attribute sets the delimiter character to be used following the closing
salutation.

extract_threshold The depth attribute accepts as its value a positive integer number. If the text
associated with the :close tag starts on a new page, the number of lines specified by
the extract_threshold attribute will move to the next page with the closing text.

Layout Tags 115

GML Reference

12.3.13 CONVERT

Convert the current layout into the specified file name. The resulting file will contain the entire layout in
a readable form.

:CONVERT file=’file name’.

12.3.14 DATE

Defines the characteristics of the date entity in the standard tag format. The :letdate layout tag defines
the characteristics of the date entity in the letter tag format.

:DATE
date_form = "$ml $dsn, $yl"
left_adjust = 0
right_adjust = ’1i’
page_position = right
font = 0
pre_skip = 2

date_form The date_form attribute accepts a character string value which defines the format of
the date string. The year, month and day may be specified separately and in any
order by special date sequences. These date sequences are started with a dollar($)
sign and followed by one to three characters. Text which is not recognized as a date
sequence can be entered to tailor the format of the resulting date.

The first character in a date sequence is a Y for the year, an M for the month, or a D
for the day. The next character is the L or S character to specify the long or short
form of the date sequence. If neither of these characters are present, the long form is
used. When the length specifier is present, the N character is used to format the
month or the day as a number. If the length specified is not present, the month and
day values are created in character form. The year is always formatted as a number.

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

page_position This attribute accepts the values left, right, center, and centre. The position of the
date between the left and right margins is determined by the value selected. If left is
the attribute value, the text is output at the left margin. If right is the attribute value,
the text is output next to the right margin. When center or centre is specified, the
text is centered between the left and right margins.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the date text. The font value is linked to the left_adjust, right_adjust and pre_skip
attributes (see "Font Linkage" on page 64).

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the date. The pre-skip will be merged with the previous

116 Layout Tags

Layouts

document entity’s post-skip value. If a pre-skip occurs at the beginning of an output
page, the pre-skip value has no effect.

12.3.15 DD

Define the characteristics of the data description entity.

:DD
line_left = ’0.5i’
font = 0

line_left This attribute accepts any valid horizontal space unit. The specified amount of
space must be available on the output line after the definition term which precedes
the data description. If there is not enough space, the data description will be started
on the next output line.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the data description.

12.3.16 DDHD

Define the characteristics of the data description heading entity.

:DDHD
font = 1

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the data description heading.

12.3.17 DEFAULT

Define default characteristics for document processing.

:DEFAULT
spacing = 1
columns = 1
font = 0
justify = yes
input_esc = ’ ’
gutter = ’0.5i’
binding = 0

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the document when there is no layout entry for
spacing with a specific document element.

Layout Tags 117

GML Reference

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created on each output page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the document when the font is not explicitly determined by the document
element.

justify The justify attribute accepts the keyword values yes and no. Right justification of
text is performed if this attribute has a value of yes. If justification is not desired,
the value should be no.

input_esc The input escape attribute accepts the keyword value none or a quoted character.
Input escapes are not recognized if the attribute value is none or a blank. If a
character is specified as the attribute value, this character is used as the input escape
delimiter. If an empty(’’) or none value is specified, the blank value is used. Refer
to "Input Translation" on page 66 for more information.

gutter The gutter attribute specifies the amount of space between columns in a
multi-column document, and has no effect in a single column document. This
attribute accepts any valid horizontal space unit.

binding The binding attribute accepts any valid horizontal space unit. The binding value is
added to the current left and right margins of those output pages which are odd
numbered.

12.3.18 DISTRIB

Define the characteristics of the distribution list entity.

:DISTRIB
pre_top_skip = 3
skip = 1
font = 0
indent = ’0.5i’
page_eject = no

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the distribution list. The pre-top-skip will be merged with
the previous document entity’s post-skip value. The specified space is still skipped
at the beginning of a new page.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between items of the distribution list.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font

118 Layout Tags

Layouts

of the items of the distribution list. The font value is linked to the indent, skip and
pre_top_skip attributes (see "Font Linkage" on page 64).

indent The indent attribute accepts any valid horizontal space unit. The indent value is the
offset from the left margin for the distribution list.

page_eject This attribute accepts the keyword values yes and no. If the value yes is specified,
the distribution list is placed on a new page.

12.3.19 DOCNUM

Define the characteristics of the document number entity.

:DOCNUM
left_adjust = 0
right_adjust = ’1i’
page_position = right
font = 0
pre_skip = 2
docnum_string = "Document Number "

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

page_position This attribute accepts the values left, right, center, and centre. The position of the
document number between the left and right margins is determined by the value
selected. If left is the attribute value, the text is output at the left margin. If right is
the attribute value, the text is output next to the right margin. When center or centre
is specified, the text is centered between the left and right margins.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the text specified by the document_string attribute and the document number.
The font value is linked to the left_adjust, right_adjust and pre_skip attributes (see
"Font Linkage" on page 64).

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the document number. The pre-skip will be merged with
the previous document entity’s post-skip value. If a pre-skip occurs at the beginning
of an output page, the pre-skip value has no effect.

docnum_string This attribute accepts a character string. The specified string precedes the document
number in the output document.

12.3.20 DL

Define the characteristics of the definition list entity.

Layout Tags 119

GML Reference

:DL
level = 1
left_indent = 0
right_indent = 0
pre_skip = 1
skip = 1
spacing = 1
post_skip = 1
align = ’1i’
line_break = no

level This attribute accepts a positive integer number. If not specified, a level value of
’1’. is assumed. Each list level is separately specified. For example, if two levels
of the ordered list are specified, the :dl tag will be specified twice in the layout.
When some attributes for a new level of a list are not specified, the default values
for those attributes will be the values of the first level. Since list levels may not be
skipped, each new level of list must be sequentially defined from the last specified
level.

If there is an ordered, simple, and second ordered list nested together in the
document, the simple and first ordered list will both be from level one, while the last
ordered list will be level two. The appropriate level number is selected based on the
nesting level of a particular list type. If a list type is nested beyond the levels
specified in the layout, the levels are "cycled". For example, if there are two levels
of ordered list specified in the layout, and there are three ordered lists nested, the
third level of ordered list will use the attributes of the level one ordered list. A
fourth nested list would use the attributes of the level two.

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the definition list.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the definition list.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the definition list. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between each item of the definition list.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the items of the definition list.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the definition list. The post-skip will be merged with the

120 Layout Tags

Layouts

next document entity’s pre-skip value. If a post-skip occurs at the end of an output
page, any remaining part of the skip is not carried over to the next output page.

align This attribute accepts any valid horizontal space unit. The align value specifies the
amount of space reserved for the definition term. After the definition term is
produced, the align value is added to the current left margin. The left margin will be
reset to its previous value after the definition list item.

line_break This attribute accepts the keyword values yes and no. If the value yes is specified,
the data description starts a new line after the definition term if the length of the
term is larger than align value. If the value no is specified, the definition term is
allowed to intrude into the data description area.

12.3.21 DT

Define the characteristics of the definition term entity.

:DT
font = 2

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the definition term. The font value is linked to the left_indent, right_indent,
pre_skip, post_skip, skip and align attributes of the :dl tag, and the line_left attribute
of the :DD tag (see "Font Linkage" on page 64).

12.3.22 DTHD

Define the characteristics of the definition term heading entity.

:DTHD
font = 1

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the definition term heading.

12.3.23 EBANNER

Mark the end of a banner definition.

:eBANNER

12.3.24 EBANREGION

Mark the end of a banner region definition.

:eBANREGION

Layout Tags 121

GML Reference

12.3.25 ECLOSE

Mark the end of the close entity in the letter tag format.

:eCLOSE
pre_skip = 1
font = 0

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the typist mark. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the typist mark. The font value is linked to the pre_skip attribute (see "Font
Linkage" on page 64).

12.3.26 ELAYOUT

Mark the end of a layout definition.

:eLAYOUT

12.3.27 FIG

Define the characteristics of the figure entity.

:FIG
left_adjust = 0
right_adjust = 0
pre_skip = 2
post_skip = 0
spacing = 1
font = 0
default_place = top
default_frame = rule

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the figure. The pre-skip will be merged with the previous
document entity’s post-skip value. If a pre-skip occurs at the beginning of an output
page, the pre-skip value has no effect.

122 Layout Tags

Layouts

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the figure. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page. figure.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the figure.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the figure text. The font value is linked to the left_adjust, right_adjust, pre_skip
and post_skip attributes (see "Font Linkage" on page 64).

default_place This attribute accepts the values top, bottom, and inline. The specified attribute
value is used as the default value for the place attribute of the GML figure tag.

default_frame This attribute accepts the values rule, box, none, and ’character string’. The
specified attribute value is used as the default value for the frame attribute of the
GML figure tag. See the discussion about the frame attribute under "FIG" on page
76 for an explanation of the attribute values.

12.3.28 FIGCAP

Define the characteristics of the figure caption entity.

:FIGCAP
pre_lines = 1
font = 0
figcap_string = "Figure "
string_font = 0
delim = ’.’

pre_lines This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting number
of lines are skipped before the figure caption. If the document entity starts a new
page, the specified number of lines are still skipped. The pre-lines value is not
merged with the previous document entity’s post-skip value.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the figure caption text. The font value is linked to the pre_lines attribute (see
"Font Linkage" on page 64).

figcap_string This attribute accepts a character string. The specified string is the first part of the
figure caption generated by WATCOM Script/GML.

Layout Tags 123

GML Reference

string_font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The string_font attribute defines the
font of the the figure caption string defined from the text specified by the
figcap_string attribute to the figure caption delimiter inclusive.

delim This attribute accepts a quoted character value. The delimiter value specifies the
character which is inserted after the number of the figure. If a character other than a
blank space is specified, that character followed by a blank space will be inserted. If
a blank space is specified, only that blank space will be inserted.

12.3.29 FIGDESC

Define the characteristics of the figure description entity.

:FIGDESC
pre_lines = 1
font = 0

pre_lines This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting number
of lines are skipped before the figure description. If the document entity starts a
new page, the specified number of lines are still skipped. The pre-lines value is not
merged with the previous document entity’s post-skip value. If the previous tag was
:figcap, this value is ignored.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the figure description. The font value is linked to the pre_lines attribute (see
"Font Linkage" on page 64).

12.3.30 FIGLIST

Define the characteristics of the figure list.

:FIGLIST
left_adjust = 0
right_adjust = 0
skip = 0
spacing = 1
columns = 1
fill_string = "."

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing

124 Layout Tags

Layouts

(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between figure list items.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the figure list.

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created for the figure list.

fill_string This attribute accepts a string value which is used to ’fill’ the line between the text
and the page number.

12.3.31 FLPGNUM

Define the characteristics of the figure list page numbers.

:FLPGNUM
size = ’0.4i’
font = 0

size This attribute accepts any valid horizontal space unit. The specified value is the
minimum amount of space that will be reserved on the output line for the figure
page number.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the page number. The font value is linked to the size attribute (see "Font
Linkage" on page 64).

12.3.32 FN

Define the characteristics of the footnote entity.

:FN
line_indent = 0
align = ’0.4i’
pre_lines = 2
skip = 2
spacing = 1
font = 0
number_font = 0
number_style = h
frame = none

line_indent The line_indent attribute accepts any valid horizontal space unit. This attribute
specifies the amount of indentation for the first output line of the footnote.

align This attribute accepts any valid horizontal space unit. The align value specifies the
amount of space reserved for the footnote number. After the footnote number is
produced, the align value is added to the current left margin. The left margin will be
reset to its previous value after the footnote.

Layout Tags 125

GML Reference

pre_lines This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting number
of lines are skipped before the footnotes are output. If the document entity starts a
new page, the specified number of lines are still skipped. The pre-lines value is not
merged with the previous document entity’s post-skip value.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between the footnotes.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the footnote.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the footnote text. The font value is linked to the line_indent, pre_lines, skip and
align attributes (see "Font Linkage" on page 64).

number_font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The number font attribute defines
the font of the footnote number.

number_style This attribute sets the number style of the footnote number. (See "Number Style" on
page 101).

frame This attribute accepts the values rule or none. If the value rule is specified, a rule
line is placed between the main body of text and the footnotes at the bottom of the
output page. If the footnote is placed across the entire page, the width of the rule
line is half the width of the page. If the footnote is one column wide, the rule line
width is the width of a column minus twenty percent.

12.3.33 FNREF

Define the characteristics of the footnote reference entity.

:FNREF
font = 0
number_style = hp

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the footnote reference text.

126 Layout Tags

Layouts

number_style This attribute sets the number style of the footnote reference number. (See "Number
Style" on page 101).

12.3.34 FROM

Define the characteristics of the FROM entity in the letter tag format.

:FROM
left_adjust = 0
page_position = right
pre_top_skip = 6
font = 0

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

page_position This attribute accepts the values left, right, center, and centre. The position of the
from text between the left and right margins is determined by the value selected. If
left is the attribute value, the text is output at the left margin. If right is the attribute
value, the text is output next to the right margin. When center or centre is specified,
the text is centered between the left and right margins.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the FROM text. The pre-top-skip will be merged with the
previous document entity’s post-skip value. The specified space is still skipped at
the beginning of a new page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the FROM text. The font value is linked to the left_adjust, page_position and
pre_top_skip attributes (see "Font Linkage" on page 64).

12.3.35 GD

Define the characteristics of the glossary description entity.

:GD
font = 0

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the glossary description.

12.3.36 GL

Define the characteristics of the glossary list entity.

Layout Tags 127

GML Reference

:GL
level = 1
left_indent = 0
right_indent = 0
pre_skip = 1
skip = 1
spacing = 1
post_skip = 1
align = 0
delim = ’:’

level This attribute accepts a positive integer number. If not specified, a level value of
’1’. is assumed. Each list level is separately specified. For example, if two levels
of the ordered list are specified, the :gl tag will be specified twice in the layout.
When some attributes for a new level of a list are not specified, the default values
for those attributes will be the values of the first level. Since list levels may not be
skipped, each new level of list must be sequentially defined from the last specified
level.

If there is an ordered, simple, and second ordered list nested together in the
document, the simple and first ordered list will both be from level one, while the last
ordered list will be level two. The appropriate level number is selected based on the
nesting level of a particular list type. If a list type is nested beyond the levels
specified in the layout, the levels are "cycled". For example, if there are two levels
of ordered list specified in the layout, and there are three ordered lists nested, the
third level of ordered list will use the attributes of the level one ordered list. A
fourth nested list would use the attributes of the level two.

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the glossary list.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the glossary list.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the glossary list. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between each item of the glossary list.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the items of the glossary list.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the glossary list. The post-skip will be merged with the

128 Layout Tags

Layouts

next document entity’s pre-skip value. If a post-skip occurs at the end of an output
page, any remaining part of the skip is not carried over to the next output page.

align This attribute accepts any valid horizontal space unit. The align value specifies the
amount of space reserved for the glossary term. After the glossary term is produced,
the align value is added to the current left margin. The left margin will be reset to
its previous value after the glossary list item.

delim The quoted character value is used to separate the glossary term from the glossary
description.

12.3.37 GT

Define the characteristics of the glossary term entity.

:GT
font = 2

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the glossary term. The font value is linked to the left_indent, right_indent,
pre_skip, post_skip, skip and align attributes of the :gl tag (see "Font Linkage" on
page 64).

12.3.38 HEADING

Specify information which applies to headings in general.

:HEADING
delim = ’.’
stop_eject = no
para_indent = no
threshold = 2
max_group = 10

delim The delim attribute sets the heading number delimiter to a specific character.

stop_eject This attribute accepts the keyword values yes and no. If the value yes is specified, a
heading which would force the beginning of a new page will not cause a page
ejection if it immediately follows another heading.

para_indent This attribute accepts the keyword values yes and no. If the value no is specified,
the indentation of the first line in a paragraph after a heading is suppressed.

threshold This attribute accepts as a value a non-negative integer number. The specified value
indicates the minimum number of text lines which must fit on the page. The
heading will be forced to the next page or column if the threshold requirements are
not met by the following document element. The threshold attribute of the heading
overrides the default threshold specified by the :widow tag.

max_group This attribute accepts a positive integer number. If a group of headings are forced to
a new page or column because of threshold requirements, the specified value will
limit the number of headings forced as a group.

Layout Tags 129

GML Reference

12.3.39 Hn

Define the characteristics of a heading tag, where n is between zero and six inclusive.

:H0
group = 0
indent = ’0.5i’
pre_top_skip = 4
pre_skip = 0
post_skip = 4
spacing = 1
font = 3
number_font = 3
number_form = none
page_position = left
number_style = h
page_eject = yes
line_break = yes
display_heading = yes
number_reset = yes
case = mixed
align = 0

group The group attribute accepts any non-negative number between 0 and 9. The group
value determines which set of headings are processed bye the heading tags/control
words.

indent The indent attribute accepts any valid horizontal space unit. The indent value is
added to the offset determined by the page position attribute, giving the starting
offset from the left margin for the heading.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the heading. The pre-top-skip will be merged with the
previous document entity’s post-skip value. The specified space is still skipped at
the beginning of a new page.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the heading. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the heading. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the heading if it takes more than one line.

130 Layout Tags

Layouts

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the heading text. The font value is linked to the indent, pre_top_skip and
post_skip attributes (see "Font Linkage" on page 64).

number_font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The number font attribute defines
the font of the heading number.

number_form This attribute accepts the values none, prop, and new. The specified value
determines the format of the heading number. The value none indicates that no
number is to be output. The value prop indicates that the number is composed of the
number for the current level prefixed by the number for the previous level and the
number delimiter specified in the heading layout tag. The value new indicates that
only the number of the current level is to be output.

page_position This attribute accepts the values left, right, center, and centre. The position of the
heading between the left and right margins is determined by the value selected. If
left is the attribute value, the text is output at the left margin. If right is the attribute
value, the text is output next to the right margin. When center or centre is specified,
the text is centered between the left and right margins.

number_style This attribute sets the number style of the heading number. (See "Number Style" on
page 101).

page_eject This attribute accepts the keyword values yes, no, odd, and even. If the value no is
specified, the heading is one column wide and is not forced to a new page. The
heading is always placed on a new page when the value yes is specified. Values
other than no cause the heading to be treated as a page wide heading in a
multi-column document.

The values odd and even will place the heading on a new page if the parity (odd or
even) of the current page number does not match the specified value. When two
headings appear together, the attribute value stop_eject=yes of the :heading layout
tag will normally prevent the the second heading from going to the next page. The
odd and even values act on the heading without regard to the stop_eject value.

line_break This attribute accepts the keyword values yes and no. If the value yes is specified,
the skip value specified by the post_skip attribute will be issued. If the value no is
specified, the skip value specified by the post_skip attribute will be ignored. If a
paragraph follows the heading, the paragraph text will start on the same line as the
heading.

display_heading This attribute accepts the keyword values yes and no. If the value no is specified,
the heading line will not be displayed. The heading will still be internally created,
and used in the table of contents.

number_reset This attribute accepts the keyword values yes and no. When a heading is processed,
all heading levels after it have their heading numbers reset. When the value ’no’ is
specified, the number of the next level of heading is not reset.

Layout Tags 131

GML Reference

case This attribute accepts the keyword values mixed, upper and lower. When a heading
is processed, the text is converted to upper or lower case when the values UPPER or
LOWER are used. The text is left unchanged when the value MIXED is used.

align This attribute accepts any valid horizontal space unit. The align value specifies the
amount of space reserved for the heading. After the heading is produced, the align
value is added to the current left margin. The left margin will be reset to its
previous value after the heading.

12.3.40 INDEX

Define the characteristics of the index section.

:INDEX
post_skip = 0
pre_top_skip = 0
left_adjust = 0
right_adjust = 0
spacing = 1
columns = 1
see_string = "See "
see_also_string = "See also "
header = no
index_string = "Index"
page_eject = yes
page_reset = no
font = 1

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the heading. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page. If the
index heading is not displayed (the header attribute has a value of NO), the post-skip
value has no effect.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the heading. The pre-top-skip will be merged with the
previous document entity’s post-skip value. The specified space is still skipped at
the beginning of a new page.

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the index.

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created for the index.

132 Layout Tags

Layouts

see_string This attribute accepts a character string. The specified string precedes any see text
generated in the index.

see_also_string This attribute accepts a character string. The specified string precedes any see also
text generated in the index.

header The header attribute accepts the keyword values yes and no. If the value yes is
specified, the index heading is generated. If the value no is specified, the header
text is not generated.

index_string This attribute accepts a character string. If the index header is generated, the
specified string is used for the heading text.

page_eject This attribute accepts the keyword values yes, no, odd, and even. If the value no is
specified, the heading is one column wide and is not forced to a new page. The
heading is always placed on a new page when the value yes is specified. Values
other than no cause the heading to be treated as a page wide heading in a
multi-column document.

The values odd and even will place the heading on a new page if the parity (odd or
even) of the current page number does not match the specified value. When two
headings appear together, the attribute value stop_eject=yes of the :heading layout
tag will normally prevent the the second heading from going to the next page. The
odd and even values act on the heading without regard to the stop_eject value.

page_reset This attribute accepts the keyword values yes and no. If the value yes is specified,
the page number is reset to one at the beginning of the section.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the header attribute value. The font value is linked to the left_adjust,
right_adjust, pre_top_skip and post_skip attributes (see "Font Linkage" on page 64).

12.3.41 IXHEAD

Define the characteristics of the index headings. In most cases, the index heading is the letter which starts
the index terms following it.

:IXHEAD
pre_skip = 2
post_skip = 0
font = 2
indent = 0
frame = box
header = yes

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the index heading. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

Layout Tags 133

GML Reference

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the index heading. The post-skip will be merged with the
next document entity’s pre-skip value. If a post-skip occurs at the end of an output
page, any remaining part of the skip is not carried over to the next output page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the index heading. The font value is linked to the indent, pre_skip and post_skip
attributes (see "Font Linkage" on page 64).

indent The indent attribute accepts any valid horizontal space unit. The attribute space
value is added to the current left margin before the index heading is generated in the
index. The left margin is reset to its previous value after the heading is generated.

frame This attribute accepts the values rule, box, none, and ’character string’. The
specified attribute value determines the type of framing around the index heading.
See the discussion of the frame attribute under "FIG" on page 76 for an explanation
of the attribute values.

header This attribute accepts the keyword values yes and no. If ’no’ is specified, the index
heading is not displayed. The font and frame attributes are ignored, and the pre and
post skip values are merged.

12.3.42 IXMAJOR

Define the characteristics of the major index signifiers.

:IXMAJOR
font = 2

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the major indexing signifier.

12.3.43 IXPGNUM

Define the characteristics of the index page numbers.

:IXPGNUM
font = 0

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the index page numbers.

134 Layout Tags

Layouts

12.3.44 In

Define the characteristics of an index entry level, where n is 1, 2, or 3. The string_font attribute is only
valide with index entry levels one and two.

:I1
pre_skip = 1
post_skip = 1
skip = 1
font = 0
indent = 0
wrap_indent = ’0.4i’
index_delim = " "
string_font = 0

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the index entry. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the index entry. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between each entry in an index level.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the index entry. The font value is linked to the wrap_indent, skip, pre_skip and
post_skip attributes (see "Font Linkage" on page 64).

indent The indent attribute accepts any valid horizontal space unit. The attribute space
value is added to the current left margin before the index entry is produced in the
index. After the index entries under the current entry are produced, the left margin
is reset to its previous value.

wrap_indent This attribute accepts as a value any valid horizontal space unit. If the list of
references for an index entry in the index does not fit on one output line, the
specified attribute value indicates the indentation that is to occur on the following
output lines.

index_delim This attribute accepts a string value which is placed between the index text and the
index page number(s). If the text, page number(s) and delimiter does not fit on one
output line, the delimiter text is not used.

string_font This attribute accepts a positive integer number, and is valid with the :i1 and :i2

layout tags. If a font number is used for which no font has been defined, WATCOM

Layout Tags 135

GML Reference

Script/GML will use font zero. The font numbers from zero to three correspond
directly to highlighting levels specified by the highlighting phrase GML tags. The
string_font attribute defines the font of the the see and see_also attribute strings
defined by the :INDEX layout tag.

12.3.45 LAYOUT

Start the layout definition.

:LAYOUT

12.3.46 LETDATE

Define the characteristics of the date entity in the letter tag format.

:LETDATE
date_form = "$ml $dsn, $yl"
depth = 15
font = 0
page_position = right

date_form The date_form attribute accepts a character string value which defines the format of
the date string. The year, month and day may be specified separately and in any
order by special date sequences. These date sequences are started with a dollar($)
sign and followed by one to three characters. Text which is not recognized as a date
sequence can be entered to tailor the format of the resulting date.

The first character in a date sequence is a Y for the year, an M for the month, or a D
for the day. The next character is the L or S character to specify the long or short
form of the date sequence. If neither of these characters are present, the long form is
used. When the length specifier is present, the N character is used to format the
month or the day as a number. If the length specified is not present, the month and
day values are created in character form. The year is always formatted as a number.

depth The depth attribute specifies the amount of space to leave before the line of date
text. This attribute accepts any valid vertical space unit. This attribute is often used
to position beyond pre-printed letter head.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the date text. The font value is linked to the date_form and depth attributes (see
"Font Linkage" on page 64).

page_position This attribute accepts the values left, right, center, and centre. The position of the
date between the left and right margins is determined by the value selected. If left is
the attribute value, the text is output at the left margin. If right is the attribute value,
the text is output next to the right margin. When center or centre is specified, the
text is centered between the left and right margins.

12.3.47 LP

Define the characteristics of the list part entity.

136 Layout Tags

Layouts

:LP
left_indent = 0
right_indent = 0
line_indent = 0
pre_skip = 1
post_skip = 1
spacing = 1

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the list part.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the list part.

line_indent The line_indent attribute accepts any valid horizontal space unit. This attribute
specifies the amount of indentation for the first output line of the list part.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the list part. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the list part. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the list part.

12.3.48 LQ

Define the characteristics of the long quote entity.

:LQ
left_indent = ’0.25i’
right_indent = ’0.25i’
pre_skip = 1
post_skip = 1
spacing = 1
font = 0

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the long quote.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the long quote.

Layout Tags 137

GML Reference

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the long quote. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the long quote. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the long quote.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the quote text. The font value is linked to the left_indent, right_indent, pre_skip
and post_skip attributes (see "Font Linkage" on page 64).

12.3.49 NOTE

Define the characteristics of the note entity.

:NOTE
left_indent = 0
right_indent = 0
pre_skip = 1
post_skip = 1
font = 2
spacing = 1
note_string = "NOTE: "

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the note.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the note.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the note. The pre-skip will be merged with the previous
document entity’s post-skip value. If a pre-skip occurs at the beginning of an output
page, the pre-skip value has no effect.

138 Layout Tags

Layouts

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the note. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the text specified by the note_string attribute. The font value is linked to the
left_indent, right_indent, pre_skip and post_skip attributes (see "Font Linkage" on
page 64).

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the note.

note_string This attribute accepts a character string. The specified string precedes the text of the
note. The length of this string determines indentation of the note text.

12.3.50 OL

Define the characteristics of the ordered list entity.

:OL
level = 1
left_indent = 0
right_indent = 0
pre_skip = 1
skip = 1
spacing = 1
post_skip = 1
font = 0
align = ’0.4i’
number_style = hd
number_font = 0

level This attribute accepts a positive integer number. If not specified, a level value of
’1’. is assumed. Each list level is separately specified. For example, if two levels
of the ordered list are specified, the :ol tag will be specified twice in the layout.
When some attributes for a new level of a list are not specified, the default values
for those attributes will be the values of the first level. Since list levels may not be
skipped, each new level of list must be sequentially defined from the last specified
level.

If there is an ordered, simple, and second ordered list nested together in the
document, the simple and first ordered list will both be from level one, while the last
ordered list will be level two. The appropriate level number is selected based on the
nesting level of a particular list type. If a list type is nested beyond the levels
specified in the layout, the levels are "cycled". For example, if there are two levels
of ordered list specified in the layout, and there are three ordered lists nested, the
third level of ordered list will use the attributes of the level one ordered list. A
fourth nested list would use the attributes of the level two.

Layout Tags 139

GML Reference

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the ordered list.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the ordered list.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the ordered list. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between list items.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the list item.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the ordered list. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the ordered list text. The font value is linked to the left_indent, right_indent,
pre_skip, post_skip and skip attributes (see "Font Linkage" on page 64).

align This attribute accepts any valid horizontal space unit. The align value specifies the
amount of space reserved for the list item number. After the list item number is
produced, the align value is added to the current left margin. The left margin will be
reset to its previous value after the list item.

number_style This attribute sets the number style of the list item number. (See "Number Style" on
page 101).

number_font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The number font attribute defines
the font of the list item number. The font value is linked to the align attibute (see
"Font Linkage" on page 64).

140 Layout Tags

Layouts

12.3.51 OPEN

Define the characteristics of the open entity in the letter tag format.

:OPEN
pre_top_skip = 2
font = 0
delim = ’:’

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the opening salutation. The pre-top-skip will be merged
with the previous document entity’s post-skip value. The specified space is still
skipped at the beginning of a new page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the opening salutation. The font value is linked to the pre_top_skip attribute (see
"Font Linkage" on page 64).

delim The delim attribute sets the delimiter that is output following the opening salutation
to a specific character.

12.3.52 P

Define the characteristics of the paragraph entity.

:P
line_indent = 0
pre_skip = 1
post_skip = 0

line_indent The line_indent attribute accepts any valid horizontal space unit. This attribute
specifies the amount of indentation for the first output line of the paragraph.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the paragraph. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the paragraph. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

12.3.53 PAGE

Define the boundaries of the document on the output page.

Layout Tags 141

GML Reference

:PAGE
top_margin = 0
left_margin = ’1i’
right_margin = ’7i’
depth = ’9.66i’

top_margin The top margin attribute specifies the amount of space between the top of the page
and the start of the output text. This attribute accepts any valid vertical space unit.

left_margin The left margin attribute specifies the amount of space between the left side of the
page and the start of the output text. This attribute accepts any valid horizontal
space unit.

right_margin The right margin attribute specifies the amount of space between the left side of the
page and the right margin of of the output text. This attribute accepts any valid
horizontal space unit.

depth The depth attribute specifies the depth of the output page. Output text starts at the
top margin and ends at the bottom margin of the page. The bottom margin is the
sum of the top_margin and depth attribute values. This attribute accepts any valid
vertical space unit.

12.3.54 PC

Define the characteristics of the paragraph continuation entity.

:PC
line_indent = 0
pre_skip = 1
post_skip = 0

line_indent The line_indent attribute accepts any valid horizontal space unit. This attribute
specifies the amount of indentation for the first output line of the paragraph
continuation.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the paragraph continuation. The pre-skip will be merged
with the previous document entity’s post-skip value. If a pre-skip occurs at the
beginning of an output page, the pre-skip value has no effect.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the paragraph continuation. The post-skip will be merged
with the next document entity’s pre-skip value. If a post-skip occurs at the end of an
output page, any remaining part of the skip is not carried over to the next output
page.

12.3.55 PREFACE

Define the characteristics of the preface section and preface heading.

142 Layout Tags

Layouts

:PREFACE
post_skip = 1
pre_top_skip = 1
font = 1
spacing = 1
header = yes
preface_string = "PREFACE"
page_eject = yes
page_reset = no
columns = 1

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the preface heading. The post-skip will be merged with the
next document entity’s pre-skip value. If a post-skip occurs at the end of an output
page, any remaining part of the skip is not carried over to the next output page. If
the preface heading is not displayed (the header attribute has a value of NO), the
post-skip value has no effect.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the preface heading. The pre-top-skip will be merged
with the previous document entity’s post-skip value. The specified space is still
skipped at the beginning of a new page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the preface heading. The font value is linked to the pre_top_skip and post_skip
attributes (see "Font Linkage" on page 64).

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the preface.

header The header attribute accepts the keyword values yes and no. If the value yes is
specified, the preface heading is generated. If the value no is specified, the header
text is not generated.

preface_string This attribute accepts a character string. If the preface header is generated, the
specified string is used for the heading text.

page_eject This attribute accepts the keyword values yes, no, odd, and even. If the value no is
specified, the heading is one column wide and is not forced to a new page. The
heading is always placed on a new page when the value yes is specified. Values
other than no cause the heading to be treated as a page wide heading in a
multi-column document.

The values odd and even will place the heading on a new page if the parity (odd or
even) of the current page number does not match the specified value. When two
headings appear together, the attribute value stop_eject=yes of the :heading layout
tag will normally prevent the the second heading from going to the next page. The
odd and even values act on the heading without regard to the stop_eject value.

Layout Tags 143

GML Reference

page_reset This attribute accepts the keyword values yes and no. If the value yes is specified,
the page number is reset to one at the beginning of the section.

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created for the preface.

12.3.56 SAVE

Save the current layout into the specified file name. This tag is equivalent to the :convert tag.

:SAVE file=’filename’.

12.3.57 SL

Define the characteristics of the simple list entity.

:SL
level = 1
left_indent = 0
right_indent = 0
pre_skip = 1
skip = 1
spacing = 1
post_skip = 1
font = 0

level This attribute accepts a positive integer number. If not specified, a level value of
’1’. is assumed. Each list level is separately specified. For example, if two levels
of the ordered list are specified, the :sl tag will be specified twice in the layout.
When some attributes for a new level of a list are not specified, the default values
for those attributes will be the values of the first level. Since list levels may not be
skipped, each new level of list must be sequentially defined from the last specified
level.

If there is an ordered, simple, and second ordered list nested together in the
document, the simple and first ordered list will both be from level one, while the last
ordered list will be level two. The appropriate level number is selected based on the
nesting level of a particular list type. If a list type is nested beyond the levels
specified in the layout, the levels are "cycled". For example, if there are two levels
of ordered list specified in the layout, and there are three ordered lists nested, the
third level of ordered list will use the attributes of the level one ordered list. A
fourth nested list would use the attributes of the level two.

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the simple list.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the simple list.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the simple list. The pre-skip will be merged with the

144 Layout Tags

Layouts

previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between list items.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the list items.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the simple list. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the simple list text. The font value is linked to the left_indent, right_indent,
pre_skip, post_skip and skip attributes (see "Font Linkage" on page 64).

12.3.58 SUBJECT

Define the characteristics of the subject entity in the letter tag format.

:SUBJECT
left_adjust = 0
page_position = centre
pre_top_skip = 2
font = 1

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

page_position This attribute accepts the values left, right, center, and centre. The position of the
subject line between the left and right margins is determined by the value selected.
If left is the attribute value, the text is output at the left margin. If right is the
attribute value, the text is output next to the right margin. When center or centre is
specified, the text is centered between the left and right margins.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the subject line. The pre-top-skip will be merged with the
previous document entity’s post-skip value. The specified space is still skipped at
the beginning of a new page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The

Layout Tags 145

GML Reference

font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the subject line. The font value is linked to the left_adjust and pre_top_skip
attributes (see "Font Linkage" on page 64).

12.3.59 TITLE

Define the characteristics of the title line entity.

:TITLE
left_adjust = 0
right_adjust = ’1i’
page_position = right
font = 2
pre_top_skip = 15
skip = 2

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

page_position This attribute accepts the values left, right, center, and centre. The position of the
title line between the left and right margins is determined by the value selected. If
left is the attribute value, the text is output at the left margin. If right is the attribute
value, the text is output next to the right margin. When center or centre is specified,
the text is centered between the left and right margins.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the title line. The font value is linked to the left_adjust, right_adjust,
pre_top_skip and skip attributes (see "Font Linkage" on page 64).

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the title lines. The pre-top-skip will be merged with the
previous document entity’s post-skip value. The specified space is still skipped at
the beginning of a new page.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between title lines.

12.3.60 TITLEP

Define the characteristics of the title part section.

:TITLEP
spacing = 1
columns = 1

146 Layout Tags

Layouts

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the title part.

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created for the title part section.

12.3.61 TO

Define the characteristics of the TO entity in the letter tag format.

:TO
left_adjust = 0
page_position = left
pre_top_skip = 1
font = 0

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

page_position This attribute accepts the values left, right, center, and centre. The position of the
TO text between the left and right margins is determined by the value selected. If
left is the attribute value, the text is output at the left margin. If right is the attribute
value, the text is output next to the right margin. When center or centre is specified,
the text is centered between the left and right margins.

pre_top_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the TO text. The pre-top-skip will be merged with the
previous document entity’s post-skip value. The specified space is still skipped at
the beginning of a new page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the TO text. The font value is linked to the left_adjust and pre_top_skip
attributes (see "Font Linkage" on page 64).

12.3.62 TOC

Define the characteristics of the table of contents.

:TOC
left_adjust = 0
right_adjust = 0
spacing = 1
columns = 1
toc_levels = 4
fill_string = "."

left_adjust The left_adjust attribute accepts any valid horizontal space unit. The left margin is
set to the page left margin plus the specified left adjustment.

Layout Tags 147

GML Reference

right_adjust The right_adjust attribute accepts any valid horizontal space unit. The right margin
is set to the page right margin minus the specified right adjustment.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the table of contents.

columns The columns attribute accepts a positive integer number. The columns value
determines how many columns are created for the table of contents.

toc_levels This attribute accepts as its value a positive integer value. The attribute value
specifies the maximum level of the entries that appear in the table of contents. For
example, if the attribute value is four, heading levels zero through three will appear
in the table of contents.

fill_string This attribute accepts a string value which is used to ’fill’ the line between the text
and the page number.

12.3.63 TOCHn

Define the characteristics of a table of contents heading, where n is between zero and six inclusive.

:TOCH0
group = 0
indent = 0
skip = 1
pre_skip = 1
post_skip = 1
font = 0
align = 0
display_in_toc = yes

group The group attribute accepts any non-negative number between 0 and 9. The group
value determines which set of table of contents are processed bye the group of level
n table of contents heading entries tags/control words.

indent The indent attribute accepts any valid horizontal space unit. The attribute space
value is added to the current left margin before the table of contents entry is
produced. After all of the subentries under the current entry are produced, the left
margin is reset to its previous value.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between the individual entries within the group of level n table
of contents heading entries.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the group of level n table of contents heading entries.
The pre-skip will be merged with the previous document entity’s post-skip value. If
a pre-skip occurs at the beginning of an output page, the pre-skip value has no
effect.

148 Layout Tags

Layouts

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the group of level n table of contents heading entries. The
post-skip will be merged with the next document entity’s pre-skip value. If a
post-skip occurs at the end of an output page, any remaining part of the skip is not
carried over to the next output page.

align This attribute accepts any valid horizontal space unit. The align value specifies the
amount of space reserved for the table of contents heading. After the table of
contents heading is produced, the align value is added to the current left margin.
The left margin will be reset to its previous value after the heading entry.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the heading produced in the table of contents entry.

display_in_toc This attribute accepts the keyword values yes and no. The heading for the table of
contents entry is not produced when the value no is specified. The entries pre and
post skips are still generated.

12.3.64 TOCPGNUM

Define the characteristics of the table of contents page numbers.

:TOCPGNUM
size = ’0.4i’
font = 0

size This attribute accepts any valid horizontal space unit. The specified value is the
minimum amount of space that will be reserved on the output line for the page
number of a table of contents entry.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the page number. The font value is linked to the size attribute (see "Font
Linkage" on page 64).

12.3.65 UL

Define the characteristics of the unordered list entity.

Layout Tags 149

GML Reference

:UL
level = 1
left_indent = 0
right_indent = 0
pre_skip = 1
skip = 1
spacing = 1
post_skip = 1
font = 0
align = ’0.4i’
bullet = ’*’
bullet_translate = yes
bullet_font = 0

level This attribute accepts a positive integer number. If not specified, a level value of
’1’. is assumed. Each list level is separately specified. For example, if two levels
of the ordered list are specified, the :ul tag will be specified twice in the layout.
When some attributes for a new level of a list are not specified, the default values
for those attributes will be the values of the first level. Since list levels may not be
skipped, each new level of list must be sequentially defined from the last specified
level.

If there is an ordered, simple, and second ordered list nested together in the
document, the simple and first ordered list will both be from level one, while the last
ordered list will be level two. The appropriate level number is selected based on the
nesting level of a particular list type. If a list type is nested beyond the levels
specified in the layout, the levels are "cycled". For example, if there are two levels
of ordered list specified in the layout, and there are three ordered lists nested, the
third level of ordered list will use the attributes of the level one ordered list. A
fourth nested list would use the attributes of the level two.

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the unordered list.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the unordered list.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the unordered list. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped between list items.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the list items.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing

150 Layout Tags

Layouts

(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the unordered list. The post-skip will be merged with the
next document entity’s pre-skip value. If a post-skip occurs at the end of an output
page, any remaining part of the skip is not carried over to the next output page.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the unordered list text. The font value is linked to the left_indent, right_indent,
pre_skip, post_skip and skip attributes (see "Font Linkage" on page 64).

align This attribute accepts any valid horizontal space unit. The align value specifies the
amount of space reserved for the list item bullet. After the list item bullet is
produced, the align value is added to the current left margin. The left margin will be
reset to its previous value after the list item.

bullet This attribute specifies the single character value which annotates an unordered list
item.

bullet_translate This attribute accepts the keyword values yes and no. If ’yes’ is specified, input
translation is performed on the annotation character.

bullet_font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The bullet_font attribute defines the
font of the annotation character. The font value is linked to the align attibute (see
"Font Linkage" on page 64).

12.3.66 WIDOW

Define the widowing control of document elements.

:WIDOW
threshold = 2

threshold This attribute accepts as a value a non-negative integer number. The specified value
indicates the minimum number of text lines which must fit on the page. A
document element will be forced to the next page or column if the threshold
requirement is not met.

12.3.67 XMP

Define the characteristics of the example entity.

:XMP
left_indent = ’0.25i’
right_indent = 0
pre_skip = 2
post_skip = 0
spacing = 1
font = 0

Layout Tags 151

GML Reference

left_indent This attribute accepts any valid horizontal space unit. The left indent value is added
to the current left margin. The left margin will be reset to its previous value at the
end of the example.

right_indent This attribute accepts any valid horizontal space unit. The right indent value is
subtracted from the current right margin. The right margin will be reset to its
previous value at the end of the example.

pre_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped before the example. The pre-skip will be merged with the
previous document entity’s post-skip value. If a pre-skip occurs at the beginning of
an output page, the pre-skip value has no effect.

post_skip This attribute accepts vertical space units. A zero value means that no lines are
skipped. If the skip value is a line unit, it is multiplied by the current line spacing
(see "Vertical Space Unit" on page 64 for more information). The resulting amount
of space is skipped after the example. The post-skip will be merged with the next
document entity’s pre-skip value. If a post-skip occurs at the end of an output page,
any remaining part of the skip is not carried over to the next output page.

spacing This attribute accepts a positive integer number. The spacing determines the
number of blank lines that are output between text lines. If the line spacing is two,
each text line will take two lines in the output. The number of blank lines between
text lines will therefore be the spacing value minus one. The spacing attribute
defines the line spacing within the example.

font This attribute accepts a non-negative integer number. If a font number is used for
which no font has been defined, WATCOM Script/GML will use font zero. The
font numbers from zero to three correspond directly to the highlighting levels
specified by the highlighting phrase GML tags. The font attribute defines the font
of the example. The font value is linked to the left_indent, right_indent, pre_skip
and post_skip attributes (see "Font Linkage" on page 64).

152 Layout Tags

13 GML Summary

general elements
pre GDOC elements
:GDOC sec=’classification’

(sec is optional)
general elements

:FRONTM.
:TITLEP.

:TITLE.title
:DOCNUM.document number
:DATE.date
:AUTHOR.author’s name
:ADDRESS.

:ALINE.address line
:eADDRESS.

:eTITLEP.
:ABSTRACT.

basic document elements

(headings H2-H6 allowed)
:PREFACE.

basic document elements

(headings H2-H6 allowed)
:TOC.
:FIGLIST.

:BODY.
basic document elements

(headings H0-H6 allowed)
:APPENDIX.

basic document elements

(headings H1-H6 allowed)
:BACKM.

basic document elements

(headings H1-H6 allowed)
:INDEX.

:eGDOC.

Figure 76. Overall Document Structure

13.1 Front Material

:FRONTM.
title page
abstract
preface
table of contents
list of figures

Front Material 153

GML Reference

13.1.1 Title Page

:TITLEP.
:TITLE stitle = short title.title text

(stitle is optional)
:DOCNUM.document number
:DATE.date text

(date text is optional)
:AUTHOR.author’s name
:ADDRESS.

:ALINE.address line
(may occur several times)

:eADDRESS.
:eTITLEP.

13.1.2 Abstract

:ABSTRACT.
basic document elements

(headings H2-H6 allowed)

13.1.3 Preface

:PREFACE.
basic document elements

(headings H2-H6 allowed)

13.1.4 Table of Contents

:TOC.

13.1.5 List of Figures

:FIGLIST.

13.2 Body

:BODY.
basic document elements

(headings H0-H6 allowed)

154 Body

GML Summary

13.3 Appendix

:APPENDIX.
basic document elements

(headings H1-H6 allowed)

13.4 Back Material

:BACKM.
basic document elements

(headings H1-H6 allowed)
index

13.4.1 Index

:INDEX.

13.5 Basic Document Elements

Address Long Quotation
Definition List Note
Example Ordered List
Figure Paragraph
Footnote Paragraph Continuation
Glossary List Simple List
Graphic Unordered List

13.6 Paragraph Elements

May contain one or more lines of text and/or any of the following:

Citation
Figure Reference
Footnote Reference
Heading Reference
List Item Reference
Highlighted Phrase
Quote
Set Font

13.7 Definitions

Character String (char-string) A character string to be associated with an attribute.

Definitions 155

GML Reference

Choices(0|1|2) The bar (|) separates the various choices that may be associated with the
attribute.

Identifier Name (id-name) Seven character name consisting of letters and numbers.

Symbol Name Maximum of ten characters consisting of letters, numbers, and the
characters @, #, $ and underscore(_) character.

Text Line One line of text to be processed as defined by the tag.

13.8 Examples and Figures

13.8.1 Example

:XMP depth = ’vert-space-unit’.
(depth is optional)

paragraph elements
basic document elements

:eXMP.

13.8.2 Figure

:FIG attribute.
paragraph elements
basic document elements

:FIGCAP.caption text
(figcap is optional)

:FIGDESC.
(figdesc is optional)

paragraph elements
basic document elements

:eFIG.

The attribute, if specified, is one or more of

depth = ’vert-space-unit’
frame = box | rule | none | ’char-string’
id = ’id-name’
place = top | bottom | inline
width = page | column | ’hor-space-unit’

13.8.3 Figure Reference

:FIGREF refid = ’id-name’ page = yes | no .
(page is optional)

156 Examples and Figures

GML Summary

13.9 Headings

13.9.1 Heading

:Hn attribute.text line

The value of n must be one of 0, 1, 2, 3, 4, 5, or 6. The attribute, if specified, is one or more of

id = ’id-name’
stitle = ’char-string’

The stitle attribute is only permitted if n is 0 or 1.

13.9.2 Heading Reference

:HDREF refid = ’id-name’ page = yes | no .
(page is optional)

13.10 Lists

13.10.1 Address

:ADDRESS.
:ALINE.address line

(may occur several times)
:eADDRESS.

13.10.2 Definition List

:DL attribute.
:DTHD.text line

(may occur several times)
:DDHD.text line

(for every DTHD there must be a DDHD)
:DT.text line

(may occur several times)
:DD.

paragraph elements
basic document elements

(for every DT there must be a DD)
:LP.

paragraph elements
(LP is optional)

:eDL.

The attribute if specified, may be one or more of

break

Lists 157

GML Reference

compact
headhi = ’integer number’
termhi = ’integer number’
tsize = ’hor-space-unit’

13.10.3 Glossary List

:GL attribute.
:GT.text line

(may occur several times)
:GD.

paragraph elements
basic document elements

(for every GT there must be a GD)
:LP.

paragraph elements
(LP is optional)

:eGL.

The attribute if specified, may be one or more of

compact
termhi = 0 | 1 | 2 | 3

13.10.4 Ordered List

:OL compact.
(compact is optional)

:LI id = ’id-name’.
(id is optional)
(LI may occur several times)
paragraph elements
basic document elements

:LP.
paragraph elements

(LP is optional)
:eOL.

13.10.5 Simple List

:SL compact.
(compact is optional)

:LI id = ’id-name’.
(id is optional)
(LI may occur several times)
paragraph elements
basic document elements

:LP.
paragraph elements

(LP is optional)
:eSL.

158 Lists

GML Summary

13.10.6 Unordered List

:UL compact.
(compact is optional)

:LI id = ’id-name’.
(id is optional)
(LI may occur several times)
paragraph elements
basic document elements

:LP.
paragraph elements

(LP is optional)
:eUL.

13.10.7 List Reference

:LIREF refid = ’id-name’ page = yes | no .
(page is optional)

13.11 Notes

13.11.1 Footnote

:FN id = ’id-name’.
(id is optional)
paragraph elements
basic document elements

:eFN.

13.11.2 Footnote Reference

:FNREF refid = ’id-name’.

13.11.3 Note

:NOTE.
paragraph elements

Notes 159

GML Reference

13.12 Paragraphs

13.12.1 Paragraph

:P.
paragraph elements

13.12.2 Paragraph Continuation

:PC.
paragraph elements

13.13 Quotes and Highlighted Phrases

13.13.1 Citation

:CIT.
paragraph elements

:eCIT.

13.13.2 Highlighted Phrase

:HPn.
paragraph elements

:eHPn.

The value of n must be one of 0, 1, 2, or 3

13.13.3 Long Quotation

:LQ.
basic document elements

:eLQ.

13.13.4 Quote

:Q.
paragraph elements

:eQ.

160 Quotes and Highlighted Phrases

GML Summary

13.13.5 Set Font

:SF font=n.
paragraph elements

:eSF.

13.14 Graphics

:GRAPHIC file = ’char-string’
depth = ’vert-space-unit’
width = ’hor-space-unit’
scale = integer number
xoff = ’hor-space-unit’
yoff = ’vert-space-unit’.

The file attribute must always be specified. The depth attribute is required if the graphic file is in the
PostScript format.

13.15 General Elements

General Elements may appear any place in the document source.

13.15.1 Comment

:CMT.text line

13.15.2 Include

:INCLUDE file = ’char-string’.

13.15.3 Set

:SET symbol = ’symbol-name’
value = ’char-string’ | delete .

13.16 Pre GDOC Elements

Pre GDOC Elements may appear any place in the document source before the :GDOC tag.

Pre GDOC Elements 161

GML Reference

13.16.1 Imbedding Layouts

This tag is equivalent to the :include tag.

:IMBED file = ’char-string’.

13.16.2 Defining Layouts

:LAYOUT.
layout tags
:SAVE file=’file-name’.
:CONVERT file=’file-name’.

:eLAYOUT.

13.17 Post GDOC Elements

Post GDOC Elements may appear any place in the document source after the :GDOC tag.

13.17.1 Binary Include

:BINCLUDE file = ’char-string’
reposition = start|end
depth = ’vert-space-unit’.

13.17.2 Index Entries

:In attribute.text line

The value of n must be 1, 2 or 3. The attribute, if specified, may be one or more of

id = ’id-name’
pg = start | end | major | ’char-string’
refid = ’id-name’ (only with I2 or I3)

13.17.3 Index Header

:IHn attribute.text line

The value of n must be 1, 2 or 3. The attribute, if specified, may be one or more of

id = ’id-name’
print = ’char-string’
see = ’char-string’ (only with IH1 or IH2)
seeid = ’id-name’ (only with IH1 or IH2)

162 Post GDOC Elements

GML Summary

13.17.4 Index Reference

:IREF refid = ’id-name’ attribute.

The attribute, if specified, may be one or more of

pg = start | end | major | ’char-string’
see = ’char-string’ (only when referencing IH1 or IH2)
seeid = ’id-name’ (only when referencing IH1 or IH2)

13.17.5 Process Specific Control

:PSC proc = ’char-string’.
(proc is optional)

:ePSC.

13.18 WATCOM Letter Format

:GDOC sec = ’classification’.
(sec is optional)

:FROM.
address line

(may occur several times)
:DATE align = ’value’

depth = ’vert-space-unit’.date-text
(align and depth are optional)
(date-text is optional)

:DOCNUM.document number
:TO compact.

(compact is optional)
Recipient-line

(may occur several times)
:ATTN.attention name
:SUBJECT.subject text
:OPEN.opening salutation

basic document elements
:CLOSE depth = ’vert-space-unit’.closing salutation

(depth is optional)
author line

(may occur several times)
:eCLOSE.typist mark

(typist mark is optional)
:DISTRIB.
:DIST.label

names
(one per line)

:eDISTRIB.
:eGDOC.

WATCOM Letter Format 163

GML Reference

164 WATCOM Letter Format

14 Running WATCOM Script/GML

This chapter describes how you invoke WATCOM Script/GML and the options that may be specified.
The subsections provide information which is specific to each of the systems supported by WATCOM
Script/GML, followed by a description of the available options.

WATCOM Script/GML is invoked by entering:

WGML file-name options

The "file-name" specifies the file containing the source text and GML tags for the document. If the file
type part of the file name (see "Files" on page 221) is not specified, WATCOM Script/GML searches for
source files with the alternate file extension followed by the file type of GML. When a file type is
specified, WATCOM Script/GML searches for source files with that file type.

It is possible that many command line options will be necessary to process a document. The command
file support provided by WATCOM Script/GML allows you to place these options in a file. The options
in the command file are processed by specifying the file option on the WATCOM Script/GML command
line.

The option file "default" is located and loaded before other options are processed. The search path for the
default option file is the current disk location, the device library path, followed by the document include
path.

NOTE: The device option must always be specified.

14.1 Command Lines with IBM VM/CMS and IBM PC/DOS

The options are separated from the file name by a left parenthesis. Options and their values are separated
from each other by a space character. For example,

WGML book (DEVICE qume

If an option value contains a space, it should be enclosed in double(") or single(’) quotes. For example,

WGML book (DEVICE "qume device" DELIM !

If the options will not fit on one line, they may be continued to a new input line by omitting the source
file name. WATCOM Script/GML will request command line input until a file name is specified. The
left parenthesis must precede the options on each of the entered command lines to differentiate them from
a file name.

WGML (DEVICE qume
book (DELIM !

Options such as the font option require more than one value for each font being specified. These options
accept a list of values. Each value in the list is separated by a space. An option value list may be
continued to a new input line.

Command Lines with IBM VM/CMS and IBM PC/DOS 165

GML Reference

WGML (DEVICE qume DELIM ! FONT 0 mono10
book (bold FONT 1 mono12 bold

The above example overrides two of the default fonts.

14.1.1 Command Files

If a number of options must be used to process a GML document, they can be placed in a command file to
reduce the amount of typing each time you process the document. Each line in the command file is
entered as if specified at the terminal. The default file type for a WATCOM Script/GML command file is
gmlcmd with IBM VM/CMS, and opt with IBM PC/DOS. (For more information, see "FILE" on page
170).

(FONT 0 mono10 plain
(FONT 1 mono12 bold

If the lines in the above example are in a file with the name "setfont" (with a file type of gmlcmd or opt),
the following example shows how the command file is referenced.

WGML (DEVICE qume FILE setfont
book (DELIM !

The options in the file "setfont" are processed with those options specified on the command line. Note
that each line in the command file begins with a left parenthesis. This allows the specification of a file
name on the WATCOM Script/GML command line.

14.1.2 IBM VM/CMS Specifics

The device library must be specified as a global maclib (see "Libraries with IBM VM/CMS" on page
231). The following default file types are use by WATCOM Script/GML:

File Type Usage

GML document source files
LAYOUT layout files created with the :save tag
GMLCMD command files
VALUES value files specified by the VALUESET command line option

14.1.3 IBM PC/DOS Specifics

The DOS environment symbol GMLLIB must be defined for locating device information used by the
WGML and WGMLUI programs. (see "Libraries with IBM PC/DOS" on page 234).

When WATCOM Script/GML is processing a document, some internal data may be store on disk.
Setting the DOS symbol GMLPAG with a path list directs the disk locations used to store this
information.

SET GMLPAG=E:\;C:\

The set in the previous example directs WATCOM Script/GML to use the E:\ disk and root directory.
When the disk is full, it will start using the C:\ disk location. If the E: disk drive is a RAM disk,
WATCOM Script/GML will process the document in less time.

166 Command Lines with IBM VM/CMS and IBM PC/DOS

Running WATCOM Script/GML

The WGMLUI program will accept two parameters. Both parameters may be quoted and empty. The
first parameter is the name of the document file. The second parameter is the name of the an options file.

The WGMLUI program will locate and invoke the wedit.exe program when an edit request is made.
If the DOS symbol EDITNAME is defined, WGMLUI will use the symbol value as the program name to
invoke.

The following default file types are used by WATCOM Script/GML:

File Type Usage

GML document source files
LAY layout files created with the :save tag
OPT command files
VAL value files specified by the VALUESET command line option

14.2 Command Lines with DEC VAX/VMS

The format of the WATCOM Script/GML command line conforms to the standard DEC VAX/VMS
format. Documentation available with the system gives a more detailed explanation of this format.

Each option on the WGML command line starts with a slash(/) character. If the option has an associated
value, the option and its value are separated by an equal sign. For example,

WGML book/DEVICE=qume

Some characters, such as slashes and single quotes(’), have special meanings for the Digital Command
Language(DCL) processor. If the option value contains a special character, it should be enclosed in
double quotes("). For example,

WGML book/DEVICE=qume/DELIM="!"

If the options will not fit on one line, they may be continued to a new input line by entering a hyphen(-) at
the end of the line. More options may then be entered on a new line. For example,

WGML book/DEVICE=qume -
/DELIM="!"

Options such as the font option require more than one value for each font being specified. These options
accept a list of values. The value list starts with a left parenthesis and ends with a right parenthesis. Each
value in the list is separated by a comma. An option value list may be continued to a new input line, as in
the following example:

WGML book/DEVICE=qume/DELIM="!"/FONT=(0,mono10,-
plain,"","",1,mono12,bold,"","")

There are five values for each font specified. The example above overrides two of the default fonts. Both
of the fonts are specified in the same list.

14.2.1 Command Files

If a number of options must be used to process a GML document, they can be placed in a command file to
reduce the amount of typing each time you process the document. Each line in the command file is

Command Lines with DEC VAX/VMS 167

GML Reference

entered as if specified at the terminal. The default file type for a WATCOM Script/GML command file is
opt. (For more information, see "FILE" on page 170).

/FONT=(0,mono10,plain,-
"","",1,mono12,bold,"","")

If the lines in the above example are in the file "setfont.opt", the following example shows how the
command file is referenced.

WGML book/DELIM="!"/FILE=setfont -
/DEVICE=qume

The options in the file "setfont.opt" are processed with those options specified on the command line.
Note that with the exception of the last line, all lines in the command file must be continued by ending
them with a hyphen.

14.2.2 DEC VAX/VMS Specifics

File Type Usage

GML document source files
LAY layout files created with the :save tag
OPT command files
VAL value files specified by the VALUESET command line option

14.3 Options

The following options may be specified on the WATCOM Script/GML command line. The options are
illustrated with an example showing the format for each of the computer systems supported by
WATCOM Script/GML. With each option, upper case letters are used to indicate the minimum number
of characters that must be specified.

14.3.1 ALTEXTension
IBM VM/CMS and IBM PC/DOS

ALTEXT zgm
DEC VAX/VMS

/ALTEXT=zgm

When a GML source file is specified on the WGML command line, or as an include file, the file type can
be omitted. If a source file with the default file type cannot be found, WATCOM Script/GML will search
for a file with the file type supplied by the alternate extension option.

14.3.2 Bind
IBM VM/CMS and IBM PC/DOS

BIND odd-margin even_margin
DEC VAX/VMS

/BIND=(odd-margin,even-margin)

The two option values specify the default page margin values for the odd and even pages. If the value for
even margin is not specified, the first value applies to both odd and even pages. The initial default value
is zero.

168 Options

Running WATCOM Script/GML

14.3.3 CPInch
IBM VM/CMS and IBM PC/DOS

CPI cpi-number
DEC VAX/VMS

/CPI=cpi-number

The characters per inch option specifies the base for determining how much space in the output an integer
value represents when used as a horiztontal space unit. The initial value is ’10’.

14.3.4 DELim
IBM VM/CMS and IBM PC/DOS

DEL #
DEC VAX/VMS

/DEL=#

The value of the delimiter option is a single character. The delimiter value is used in the document as the
GML tag delimiter in place of the colon character.

14.3.5 DESCription
IBM VM/CMS and IBM PC/DOS

DESC "Layout for Producing a Manual"
DEC VAX/VMS

/DESC="Layout for Producing a Manual"

The DESCRIPTION option specifies a comment in the option file.

14.3.6 DEVice
IBM VM/CMS and IBM PC/DOS

DEV qume
DEC VAX/VMS

/DEV=qume

The DEVICE option must be specified. It determines how the source document is processed to create a
formatted document appropriate for the output device being used. Any font definitions previously
defined will be deleted.

When working on a PC/DOS system, the DOS environment symbol GMLLIB is used to locate the device
information (see "Libraries with IBM PC/DOS" on page 234). If the device information is not found, the
document include path is searched (see "INCLUDE" on page 83).

14.3.7 DUPlex/NODUPlex
IBM VM/CMS and IBM PC/DOS

DUP
NODUP

DEC VAX/VMS
/DUP
/NODUP

The duplex option sets the variable &SYSDUPLEX. to the value "ON". Noduplex will set the value to
"OFF".

Options 169

GML Reference

14.3.8 FILE
IBM VM/CMS and IBM PC/DOS

FILE doqume
DEC VAX/VMS

/FILE=doqume

The specified file is processed as a WATCOM Script/GML command file. This file is composed of
options normally specified on the command line. Command files are most useful when many options
must be specified, since they provide a way to specify these options without entering them individually
each time WATCOM Script/GML is run. Command line records in a command file may include other
command file invocations. The default file type for a command file depends on the specific computer
system on which WATCOM Script/GML is being run.

When working on a PC/DOS system, the DOS environment symbol GMLLIB is used to locate the
command file if it is not in the current directory (see "Libraries with IBM PC/DOS" on page 234). If it is
still not found, the document include path is searched (see "INCLUDE" on page 83).

14.3.9 FONT
IBM VM/CMS and IBM PC/DOS

FONT font-number font-name font-attribute font-space font-height
DEC VAX/VMS

/FONT=(font-number,font-name,font-attribute,font-space,font-height)

The specified font-number is assigned a particular font. The font numbers zero through three correspond
to the highlight-phrase tags :hp0 through :hp3. Font numbers greater than three (up to a maximum of
255) may be used in the layout section or with the :sf tag.

Each device has a list of available fonts defined with it. The font-name value is selected from these
defined fonts, and must be specified.

The font-attribute value specifies an attribute for the defined font. If the font attribute is not specified, the
attribute PLAIN is set. The possible values for the font attribute are:

BOLD The defined font is bolded.
PLAIN The font is used as defined. This attribute is the default.
ULBOLD The defined font is bolded and underlined. Spaces are also underlined.
ULINE The defined font is underlined. Spaces are also underlined.
USBOLD The defined font is bolded and underscored. Spaces are not underscored.
USCORE The defined font is underscored. Spaces are not underscored.

When a font is selected for output, the total line height for the font has two components. The first
component is the height of the characters in the font, and is fixed by the design of the character set. The
second component is a value to create space between lines of a font. Although the line spacing has an
optimal value for each font height, it can be modified to adjust the overall look of the document. Both of
the line height components are specified as point values (there are 72 points in one inch), with a decimal
portion in hundredths of a point (ie. 10.25).

The font-space attribute is optional, and overrides the default space value defined for the font. This
attribute may be specified for any type of character font.

The font-height attribute is specified with scaled fonts. Scaled fonts have no predetermined character
heights, and must be defined with a height before they can be used. The font-space attribute must also be
specified, but can be a null(’’) value to set the default font spacing.

170 Options

Running WATCOM Script/GML

14.3.10 FORMat
IBM VM/CMS and IBM PC/DOS

FORM format-type
DEC VAX/VMS

/FORM=format-type

The FORMAT option specifies the type of GML document to be processed. The format types have
different sets of GML tags and, to some extent, a different syntax. The format types available are:

STANDARD This format provides the standard set of GML tags and is the default.
LETTER The letter format is designed for processing letters. Refer to "GML Letter Tags" on

page 91 for more information.

14.3.11 FROM
IBM VM/CMS and IBM PC/DOS

FROM page-number
DEC VAX/VMS

/FROM=page-number

The FROM option will cause WATCOM Script/GML to print the document starting at the specified page
number within the body of the document. The number is specified as an integer, and does not depend on
the format of the numbers on the output pages (or even printed on the page). For example, if the page
numbers are formatted as roman numerals, the page number you specify would be "4", not "iv". See
"TO" on page 176 for more information.

14.3.12 INCList/NOINCList
IBM VM/CMS and IBM PC/DOS

INCL
NOINCL

DEC VAX/VMS
/INCL
/NOINCL

The INCLIST option causes WATCOM Script/GML to display on the terminal the name of each source
file as it is included in the document. When the NOINCLIST option is specified, the include file names
are not displayed on the terminal as they are included. NOINCLIST is the default when in line mode (see
"LINEmode" on page 172).

14.3.13 INDex/NOINDex
IBM VM/CMS and IBM PC/DOS

IND
NOIND

DEC VAX/VMS
/IND
/NOIND

When the INDEX option is specified, the indexing tags in the document are processed. The :index tag
must be specified in the back material of the document to produce the index in the output document. The
NOINDEX option (the default) will cause the indexing tags in the document to be ignored, creating an
empty index.

Options 171

GML Reference

14.3.14 LAYout
IBM VM/CMS and IBM PC/DOS

LAY file-name
DEC VAX/VMS

/LAY=file-name

A layout file is included at the beginning of the document. This option has the same effect as having an
:include tag as the first GML source line.

14.3.15 LINEmode
IBM VM/CMS and IBM PC/DOS

LINE
DEC VAX/VMS

/LINE

The presentation of information about the current status of WATCOM Script/GML is displayed on the
terminal as separate output lines during the processing of a document. With the IBM PC/DOS system,
the full area of the terminal screen is used to display the information. The LINEMODE option forces the
display of information from full screen mode to line mode. The options INCLIST, VERBOSE, and
STATISTICS are defaulted when in full screen mode. The option WARNING is defaulted in both
modes.

14.3.16 LLength
IBM VM/CMS and IBM PC/DOS

LL ll-number
DEC VAX/VMS

/LL=ll-number

The line length option specifies the initial value for the line length used in the document.

14.3.17 LPInch
IBM VM/CMS and IBM PC/DOS

LPI lpi-number
DEC VAX/VMS

/LPI=lpi-number

The lines per inch option specifies the base for determining how much space in the output an integer
value represents when used as a vertical space unit. The initial value is ’6’.

14.3.18 MAILmerge
IBM VM/CMS and IBM PC/DOS

MAIL file-name
DEC VAX/VMS

/MAIL=file-name

The MAILMERGE option specifies a file containing symbol substitution values or the name of a
WATFILE database. This option may be used to create a number of similar documents, such as a form
letter mailing. The WATCOM Script/GML processor will inspect the file to determine the file type
(WATFILE or symbol values). The following two subsections describe the processing of these files.

172 Options

Running WATCOM Script/GML

14.3.18.1 WATFILE Database File

Each field value in a WATFILE input record is assigned to a symbol name created from the WATFILE
field name. If the field name contains characters which are invalid in GML symbol names, the characters
up to the invalid character are used.

If the WATFILE file contains the following data:

define name = 10 L
define addr1 = 6 L
define addr2 = 5 L
bye
John Doe StreetCity

then the three values could be used in the following way:

:ADDRESS.
:ALINE.&name.
:ALINE.&addr1.
:ALINE.&addr2.
:eADDRESS.

14.3.18.2 Values File

Each record in the values file must contain the same number of symbol values. The document will be
produced once for each record in the file. If a layout is specified, it is only processed the first time the
document is processed.

Symbol values are separated by commas. Each value may be enclosed in single (’) or double (") quotes.
The quotation marks surrounding the text are not part of the symbol value. If a quotation mark of the
same type used to delimit the symbol value is to be part of the symbol text, it can be entered by specifying
the quote character twice. Only one quote character will appear in the resulting symbol value. A symbol
value must be quoted if it contains a comma.

The blanks outside quotations, or if the value is not quoted, the blanks before the first and after the last
nonblank character, are not considered part of the symbol value. For example, <,,>, <, ,>,
<,end_of_record>, or empty records all specify empty symbol values.

Each symbol value in an input record is assigned to a special symbol name. The values are assigned to
VALUE1, VALUE2, etc. For example, if the values file contains the following,

"John Doe","13 Country Lane","Canada"

then the three values could be used in the following way:

:ADDRESS.
:ALINE.&value1.
:ALINE.&value2.
:ALINE.&value3.
:eADDRESS.

14.3.19 OUTput
IBM VM/CMS and IBM PC/DOS

OUT temp1
DEC VAX/VMS

/OUT=temp1

Options 173

GML Reference

The output will go to the specified file name instead of the default output file. The default output file
name is determined by the device selected on the command line. In some cases the output from
WATCOM Script/GML is sent directly to the device, while in other cases the output is sent to a disk file.

If the file name component of the output name is an asterisk, the name of the document is used. For
example, an output file specification of *.ps when the document name is manual.gml will produce
manual.ps as the output file. Refer to "OUTPUT_NAME Attribute" on page 210 for more
information.

14.3.20 PASSes
IBM VM/CMS and IBM PC/DOS

PASS 2
DEC VAX/VMS

/PASS=2

In some cases WATCOM Script/GML must process a document more than once to properly produce the
output document. The value of the passes option is the number of times WATCOM Script/GML must
process the document. WATCOM Script/GML will issue a warning message if more passes are
necessary. The default passes value is one.

14.3.21 PAUSE/NOPause
IBM VM/CMS and IBM PC/DOS

PAUSE
NOP

DEC VAX/VMS
/PAUSE
/NOP

When some of the output devices are selected, information messages are displayed and a response from
the keyboard is requested. An example of this is the terminal device which pauses at the bottom of the
screen to prevent the output from being scrolled off the screen. The NOPAUSE option suppresses the
display of information and requests for keyboard input. PAUSE is the default option.

14.3.22 PROCess
IBM VM/CMS and IBM PC/DOS

PROC x2700
DEC VAX/VMS

/PROC=x2700

The specified name is an alternate condition for the :psc tag.

14.3.23 QUIET/NOQuiet
IBM VM/CMS and IBM PC/DOS

QUIET
NOQ

DEC VAX/VMS
/QUIET
/NOQ

The quiet option sets the variable &SYSQUIET. to the value "ON". Noquiet will set the value to "OFF".

174 Options

Running WATCOM Script/GML

14.3.24 RESETscreen
IBM VM/CMS and IBM PC/DOS

RESET
DEC VAX/VMS

/RESET

The RESETSCREEN option clears the screen before document processing begins and queries the user
when the formatting is complete. Active only when the screen is used in line mode, this option is
intended for use when WATCOM Script/GML is invoked from an application program.

14.3.25 SCRipt/NOSCRipt
IBM VM/CMS and IBM PC/DOS

SCR
NOSCR

DEC VAX/VMS
/SCR
/NOSCR

The SCRIPT option enables recognition of Script control words and the line separator character. The
default option NOSCRIPT will cause these values to be treated as text.

14.3.26 SETsymbol
IBM VM/CMS and IBM PC/DOS

SET processor WGML
DEC VAX/VMS

/SET=(processor,WGML)

The SETSYMBOL option requires two values. The first value is the name of the symbol to be set. The
second value is the character string that is to be assigned to the specified symbol name. This option is
equivalent to using the :SET tag at the beginning of the source document. Refer to "Symbolic
Substitution" on page 65 and "SET" on page 87.

14.3.27 STATistics/NOSTATistics
IBM VM/CMS and IBM PC/DOS

STAT
NOSTAT

DEC VAX/VMS
/STAT
/NOSTAT

Statistics about the document are displayed after document processing is completed when in line mode,
and during the document processing when in full screen mode. Examples of the type of information
displayed are the number of input lines processed, the number of include files, and the number of pages
produced. NOSTATISTICS is the default when in line mode (see "LINEmode" on page 172).

14.3.28 TERSE/VERBose
IBM VM/CMS and IBM PC/DOS

TERSE
VERB

DEC VAX/VMS
/TERSE
/VERB

Options 175

GML Reference

Headings are not displayed on the terminal as the document is processed when the TERSE option is
specified. Headings are displayed on the terminal as the document is processed when the VERBOSE
option is specified. TERSE is the default when in line mode (see "LINEmode" on page 172).

14.3.29 TO
IBM VM/CMS and IBM PC/DOS

TO page-number
DEC VAX/VMS

/TO=page-number

The TO option will direct WATCOM Script/GML to stop printing the document at the specified page
number within the body of the document. The number is specified as an integer, and does not depend on
the format the numbers on the output pages (or whether or not they are even printed on the page). For
example, if the page numbers are formatted as roman numerals, the page number you specify would be
"6", not "vi". See "FROM" on page 171 for more information.

14.3.30 VALUESet
IBM VM/CMS and IBM PC/DOS

VALUES file-name
DEC VAX/VMS

/VALUES=file-name

The VALUESET option is an equivalent name for the MAILMERGE option. See "MAILmerge" on page
172 for more information.

14.3.31 WAIT/NOWAIT
IBM VM/CMS and IBM PC/DOS

WAIT
NOWAIT

DEC VAX/VMS
/WAIT
/NOWAIT

Certain errors (such as device not ready) will result in a query from WATCOM Script/GML about
continuing with the document processing. WATCOM Script/GML also waits after processing the
document when in not line mode (see "LINEmode" on page 172). The default option WAIT enables
these queries. The option NOWAIT will suppress the query.

14.3.32 WARNing/NOWARNing
IBM VM/CMS and IBM PC/DOS

WARN
NOWARN

DEC VAX/VMS
/WARN
/NOWARN

The WARNING option(the default) causes GML warning messages about possible error conditions to be
displayed on the screen. Processing of the document is not halted when a warning message is displayed.
WATCOM Script/GML warnings about possible error situations and information messages are not
displayed on the screen when the NOWARNING option is specified.

176 Options

Running WATCOM Script/GML

14.3.33 WSCRipt
IBM VM/CMS and IBM PC/DOS

WSCR
DEC VAX/VMS

/WSCR

The WSCRIPT option enables recognition of Script control words and the line separator character. In
addition, it enables several WATCOM extensions over Waterloo Script. The extensions are:

1. Lines of input which

• are processed when concatenate is OFF
• start with blank space
• the blank space is followed by a GML tag that is not a continuation

have the blank space at the beginning of the line ignored.

2. When .CO OFF is set, lines which exceed the line length are split into two lines.

3. Extra blanks between words are suppressed in concatenate mode.

4. Full and partial stops are recognized anywhere in the input line if followed by a space.

5. If a macro for .LB, .LT, .NL, or .BL is not defined, a break is not implicitly performed.

Options 177

GML Reference

178 Options

Device Reference

Device Reference

180

15 Devices

15.1 Output Devices in WATCOM Script/GML

When you process a document, WATCOM Script/GML must create the resulting output for a particular
output device. The format of the output may be different among devices, or for a device which can be set
with different characteristics. To provide support for these differences, WATCOM Script/GML specifies
a device as having several components.

Special characters, or control sequences, are sent to a device to perform various functions. For example,
a control sequence is needed when a new output line or a new page is started. The definition of the
control sequences required by WATCOM Script/GML for a particular device is called a driver.

The character sets, or fonts, that are available for the document is another component in the definition of
a device. Each font definition specifies information such as the size of the characters. Some fonts have
different sized characters to produce more attractive output.

Some of the differences in the format of the output for a device are related to the way in which the device
is set up. The number of lines on a page, continuous forms or single sheet feeding, and default fonts are
examples of set up differences. The combination of the font and driver definitions with the specification
of the set up values create a device definition.

15.2 Page Addressing

A particular point on the output page is identified by a horizontal (X-axis) and a vertical (Y-axis)
component. Together, the X and Y components designate the address of a point on the page. As each
word and line of output is processed, the X and Y components of the address are adjusted to make a new
address. Many devices restrict the adjustment of the address. Other devices are known as point

addressable or full page addressing devices, and allow any point on the page to be addressed.

WATCOM Script/GML assumes that the start of an output page is the upper left corner. The horizontal
component of the page address is adjusted for each character placed on the output page. The vertical
component of the page address is adjusted for each output line. The current X and Y address component
values are available through the %X_ADDRESS and %Y_ADDRESS device functions. (See
"X_ADDRESS" and "Y_ADDRESS" on page 191 for more information).

15.3 Augmented Device Definitions

Certain device operations are not selectable through the device and driver definitions. WATCOM
Script/GML augments some device definitions by directly supporting these operations.

The augmented device definitions are recognized by the starting characters of the driver name. For
example, HPLDRV is recognized as the name of a driver definition for the HP LaserJet printer.

Name Prefix Augmented Device

Augmented Device Definitions 181

Device Reference

HPL HP LaserJet
HPLP HP LaserJet Plus
MLT Multiwriter V (emulation mode)
MLTE Multiwriter V (express mode)
PCG IBM PC Graphics
PS PostScript

If the driver definition name begins with HPL (but not HPLP), the value returned by the %X_ADDRESS
and %TABWIDTH device functions is in terms of decipoints instead of dots.

15.4 Creating a Definition

The WATCOM GENDEV (GENerate DEVice) program (see "Running WATCOM GENDEV" on page
219) creates a definition for use by WATCOM Script/GML. The font, driver and device definitions are
each created separately. The font and driver definitions appropriate for a particular device are selected
when the device definition is created.

A definition is first specified with a text editor. The resulting data file is then processed by the
WATCOM GENDEV program, which produces a new file that is used by WATCOM Script/GML when
processing a document. The definition files produced by the WATCOM GENDEV program are collected
together in a definition library. This library will contain all of the definitions that may be required for the
production of a document. Each definition in the library is referred to as a member of the library. Refer
to "Libraries" on page 231 for more information.

Many computer systems limit the size of a library member name. To minimize this restriction, every
definition has two names associated with it. The member name is the name of the library member which
contains the definition. The defined name is the name used by WATCOM Script/GML and WATCOM
GENDEV when referring to the definition.

When a defined name is referenced, the member name associated with that defined name must be known.
This is accomplished through the use of a "directory" file which contains the defined name and the
associated member name for each definition in the library. This file is named WGMLST, and is
automatically created when the WATCOM GENDEV program is used to process a definition. The name
WGMLST must not be used as a member name for any of the definitions.

If the file ’device1’ contains a definition, the following example shows how the definition can be
generated.

GENDEV device1

Figure 77. Generating a Definition

For more information on running the GENDEV program, refer to "Running WATCOM GENDEV" on
page 219.

15.5 Deleting a Definition

Specifying the :delete tag in the input for the GENDEV program will delete a definition. The WGMLST
directory file is re-created with the entry for the specified definition name removed. The newly created
WGMLST file must be updated to the definition library, and the definition member associated with the
specified definition name removed.

182 Deleting a Definition

Devices

:DELETE
defined_name = ’character string’.

Figure 78. Deleting a Definition

:DELETE
defined_name = ’epson’.

Figure 79. Example of a Definition Deletion

15.6 General Device Tags

15.6.1 CMT
Format: :CMT.

The information following the comment tag on the input line is treated as a comment. Text data and
device tags in the input line following the comment tag are not processed. The comment tag must be
placed at the beginning of each input record that is to be ignored. This tag may appear at any point in the
device definition source, although it may not be placed between device tag attributes.

15.6.2 INCLUDE
Format: :INCLUDE file=’file name’.

The value of the required attribute file is used as the name of the file to include. The content of the
included file is processed by WATCOM GENDEV as if the data was in the original file. This tag
provides the means whereby a definition may be specified using a collection of separate files. More than
one definition may be included into one file for processing by WATCOM GENDEV.

When working on a PC/DOS system, the DOS environment symbol GMLINC may be set with an
include file list. This symbol is defined in the same way as a library definition list (see "Defining a
Library List" on page 234), and provides a list of alternate directories for file inclusion. If an included
file is not defined in the current directory, the directories specified by the include path list are searched
for the file. If the file is still not found, the directories specified by the DOS environment symbol PATH

are searched.

15.7 Device Functions

When creating a device or driver definition, it may be necessary to enter non-printable characters or
information which will not be available until the document is processed. Arithmetic operations may also
have to be performed on the data while the document is being processed. Device functions allow you to
specify this information in the device or driver definitions.

Most of the device functions operate on supplied parameter values and return either a numeric or
character result.

A numeric value is a sequence of digits, or the result of a device function which returns a number.
Numeric values may be in either decimal or hexadecimal form. Hexadecimal numeric values begin with
a dollar($) sign and are composed of digits and the characters A through F.

Device Functions 183

Device Reference

A character value is a sequence of characters enclosed in either single(’) or double(") quotation marks.
The quotation marks surrounding the text are not part of the character value. If a quotation mark of the
same type used to delimit the character value is to be part of the character text, it may be entered by
specifying the quote character twice. Only one quote character will appear in the resulting character
value. This should only be done when the quote character you wish to enter as part of the character text is
the same quote character being used to delimit the character value. The following lines illustrate valid
character values:

’hello 12’
"hello 12"
"he’llo 12"
"he""llo 12"

The following lines illustrate invalid character values:

hello 12
hello 12"
"he"llo 12"

The following line is a valid character value, but is probably not the correct specification.

"it’’s 12"

The two single quotes will be part of the character value because double quotes are used to enclose the
value.

The result of some device functions will be used as final values for the sequence being defined. A final
value is sent directly to the output device. Some of the device functions produce results which are not
suitable for use as a final value. The result of this type of function must be supplied as a parameter value
to a device function which can produce a final value.

Prior to transmitting the device function sequences to the output device, WATCOM Script/GML
translates each character of the sequence into another character. The translation values are defined in the
font definitions used with the device. Some of the device functions produce final values which will not
be translated.

Each device function name begins with the percent character(%) and is immediately followed by a left
parenthesis. If the device function has any parameter values, the value(s) follow the left parenthesis and
are separated by commas. The device function is terminated with a right parenthesis.

15.7.1 ADD
%ADD(123,456)

The two required parameters must both be numeric. The sum of the two parameters is returned as a
numeric result. The result of this device function may not be used as a final value.

15.7.2 BINARY1
%BINARY1(123)

The required parameter must be numeric. The result of this function is a one byte binary number ranging
from 0 to 255 inclusive. The result of this device function is a final value, and may not be used as a
parameter of another device function. The result is not translated when sent to the output device.

184 Device Functions

Devices

15.7.3 BINARY2
%BINARY2(1234)

The required parameter must be numeric. The result of this function is a two byte binary number ranging
from 0 to 65535 inclusive. The result of this device function is a final value, and may not be used as a
parameter of another device function. The result is not translated when sent to the output device.

15.7.4 BINARY4
%BINARY4(1234)

The required parameter must be numeric. The result of this function is a four byte binary number ranging
from 0 to 4294967295 inclusive. On some machines, the largest integer value is a two byte binary
number. If such a machine is being used, two of the four bytes will always be zero. The result of this
device function is a final value, and may not be used as a parameter of another device function. The
result is not translated when sent to the output device.

15.7.5 CANCEL
%CANCEL("bold")

Some devices may cancel more than one operation with a single control sequence. For example, some
devices may stop underlining when bolding is turned off. The cancel device function specifies the type
of device operation that has been cancelled. WATCOM Script/GML will then re-establish the cancelled
operation. The possible values of the required character parameter are bold, underline, and the name of a
font switch method (see "TYPE Attribute" on page 204). The name of a font switch method is specified
when the device automatically switches to a default font. This device function may not be used as a
parameter of another device function.

15.7.6 CLEARPC
%CLEARPC()

This device function causes WATCOM Script/GML to clear the screen of an IBM PC. It is used in the
device definition, primarily with the pausing section. There is no effect when this function is used in a
driver definition. There are no parameters to this device function, and it may not be used as a parameter
of another device function.

15.7.7 CLEAR3270
%CLEAR3270()

This device function causes WATCOM Script/GML to clear the screen of an IBM 3270 type of terminal.
It is used in the device definition, primarily with the pausing section. There is no effect when this
function is used in a driver definition. There are no parameters to this device function, and it may not be
used as a parameter of another device function.

15.7.8 DATE
%DATE()

Device Functions 185

Device Reference

The result of this device function is a character value representing the current date. If the symbol &date
is defined, the value of this symbol is returned. There are no parameters to this device function, and the
result may not be used as a final value.

15.7.9 DECIMAL
%DECIMAL(123)

The required parameter must be numeric. The result of this device function is a character value
representing the given number. The result may not be used as a final value.

15.7.10 DEFAULT_WIDTH
%DEFAULT_WIDTH()

The result of this device function is a numeric value which represents the default width of a character in
the current font. When the font changes in the document, the value returned by this function will change
accordingly. There are no parameters to this device function, and the result may not be used as a final
value.

15.7.11 DIVIDE
%DIVIDE(124,12)

The two required parameters must both be numeric. The dividend from the integer division of the first
parameter by the second parameter is returned as a numeric value. The remainder resulting from the
division is not returned. The result of this device function may not be used as a final value.

15.7.12 FLUSHPAGE
%FLUSHPAGE()

This device function causes WATCOM Script/GML to flush the current page to the output device. The
page flush is obtained by printing enough blank lines to fill the current page. If the size of the document
page is greater than the size of the output device page, the page flush will print enough blank lines to
flush the current device page. If no data has been output to the device, and the page is the first page in the
document, the current page will not be flushed. There are no parameters to this device function, and it
may not be used as a parameter of another device function.

15.7.13 FONT_HEIGHT
%FONT_HEIGHT()

The result of this device function is a numeric value which represents the height of the current font.
Adding this value to the %font_space value gives the total height of the line. The return value is an
integer value in one hundredths of a point. For example, 12.25 points is returned as the number 1225.
When the font changes in the document, the value returned by this function will change accordingly.
There are no parameters to this device function, and the result may not be used as a final value.

15.7.14 FONT_SPACE
%FONT_SPACE()

186 Device Functions

Devices

The result of this device function is a numeric value which represents the space between lines in the
current font. Adding this value to the %font_height value gives the total height of the line. The return
value is an integer value in one hundredths of a point. For example, 12.25 points is returned as the
number 1225. When the font changes in the document, the value returned by this function will change
accordingly. There are no parameters to this device function, and the result may not be used as a final
value.

15.7.15 FONT_NUMBER
%FONT_NUMBER()

The result of this device function is a numeric value which represents the number of the current font.
When the font changes in the document, the value returned by this function will change accordingly.
There are no parameters to this device function, and the result may not be used as a final value.

15.7.16 FONT_OUTNAME1
%FONT_OUTNAME1()

The result of this device function is a character value which represents the outname1 value of the current
font. The outname1 value is specified in each font definition. When the font changes in the document,
the value returned by this function will change accordingly. There are no parameters to this device
function, and the result may not be used as a final value.

15.7.17 FONT_OUTNAME2
%FONT_OUTNAME2()

The result of this device function is a character value which represents the outname2 value of the current
font. The outname2 value is specified in each font definition. When the font changes in the document,
the value returned by this function will change accordingly. There are no parameters to this device
function, and the result may not be used as a final value.

15.7.18 FONT_RESIDENT
%FONT_RESIDENT()

The result of this device function is a character value. The result value represents the resident status of
the current font. The resident status for each font is specified in the :devicefont block of the device
definition. When the font changes in the document, the value returned by this function will change
accordingly. The value ’Y’ will be returned if the font is resident in the device, while the value ’N’ will
be returned if it is not resident. There are no parameters to this device function, and the result may not be
used as a final value.

15.7.19 HEX
%HEX(123)

The required parameter must be numeric. The result of this device function is a character value
representing the given number in hexadecimal form. For example, the number value 255 would be
returned as the character value ’FF’. Note that a dollar sign is not returned as part of the value. The
result may not be used as a final value.

Device Functions 187

Device Reference

15.7.20 IMAGE
%IMAGE("hello")

The required parameter must be a character value. The result of this device function is a character value
representing the given parameter, and is a final value. The result of this device function may not be used
as a parameter of another device function, and is not translated when sent to the output device.

15.7.21 LINE_HEIGHT
%LINE_HEIGHT()

The result of this device function is a numeric value which represents the height of the current font.
Adding this value to the %line_space value gives the total height of the line. The return value is in terms
of the device vertical base units. When the font changes in the document, the value returned by this
function will change accordingly. There are no parameters to this device function, and the result may not
be used as a final value.

15.7.22 LINE_SPACE
%LINE_SPACE()

The result of this device function is a numeric value which represents the space between lines in of the
current font. Adding this value to the %line_height value gives the total height of the line. The return
value is in terms of the device vertical base units. When the font changes in the document, the value
returned by this function will change accordingly. There are no parameters to this device function, and
the result may not be used as a final value.

15.7.23 PAGES
%PAGES()

The result of this device function is a numeric value which represents the number of the current page
being output. This number is not related to the numbering of pages in the formatted output. There are no
parameters to this device function, and the result may not be used as a final value.

15.7.24 PAGE_DEPTH
%PAGE_DEPTH()

The result of this device function is a numeric value which represents the depth of the output page as
defined in the device definition. There are no parameters to this device function, and the result may not
be used as a final value.

15.7.25 PAGE_WIDTH
%PAGE_WIDTH()

The result of this device function is a numeric value which represents the width of the output page as
defined in the device definition. There are no parameters to this device function, and the result may not
be used as a final value.

188 Device Functions

Devices

15.7.26 RECORDBREAK
%RECORDBREAK()

WATCOM Script/GML forms a line of output for a device. With some devices, it is desirable to send
several of these output lines together as one record. With other devices, each line and even some control
sequences must be sent as separate records. WATCOM Script/GML assumes that each record may
contain several output lines. The device function RECORDBREAK instructs WATCOM Script/GML to
send the information in the current record to the output device. There are no parameters to this device
function, and it may not be used as a parameter of another device function.

15.7.27 REMAINDER
%REMAINDER(124,12)

The two required parameters must both be numeric. The remainder from the division of the first
parameter by the second parameter is returned as a numeric value. The result of this device function may
not be used as a final value.

15.7.28 SLEEP
%SLEEP(30)

There is no result returned from this device function. The required parameter must be a non-negative
integer number. Other device functions are not allowed as parameters to this device function. This
device function causes WATCOM Script/GML to suspend document processing for the specified number
of seconds. This device function may not be used as a parameter of another device function.

15.7.29 SUBTRACT
%SUBTRACT(456,123)

The two required parameters must both be numeric. The difference obtained by subtracting the second
parameter from the first parameter is returned as a numeric value. The result of this device function may
not be used as a final value.

15.7.30 TAB_WIDTH
%TAB_WIDTH()

When WATCOM Script/GML uses tabbing to produce white space in a horizontal direction, the result of
this device function is a numeric value which represents the amount of space that is being tabbed over.
There are no parameters to this device function, and the result may not be used as a final value.

15.7.31 TEXT
%TEXT("hello")

The required parameter must be a character value. The result of this device function is a character value
representing the given parameter. The result of this device function is a final value, and may not be used
as a parameter of another device function. The result is translated when sent to the output device.

Device Functions 189

Device Reference

15.7.32 THICKNESS
%THICKNESS()

The result of this device function is a numeric value which represents the current thickness of the rule line
being drawn. The value returned by the function is set when drawing horizontal or vertical lines, and
when drawing a box. There are no parameters to this device function, and the result may not be used as a
final value.

15.7.33 TIME
%TIME()

The result of this device function is a character value representing the current time of day. If the symbol
&time is defined, the value of this symbol is returned. There are no parameters to this device function,
and the result may not be used as a final value.

15.7.34 WAIT
%WAIT()

This device function causes WATCOM Script/GML to suspend document processing until the enter key
on the keyboard is depressed. This device function is used in the device definition, primarily with the
pausing section. There is no effect when this function is used in a driver definition. There are no
parameters to this device function, and it may not be used as a parameter of another device function.

15.7.35 WGML_HEADER
%WGML_HEADER()

The result of this device function is a character value which represents the WATCOM Script/GML
header. The header is the character value which identifies the WATCOM Script/GML product and
version number. There are no parameters to this device function, and the result may not be used as a final
value.

15.7.36 X_ADDRESS
%X_ADDRESS()

The result of this device function is a numeric value which represents the current horizontal(X-axis)
position on the output page. There are no parameters to this device function, and the result may not be
used as a final value. (See "Page Addressing" on page 181 for more information).

15.7.37 X_SIZE
%X_SIZE()

The result of this device function is a numeric value which represents the current horizontal length of a
line to be drawn. The value of this function is set when drawing a box or a horizontal line. There are no
parameters to this device function, and the result may not be used as a final value.

190 Device Functions

Devices

15.7.38 Y_ADDRESS
%Y_ADDRESS()

The result of this device function is a numeric value which represents the current vertical(Y-axis) position
on the output page. There are no parameters to this device function, and the result may not be used as a
final value. (See "Page Addressing" on page 181 for more information).

15.7.39 Y_SIZE
%Y_SIZE()

The result of this device function is a numeric value which represents the current vertical length of a line
to be drawn. The value of this function is set when drawing a box or a horizontal line. There are no
parameters to this device function, and the result may not be used as a final value.

15.8 Defining a Font

Information about the character sets available for a particular device is needed by WATCOM Script/GML
to properly process a document. The FONT block is processed by the GENDEV program to create a font
definition. The resulting definition is referenced on the WATCOM Script/GML command line and by the
device definitions.

:FONT
<attributes>
<width block>
<intrans block>
<outtrans block>

:eFONT.

Figure 80. The FONT Block

A font block begins with the :font tag and ends with the :efont tag. The attributes of the font block must
all be specified.

The width, intrans and outtrans character definition blocks are used to specify information which defines
the characters of the font. Each possible character in a font is represented by a number between 0 and 255
inclusive (the representation depends on the machine system being used). Information about each of
these characters may be specified in the character definition blocks, with one character definition per
input line. If a character definition line is not specified for a particular character value, default values are
supplied by the WATCOM GENDEV program.

Each of the character definition blocks are optional, and may be specified more that once and in any
order. If specified, they must follow the font attributes.

Defining a Font 191

Device Reference

15.8.1 Attributes of the Font Block

defined_name = ’character string’
member_name = ’character string’
font_out_name1 = ’character string’
font_out_name2 = ’character string’
line_height = number
line_space = number
scale_basis = number
scale_min = number
scale_max = number
char_width = number
mono_space_width = YES | NO

Figure 81. Attributes of the FONT Block

defined_name = ’times-roman’
member_name = ’PSTR’
font_out_name1 = ’Times-Roman’
line_height = 1000
line_space = 113
scale_basis = 72000
scale_min = 1000
scale_max = 72000
char_width = 250
mono_space_width = no

Figure 82. Example of the FONT Block Attributes

15.8.1.1 DEFINED_NAME Attribute

The defined_name attribute specifies the defined name of the font. Any valid character string may be
used as the defined name. The defined name must be unique among the defined names of the font, driver
and device definitions. The defined name is used to identify a font on the WATCOM Script/GML
command line and is referred to in a device definition.

15.8.1.2 MEMBER_NAME Attribute

The member_name attribute specifies the member name of the font definition. The value of the member
name attribute must be a valid file name. The member name must be unique among the member names of
the font, driver and device definitions. When the GENDEV program processes the font block, it places
the font definition in a file with the specified member name as the file name. If the file extension part of
the file name is not specified, the GENDEV program will supply a default extension. Refer to "Running
WATCOM GENDEV" on page 219 for more information.

15.8.1.3 FONT_OUT_NAME Attributes

The optional attributes font_out_name1 and font_out_name2 specify additional naming information for
the font. The attribute value must be a valid character string.

Some devices require the specification of the font names or font characteristics during the initialization
sequence or when a switch to a different font is made within the document. The font_out_name attributes
may be used to supply these names to WATCOM Script/GML. If these values are not needed with a
device, the null string(’’) may be specified.

192 Defining a Font

Devices

15.8.1.4 LINE_HEIGHT Attribute

The line_height attribute specifies the height of the characters that are in the font being defined. The
attribute value is a positive integer number which represents the height of the characters in terms of the
vertical base units specified in the device definition if the font is not scaled. If the font is scaled, the
value is in terms of the scale basis specified by the scale_basis attribute. This value added to the line
space value is the total amount of space from one line to the next.

15.8.1.5 LINE_SPACE Attribute

The line_space attribute specifies the amount of space between two lines of characters that are in the font
being defined. The attribute value is a positive integer number which represents the line space in terms of
the vertical base units specified in the device definition if the font is not scaled. If the font is scaled, the
value is in terms of the scale basis specified by the scale_basis attribute. This value added to the line
height value is the total amount of space from one line to the next.

15.8.1.6 SCALE_BASIS Attribute

The scale_basis attribute specifies the number of base units per inch for scale operations. This attribute is
not specified when the font characters have a fixed size.

15.8.1.7 SCALE_MIN Attribute

The scale_min attribute specifies the minimum size a font may be scaled to. The attribute value is a
number in terms of the scale_basis attribute. This attribute must be specified if the font characters are
scaled.

15.8.1.8 SCALE_MAX Attribute

The scale_max attribute specifies the maximim size a font may be scaled to. The attribute value is a
number in terms of the scale_basis attribute. This attribute must be specified if the font characters are
scaled.

15.8.1.9 CHAR_WIDTH Attribute

The char_width attribute specifies the default width of the characters that are in the font being defined.
The attribute value is a positive integer number which represents the width of a character in terms of the
horizontal base units specified in the device definition if the font is not scaled. For example, if there are
ten characters per inch with a particular font, and there are 300 horizontal base units per inch, then the
number 30 would be the default character width value for the font. If the font is scaled, the value is in
terms of the scale basis specified by the scale_basis attribute.

15.8.1.10 MONO_SPACE_WIDTH Attribute

The optional mono_space_width attribute determines the way in which the character widths of the font
are used. The attribute value may be one of the keywords YES and NO.

YES All of the characters in the font are treated as having the same width.

NO The font is treated as a character set with varying widths.

Defining a Font 193

Device Reference

15.8.2 Width Block

The width block is an optional section of the font block. The width block is specified within a font
definition after the font block attributes.

:WIDTH.
font-character character-width
:eWIDTH.

Figure 83. The WIDTH Block

The :width tag begins the width block. The :ewidth tag delimits the end of the width block and must be
the first non-space characters on the line. Hexadecimal values in the width block must begin with a
dollar($) sign.

:WIDTH.
1 0
A 20
$C2 20
:eWIDTH.

Figure 84. Example of the WIDTH Block

The font-character value specifies the character to define. This value may be a single character, an
integer number, or a hexadecimal number. If a single character is specified, it should not be enclosed in
quotes.

The character-width value specifies the width of the character in terms of the horizontal base units
specified in the device definition if the font is fixed, and in terms of the scale basis if the font characters
are scaled. This value must be a non-negative integer number. If a character is not defined in the width
block, it is assigned the width value defined by the char_width attribute of the font block.

15.8.3 InTrans Block

The intrans block is an optional section of the font block. The intrans block is specified within a font
definition after the font block attributes.

:INTRANS.
font-character input-translation
:eINTRANS.

Figure 85. The INTRANS Block

The :intrans tag begins the intrans block. The :eintrans tag delimits the end of the intrans block and
must be the first non-space characters on the line.

:INTRANS.
1 1
A $C1
$C2 $40
:eINTRANS.

Figure 86. Example of the INTRANS Block

194 Defining a Font

Devices

The font-character and input-translation values may be a single character, an integer number, or a
hexadecimal number. Hexadecimal values in the intrans block must begin with a dollar($) sign. If a
single character is specified, it should not be enclosed in quotes.

The input-translation value defines the character that the font-character value is translated to when input
translation is performed. If a character is not defined in the intrans block, the input translation value of
the character will be itself. Refer to "Input Translation" on page 66 for more information.

15.8.4 OutTrans Block

The outtrans block is an optional section of the font block. The outtrans block is specified within a font
definition after the font block attributes.

:OUTTRANS.
font-character output-translation
:eOUTTRANS.

Figure 87. The OUTTRANS Block

The :outtrans tag begins the outtrans block. The :eouttrans tag delimits the end of the outtrans block
and must be the first non-space characters on the line.

:OUTTRANS.
1 1
A $C1
$C2 $40
) \)
175 \ 2 6 7
:eOUTTRANS.

Figure 88. Example of the OUTTRANS Block

The font-character value specifies the character to define. This value may be a single character, an
integer number, or a hexadecimal number. Hexadecimal values in the outtrans block must begin with a
dollar($) sign. If a single character is specified, it should not be enclosed in quotes.

Some output devices represent characters by a different numeric sequence than the computer used to
produce the document. The output translation value may be specified to translate the character entered in
the input text to the numeric representation required by the device. Each output translation character is
separated by a space, and may be a character, an integer number, or a hexadecimal number. If a character
is not defined in the outtrans block, the output translation value of the character will be itself.

15.9 Defining a Driver

A driver definition specifies the control sequences and methods by which output is produced. This
includes such things as how to do a font change, bolding, and underlining. The DRIVER block is
processed by the GENDEV program to create a driver definition. The resulting definition is referenced
by the device definitions.

Defining a Driver 195

Device Reference

:DRIVER
<attributes>
<init block>
<finish block>
<newline block>
<newpage block>
<htab block>
<boldstart block>
<boldend block>
<understart block>
<underend block>
<fontswitch block>
<pageaddress block>
<absoluteaddress block>
<hline block>
<vline block>
<dbox block>

:eDRIVER.

Figure 89. The DRIVER Block

A driver block begins with the :driver tag and ends with the :edriver tag. The attributes of the driver
block must all be specified. The various blocks of information following the attributes are not all
required to define the driver. When they are specified, they must be in the order shown in Figure 89.

15.9.1 Attributes of the Driver Block

defined_name = ’character string’
member_name = ’character string’
rec_spec = ’character string’
fill_char = number | character

Figure 90. Attributes of the DRIVER Block

defined_name = ’x2700drv’
member_name = ’x27drv’
rec_spec = ’(f:80)’
fill_char = 0

Figure 91. Example of the DRIVER Block Attributes

15.9.1.1 DEFINED_NAME Attribute

The defined_name attribute specifies the defined name of the driver. Any valid character string may be
used as the defined name. The defined name must be unique among the defined names of the font, driver
and device definitions. The defined name is used to identify the driver when creating a device definition.

15.9.1.2 MEMBER_NAME Attribute

The member_name attribute specifies the member name of the driver definition. The value of the
member name attribute must be a valid file name. The member name must be unique among the member
names of the font, driver and device definitions. When the GENDEV program processes the driver block,
it places the driver definition in a file with the specified member name as the file name. If the file
extension part of the file name is not specified, the GENDEV program will supply a default extension.
Refer to "Running WATCOM GENDEV" on page 219 for more information.

196 Defining a Driver

Devices

15.9.1.3 REC_SPEC Attribute

The rec_spec attribute specifies a record specification value (for example, either (f:80) or (f:c:80) are
allowed) for the output device. The attribute value must be a valid record specification (see "Files" on
page 221).

15.9.1.4 FILL_CHAR Attribute

A fill character is needed when the output records for the device have a fixed length. If a record is output
which is less than the record length, the record must be filled out to the required length. The fill_char

attribute specifies the fill character to be used when doing this record filling. The attribute value may be a
single character value enclosed in quotes, an integer number, or a hexadecimal number. A hexadecimal
number is preceded by the dollar($) sign.

15.9.2 INIT Block

The init block specifies the initialization values which are to be output to a device. If no initialization is
required, the init block may be omitted. The two value sections of the init block may appear in any order
and as many times as necessary.

:INIT
place= START | DOCUMENT
:value.

<device functions>
:evalue.
:fontvalue.

<device functions>
:efontvalue.

:eINIT.

Figure 92. The INIT Block

The init block begins with the :init tag and ends with the :einit tag. The place attribute and at least one of
the value or fontvalue sections must be specified.

:INIT
place= start
:fontvalue.

%text(%font_outname2())%binary1(0)
%text(%font_outname1())%recordbreak()

:efontvalue.
:value.

%binary1($27)
%text(’+P,X2700 -- WATCOM Script/GML -- ’)
%binary1($15)%recordbreak()

:evalue.
:eINIT.

Figure 93. Example of the INIT Block

15.9.2.1 PLACE Attribute

The place attribute indicates where in the output the specified initialization sequences are to appear. The
attribute value may be the keyword START or DOCUMENT. A separate init block may be specified for
each of these two values. An automatic font select of font zero is performed at the beginning of a
document as part of the initialization.

Defining a Driver 197

Device Reference

START The init block is evaluated when WATCOM Script/GML starts processing the input
source.

DOCUMENT The init block is evaluated when WATCOM Script/GML starts processing a
document.

15.9.2.2 VALUE Section

The value section specifies the general initialization sequence to be output, and is started with the :value

tag. Device functions are then entered after the :value tag, and may be specified on more than one line.
The :evalue tag delimits the end of a value section, and must be the first non-space characters in the line.
The value section may be specified more than once, and may precede and/or follow a fontvalue section.

15.9.2.3 FONTVALUE Section

The fontvalue section is used to perform font initialization, and is started with the :fontvalue tag. Device
functions are then entered after the :fontvalue tag, and may be specified on more than one line.
WATCOM Script/GML selects the fonts being used in the document. For each of the selected fonts, the
fontvalue section is evaluated. Device functions, such %default_width, will return the values appropriate
for the selected font. The :efontvalue tag delimits the end of a fontvalue section, and must be the first
non-space characters in the line. The fontvalue section may be specified more than once, and may
precede and/or follow a value section.

15.9.3 FINISH Block

The finish block specifies the finalization values which are to be output. If no finalization is required, the
finish block may be omitted.

:FINISH
place= DOCUMENT | END
:value.

<device functions>
:evalue.

:eFINISH.

Figure 94. The FINISH Block

The finish block begins with the :finish tag and ends with the :efinish tag. The place attribute and the
value section must both be specified.

:FINISH
place=end
:value.

%binary1(21)%binary1($27)%text(’+X’)
%binary1(21)%recordbreak()

:evalue.
:eFINISH.

Figure 95. Example of the FINISH Block

15.9.3.1 PLACE Attribute

The place attribute indicates where in the output the specified finalization sequence is to appear. The
attribute value may be the word DOCUMENT or END. A separate finish block may be specified for each
of these two values.

198 Defining a Driver

Devices

DOCUMENT The finish block is evaluated when WATCOM Script/GML finishes processing a
document.

END The finish block is evaluated when WATCOM Script/GML finishes processing the
input source.

15.9.3.2 VALUE Section

The value section specifies the general finalization sequence to be output, and is started with the :value

tag. Device functions are then entered after the :value tag, and may be specified on more than one line.
The :evalue tag delimits the end of a value section, and must be the first non-space characters in the line.

15.9.4 NEWLINE Block

When WATCOM Script/GML starts a new line in the output, it must know the method by which to start
the new line. The newline block specifies this method. To provide for different spacing mechanisms, the
newline block may be specified any number of times to set different sequences for advancing lines with
different line spacing.

:NEWLINE
advance=number
:value.

<device functions>
:evalue.

:eNEWLINE.

Figure 96. The NEWLINE Block

The newline block begins with the :newline tag and ends with the :enewline tag. The advance attribute
and the value section must both be specified.

:NEWLINE
advance=1
:value.

%binary1(13)%binary1(10)
:evalue.

:eNEWLINE.

Figure 97. Example of the NEWLINE Block

15.9.4.1 ADVANCE Attribute

The advance attribute specifies the number of lines that will be advanced when the given sequence is
output. The attribute value must be a non-negative integer. A particular advance number may be used
only once in a newline block. The value zero gives the return to beginning of line sequence. This must
be supplied if underlining and/or bolding is accomplished with overstriking. A newline block with an
advance value of one must be specified.

15.9.4.2 VALUE Section

The value section specifies the sequence to be output to obtain the required number of line advances, and
is started with the :value tag. Device functions are then entered after the :value tag, and may be specified
on more than one line. The :evalue tag delimits the end of a value section, and must be the first
non-space characters in the line.

Defining a Driver 199

Device Reference

15.9.5 NEWPAGE Block

The newpage block defines the method by which WATCOM Script/GML will start a new page in the
output, and must be specified.

:NEWPAGE
:value.

<device functions>
:evalue.

:eNEWPAGE.

Figure 98. The NEWPAGE Block

The newpage block begins with the :newpage tag and ends with the :enewpage tag. The value section
must be specified.

:NEWPAGE
:value.

%binary1(12)
:evalue.

:eNEWPAGE.

Figure 99. Example of the NEWPAGE Block

15.9.5.1 VALUE Section

The value section specifies the sequence to be output to obtain the new page, and is started with the
:value tag. Device functions are then entered after the :value tag, and may be specified on more than one
line. The :evalue tag delimits the end of a value section, and must be the first non-space characters in the
line.

15.9.6 HTAB Block

The htab block defines a relative horizontal tabbing sequence. It must define a method of moving in a
forward horizontal direction based upon the horizontal base unit measurement of the device. This block
is not required, but will allow the production of a more professional looking document. If a proportional
font is used, and this block is not specified, it may not be possible to properly align the words to the right
hand side of the column when the text is to be justified.

:HTAB
:value.

<device functions>
:evalue.

:eHTAB.

Figure 100. The HTAB Block

The htab block begins with the :htab tag and ends with the :ehtab tag. The value section must be
specified.

200 Defining a Driver

Devices

:CMT.Set up for horizontal tabbing.
:CMT.Issue tab control codes.
:CMT.Add tab width value over 256 to the ’@’ character
:CMT.Divide the tab width value between 16 and 256
:CMT.by 16 and add to the ’@’ character.
:CMT.Add the tab width value between 0 and 16
:CMT.to the ’@’ character.
:HTAB

:value.
%binary1(27)%text(’H’)
%binary1(%add(%divide(%tab_width(),256),$40))
%binary1(%add(%divide(%remainder(

%tab_width(),256),16),$40))
%binary1(%add(%remainder(%tab_width(),16),$40))

:evalue.
:eHTAB.

Figure 101. Example of the HTAB Block

15.9.6.1 VALUE Section

The value section specifies the sequence to be output to obtain the horizontal tab, and is started with the
:value tag. Device functions are then entered after the :value tag, and may be specified on more than one
line. The :evalue tag delimits the end of a value section, and must be the first non-space characters in the
line. The device function TAB_WIDTH will contain the amount of horizontal space WATCOM
Script/GML will needs to tab over.

15.9.7 BOLDSTART Block

The boldstart block defines the method by which WATCOM Script/GML will cause text to appear in
boldface in the output. If this block is not specified, bold text is obtained by overprinting the output line.
If bolding is accomplished with overprinting, a newline block with an advance of zero must be specified.

:BOLDSTART
:value.

<device functions>
:evalue.

:eBOLDSTART.

Figure 102. The BOLDSTART Block

The boldstart block begins with the :boldstart tag and ends with the :eboldstart tag. The value section
must be specified.

:BOLDSTART
:value.

%binary1($27)%text(’b’)
:evalue.

:eBOLDSTART.

Figure 103. Example of the BOLDSTART Block

15.9.7.1 VALUE Section

The value section specifies the sequence to be output to obtain the bolding, and is started with the :value

tag. Device functions are then entered after the :value tag, and may be specified on more than one line.
The :evalue tag delimits the end of a value section, and must be the first non-space characters in the line.

Defining a Driver 201

Device Reference

15.9.8 BOLDEND Block

The boldend block defines the sequences needed to stop the bolding of text. The boldend block is
required if a boldstart block is specified.

:BOLDEND
:value.

<device functions>
:evalue.

:eBOLDEND.

Figure 104. The BOLDEND Block

The boldend block begins with the :boldend tag and ends with the :eboldend tag. The value section
must be specified.

:BOLDEND
:value.

%binary1($27)%text(’p’)
:evalue.

:eBOLDEND.

Figure 105. Example of the BOLDEND Block

15.9.8.1 VALUE Section

The value section specifies the sequence to be output to stop the bolding of text, and is started with the
:value tag. Device functions are then entered after the :value tag, and may be specified on more than one
line. The :evalue tag delimits the end of a value section, and must be the first non-space characters in the
line.

15.9.9 UNDERSTART Block

The understart block defines the method by which WATCOM Script/GML will cause text to be
underscored in the output. If this block is not specified, underscoring of text is obtained by overprinting
the output line. If overprinting is used, a newline block with an advance of zero must be specified.

:UNDERSTART
:value.

<device functions>
:evalue.

:eUNDERSTART.

Figure 106. The UNDERSTART Block

The understart block begins with the :understart tag and ends with the :eunderstart tag. The value
section must be specified.

:UNDERSTART
:value.

%binary1($27)%text(’u’)
:evalue.

:eUNDERSTART.

Figure 107. Example of the UNDERSTART Block

202 Defining a Driver

Devices

15.9.9.1 VALUE Section

The value section specifies the sequence to be output to obtain the underscoring, and is started with the
:value tag. Device functions are then entered after the :value tag, and may be specified on more than one
line. The :evalue tag delimits the end of a value section, and must be the first non-space characters in the
line.

15.9.10 UNDEREND Block

The underend block defines the sequences needed to stop the underscoring of text. The underend block
is required if an understart block is specified.

:UNDEREND
:value.

<device functions>
:evalue.

:eUNDEREND.

Figure 108. The UNDEREND Block

The underend block begins with the :underend tag and ends with the :eunderend tag. The value section
must be specified.

:UNDEREND
:value.

%binary1($27)%text(’w’)
:evalue.

:eUNDEREND.

Figure 109. Example of the UNDEREND Block

15.9.10.1 VALUE Section

The value section specifies the sequence to be output to stop the underscoring of text, and is started with
the :value tag. Device functions are then entered after the :value tag, and may be specified on more than
one line. The :evalue tag delimits the end of a value section, and must be the first non-space characters in
the line.

15.9.11 FONTSWITCH Block

The fontswitch block identifies a method for switching fonts. With some output devices, different fonts
are available when control sequences are used to switch from the default font. A separate fontswitch
block may be specified for each type of font switch method available with the device.

:FONTSWITCH
type=string
:startvalue.

<device functions>
:estartvalue.
:endvalue.

<device functions>
:eendvalue.

:eFONTSWITCH.

Figure 110. The FONTSWITCH Block

Defining a Driver 203

Device Reference

The fontswitch block begins with the :fontswitch tag and ends with the :efontswitch tag. The type
attribute and the value section must be specified.

:FONTSWITCH
type=’qume proportional on’
:startvalue.

%binary1(27)%text(’$’)
:estartvalue.
:endvalue.

%binary1(27)%text(’x’)
%recordbreak()

:eendvalue.
:eFONTSWITCH.

Figure 111. Example of the FONTSWITCH Block

15.9.11.1 TYPE Attribute

The character value of the type attribute provides an identifier for the font switch method. This identifier
is referenced in the device definition when specifying the fonts available for the device. The attribute
value must be unique among the font switch blocks in the driver definition.

15.9.11.2 STARTVALUE Section

The startvalue section specifies the sequence to be output to perform the font switch, and is started with
the :startvalue tag. Device functions are then entered after the startvalue tag, and may be specified on
more than one line. The :estartvalue tag delimits the end of a startvalue section, and must be the first
non-space characters in the line.

When a switch between two fonts is necessary, the startvalue sections of the two fonts are evaluated. The
font switch is only performed if the results of the two evaluations are different.

15.9.11.3 ENDVALUE Section

The endvalue section specifies the sequence to be output before the font switch sequence of the new font
is performed, and is started with the :endvalue tag. Device functions are then entered after the :endvalue

tag, and may be specified on more than one line. The :eendvalue tag delimits the end of an endvalue
section, and must be the first non-space characters in the line.

15.9.12 PAGEADDRESS Block

As text is placed on the output page, the X and Y components of the address are adjusted to make a new
address. With some output devices, this adjustment is added (positive) to the address. The adjustment is
subtracted (negative) with other output devices. The pageaddress block specifies whether the adjustment
is positive or negative. If the output device does not support page addressing, this block should not be
specified. (See "Page Addressing" on page 181 for more information).

:PAGEADDRESS
x_positive = YES | NO
y_positive = YES | NO

:ePAGEADDRESS.

Figure 112. The PAGEADDRESS Block

204 Defining a Driver

Devices

The pageaddress block begins with the :pageaddress tag and ends with the :epageaddress tag. The two
attributes must be specified.

:PAGEADDRESS
x_positive = yes
y_positive = yes

:ePAGEADDRESS.

Figure 113. Example of the PAGEADDRESS Block

15.9.13 ABSOLUTEADDRESS Block

When an output device supports page addressing, the absoluteaddress block specifies the mechanism for
absolute page addressing. If the output device does not support page addressing, this block should not be
specified.

:ABSOLUTEADDRESS
:value.

<device functions>
:evalue.

:eABSOLUTEADDRESS.

Figure 114. The ABSOLUTEADDRESS Block

The absoluteaddress block begins with the :absoluteaddress tag and ends with the :eabsoluteaddress

tag. The value section must be specified.

:ABSOLUTEADDRESS
:value.

%binary1($27)%text(’a’)
%text(decimal(%x_address()))
%text(’,’)%decimal(%y_address())
%binary1($15)

:evalue.
:eABSOLUTEADDRESS.

Figure 115. Example of the ABSOLUTEADDRESS Block

15.9.13.1 VALUE Section

The value section specifies the sequence to be output to set a new absolute address, and is started with the
:value tag. Device functions are then entered after the :value tag, and may be specified on more than one
line. The :evalue tag delimits the end of a value section, and must be the first non-space characters in the
line.

15.9.14 HLINE Block

The hline block specifies the mechanism for creating horizontal rule lines. If this block is not specified,
rule lines will be created with characters.

Defining a Driver 205

Device Reference

:HLINE
thickness = number
:value.

<device functions>
:evalue.

:eHLINE.

Figure 116. The HLINE Block

The hline block begins with the :hline tag and ends with the :ehline tag. The thickness attribute and
value section must be specified. The special symbols %x_size and %thickness are defined prior to
processing the hline block. The symbol %x_size is set to the width of the horizontal line, from the left
edge to the right edge. The symbol %thickness is set to the value specified by the hline blocks thickness
attribute. WATCOM Script/GML positions to the bottom left corner of the line before creating the rule
line, and assumes the current point of the device is set to the bottom right corner of the line when
finished.

:HLINE
thickness=4
:value.

%binary1(27)%text(’x’)
%text(%decimal(%x_address()))%text(’,’)
%text(%decimal(%y_address()))%text(’,’)
%text(%decimal(%x_size()))%text(’,’)
%text(%decimal(%thickness()))%text(’,’)%binary1(10)

:evalue.
:eHLINE.

Figure 117. Example of the HLINE Block

15.9.14.1 THICKNESS Attribute

The thickness attribute specifies the thickness of the horizontal line. This value is in terms of the device
horizontal base units.

15.9.14.2 VALUE Section

The value section specifies the sequence to be output to create a horizontal rule line, and is started with
the :value tag. Device functions are then entered after the :value tag, and may be specified on more than
one line. The :evalue tag delimits the end of a value section, and must be the first non-space characters in
the line.

15.9.15 VLINE Block

The vline block specifies the mechanism for creating vertical rule lines. If this block is not specified, rule
lines will be created with characters.

:VLINE
thickness = number
:value.

<device functions>
:evalue.

:eVLINE.

Figure 118. The VLINE Block

206 Defining a Driver

Devices

The vline block begins with the :vline tag and ends with the :evline tag. The thickness attribute and
value section must be specified. The special symbols %y_size and %thickness are defined prior to
processing the vline block. The symbol %y_size is set to the height of the vertical line, from the top edge
to the bottom edge. The symbol %thickness is set to the value specified by the vline blocks thickness
attribute. WATCOM Script/GML positions to the bottom left corner of the line before creating the rule
line, and assumes the current point of the device is set to the top left corner of the line when finished.

:VLINE
thickness=4
:value.

%binary1(27)%text(’y’)
%text(%decimal(%x_address()))%text(’,’)
%text(%decimal(%y_address()))%text(’,’)
%text(%decimal(%y_size()))%text(’,’)
%text(%decimal(%thickness()))%text(’,’)%binary1(10)

:evalue.
:eVLINE.

Figure 119. Example of the VLINE Block

15.9.15.1 THICKNESS Attribute

The thickness attribute specifies the thickness of the vertical line. This value is in terms of the device
horizontal base units.

15.9.15.2 VALUE Section

The value section specifies the sequence to be output to create a vertical rule line, and is started with the
:value tag. Device functions are then entered after the :value tag, and may be specified on more than one
line. The :evalue tag delimits the end of a value section, and must be the first non-space characters in the
line.

15.9.16 DBOX Block

The dbox block specifies the mechanism for creating a box. If this block is not specified, rule lines will
be created with the hline and vline block definitions.

:DBOX
thickness = number
:value.

<device functions>
:evalue.

:eDBOX.

Figure 120. The DBOX Block

The dbox block begins with the :dbox tag and ends with the :edbox tag. The thickness attribute and
value section must be specified. The special symbols %x_size, %y_size and %thickness are defined prior
to processing the dbox block. The symbol %x_size is set to the width of the horizontal component of the
box, from the left edge to the right edge. The symbol %y_size is set to the height of the vertical
component of the box, from the top edge to the bottom edge. The symbol %thickness is set to the value
specified by the dbox thickness attribute. WATCOM Script/GML positions to the bottom left corner of
the box before creating the box lines, and assumes the current point of the device is set to the bottom right
corner of the box when finished.

Defining a Driver 207

Device Reference

:DBOX
thickness=10
:value.

%recordbreak()
%text(%decimal(%divide(%thickness(),2)))
%text(’ ’)
%text(%decimal(%divide(%thickness(),2)))
%text(’ rmoveto’)
%recordbreak()
%text(’0 ’)%text(%decimal(%y_size()))%text(’ rlineto ’)
%recordbreak()
%text(%decimal(%subtract(%x_size(),%thickness())))
%text(’ 0 rlineto ’)
%recordbreak()
%text(’0 -’)%text(%decimal(%y_size()))%text(’ rlineto ’)
%recordbreak()
%text(’-’)%text(%decimal(%subtract(%x_size(),%thickness())))
%text(’ 0 rlineto’)
%recordbreak()
%text(’closepath ’)
%text(%decimal(%thickness()))
%text(’ setlinewidth stroke’)
%recordbreak()
%text(%decimal(%add(%x_address(),%x_size())))
%text(’ ’)%text(%decimal(%y_address()))
%text(’ moveto’)
%recordbreak()

:evalue.
:eDBOX.

Figure 121. Example of the DBOX Block

15.9.16.1 THICKNESS Attribute

The thickness attribute specifies the thickness of the box lines. This value is in terms of the device
horizontal base units.

15.9.16.2 VALUE Section

The value section specifies the sequence to be output to create a box, and is started with the :value tag.
Device functions are then entered after the :value tag, and may be specified on more than one line. The
:evalue tag delimits the end of a value section, and must be the first non-space characters in the line.

15.10 Defining a Device

The device definition combines the specification of device setup characteristics, driver definition, and
font definitions. The DEVICE block is processed by the GENDEV program to create a device definition.
The device definition to be used for the processing of a document is specified on the WATCOM
Script/GML command line.

208 Defining a Device

Devices

:DEVICE
<attributes>
<pause block>
<devicefont block>
<defaultfont block>
<fontpause block>
<rule block>
<box block>
<underscore block>
<pagestart block>

:eDEVICE.

Figure 122. The DEVICE Block

A device block begins with the :device tag and ends with the :edevice tag. The attributes of the device
block must all be specified. The various blocks of information following the attributes are not all
required to define the device. When they are specified, they must be in the order shown in Figure 122.

15.10.1 Attributes of the Device Block

defined_name = ’character string’
member_name = ’character string’
driver_name = ’character string’
output_name = ’character string’
output_suffix = ’character string’
page_width = horizontal-base-units
page_depth = vertical-base-units
horizontal_base_units = number
vertical_base_units = number

Figure 123. Device Attributes

defined_name = ’x2700’
member_name = ’x2700’
driver_name = ’x2700drv’
output_name = ’’
output_suffix = ’x2700’
page_width = 2400
page_depth = 3300
horizontal_base_units = 300
vertical_base_units = 300

Figure 124. Example of the Device Attributes

15.10.1.1 DEFINED_NAME Attribute

The defined_name attribute specifies the defined name of the device. Any valid character string may be
used as the defined name. The defined name must be unique among the defined names of the font, driver
and device definitions. The defined name is used to identify the device on the WATCOM Script/GML
command line.

15.10.1.2 MEMBER_NAME Attribute

The member_name attribute specifies the member name of the device definition. The value of the
member name attribute must be a valid file name. The member name must be unique among the member
names of the font, driver and device definitions. When the GENDEV program processes the device
block, it places the device definition in a file with the specified member name as the file name. If the file
extension part of the file name is not specified, the GENDEV program will supply a default extension.
Refer to "Running WATCOM GENDEV" on page 219 for more information.

Defining a Device 209

Device Reference

15.10.1.3 DRIVER_NAME Attribute

The driver_name attribute specifies a character value that is the defined name of a driver definition. The
driver definition contains the control sequences used to produce the output for the device.

15.10.1.4 OUTPUT_NAME Attribute

If the output is to be directed to a specific device, such as a printer, the output_name attribute specifies
the name of that device. A record specification may be part of the output name (see "Files" on page 221).
If a device does not exist with the specified name, the attribute value will be used to create an output file
name. If the null string(’’) is specified as the attribute value, the file name of the input source document
will be used.

15.10.1.5 OUTPUT_SUFFIX Attribute

The character value of the output_suffix attribute will be suffixed to the output name. If the null
string(’’) is specified as the attribute value, no file suffix will be added.

15.10.1.6 PAGE_WIDTH Attribute

The page_width attribute specifies the physical page width of the output page in horizontal base units.
The page width defined in the document layout may be smaller than this value.

15.10.1.7 PAGE_DEPTH Attribute

The page_depth attribute specifies the physical page depth of the output page in vertical base units. The
page depth defined in the document layout may be smaller or larger than this value. If the page depth in
the document layout is larger than this value, WATCOM Script/GML will produce one document page
over several of the device pages.

15.10.1.8 HORIZONTAL_BASE_UNITS Attribute

The value of the horizontal_base_units attribute is a positive integer number. A horizontal base unit is
the smallest unit of space that the output device can advance in a horizontal direction. The attribute value
specifies the number of horizontal base units which are equivalent to one inch of horizontal space.

15.10.1.9 VERTICAL_BASE_UNITS Attribute

The value of the vertical_base_units attribute is a positive integer number. A vertical base unit is the
smallest unit of space that the output device can advance in a vertical direction. The attribute value
specifies the number of vertical base units which are equivalent to one inch of vertical space.

15.10.2 PAUSE Block

The pause block is used to cause various actions to occur at the terminal while WATCOM Script/GML is
processing the document. The issuing of messages and pausing while changes to the output device are
made can be controlled through the pause block. If pausing or messages are not required, the pause block
may be omitted.

210 Defining a Device

Devices

:PAUSE
place = START|DOCUMENT

|DOCUMENT_PAGE
|DEVICE_PAGE

:value.
<device functions>

:evalue.
:ePAUSE.

Figure 125. The PAUSE Block

A pause block begins with the :pause tag and ends with the :epause tag. The place attribute and value
section must both be specified.

:PAUSE
place = document
:value.

%text("Press enter to start the document.")
%recordbreak()%wait()%clear3270()

:evalue.
:ePAUSE.

Figure 126. Example of the PAUSE Block

15.10.2.1 PLACE Attribute

The place attribute specifies the point during processing when WATCOM Script/GML should evaluate
the pause block. The attribute value may be one of the keywords START, DOCUMENT,
DOCUMENT_PAGE, or DEVICE_PAGE. A separate pause block may be specified for each of the
different attribute values.

START The pause block is evaluated when WATCOM Script/GML begins processing the
source input data.

DOCUMENT The pause block is evaluated when WATCOM Script/GML begins processing the
document text.

DOCUMENT_PAGE
The pause block is evaluated at the beginning of each document page. A document
page is the amount of output that WATCOM Script/GML formats for a page in the
document. The document page may be smaller or larger than the physical page
produced by the output device. If the page being printed is both the document page
and the device page, the document page pause block takes precedence over the
device page pause block.

DEVICE_PAGE
The pause block is evaluated when WATCOM Script/GML begins a new page on
the output device.

15.10.2.2 VALUE Section

The value section specifies the pausing control sequences to be output, and is started with the :value tag.
Device functions are then entered after the :value tag, and may be specified on more than one line. The
:evalue tag delimits the end of a value section, and must be the first non-space characters in the line.

Defining a Device 211

Device Reference

15.10.3 DEVICEFONT Block

A number of different device definitions may use the same fonts. In some cases, the fonts available to
one device may be a subset of the fonts available to another device. The device font block is used to
define the fonts available to the device definition. One device font block is specified for each of the
available fonts.

:DEVICEFONT
fontname = ’character string’
fontswitch = ’character string’
fontpause = ’character string’
resident = YES | NO

:eDEVICEFONT.

Figure 127. The DEVICEFONT Block

A devicefont block begins with the :devicefont tag and ends with the :edevicefont tag. All of the
attributes of a device font block must be specified.

:DEVICEFONT
fontname = ’vintage12’
fontswitch = "x27 font switch"
fontpause = ""
resident = no

:eDEVICEFONT.

Figure 128. Example of the DEVICEFONT Block

15.10.3.1 FONTNAME Attribute

The fontname attribute specifies a character value. This value is the defined name value in a font
definition.

15.10.3.2 FONTSWITCH Attribute

The fontswitch attribute specifies a character value which is the font switch method to be used when
switching into the font. The attribute value must be an identifier defined by a font switch block in the
driver definition. If the value is the null(’’) string, no font switching is performed.

15.10.3.3 FONTPAUSE Attribute

The fontpause attribute specifies a character value which is the font pausing method to be used when
switching into the font. The attribute value must be an identifier defined by a font pause block in the
current device definition. If the value is the null(’’) string, no font pausing is performed.

15.10.3.4 RESIDENT Attribute

The resident attribute defines the resident status of the font in the output device. With some devices,
information must be sent to the device for each of the fonts being used. To reduce the time required for
printing a document, information about the most commonly used fonts often ’reside’ on the device
permanently. The keywords YES or NO may be specified as the attribute value.

YES The font resides permanently on the device.

NO The font does not reside on the device.

212 Defining a Device

Devices

15.10.4 DEFAULTFONT Block

The defaultfont block specifies a font to be used with this device when processing a document. A default
font block is specified for each default font to be defined.

:DEFAULTFONT
font = number
fontname = ’character string’
font_height = number
font_space = number
fontstyle = PLAIN|UNDERSCORE

|BOLD|USBOLD
|UNDERLINE|ULBOLD

:eDEFAULTFONT.

Figure 129. The DEFAULTFONT Block

A default font block begins with the :defaultfont tag and ends with the :edefaultfont tag. Most of the
attributes in the default font block must be specified. The attributes font_height and font_space are only
necessary if the font is scaled.

:DEFAULTFONT
font = 1
fontname = ’times-italic’
font_height = 10
font_space = 2
fontstyle = plain

:eDEFAULTFONT.

Figure 130. Example of the DEFAULTFONT Block

15.10.4.1 FONT Attribute

The value of the font attribute must be a non-negative integer number value. The font numbers zero
through three correspond to the highlight phrase tags in the GML document. They also correspond
directly to the font numbers used in the layout definition. The default font with a font number of zero
must be specified. All font numbers used in the document which are not defined with the default font
block or the font option on the WATCOM Script/GML command line will be assigned the values
specified in the font zero default font block.

15.10.4.2 FONTNAME Attribute

The fontname attribute specifies a character value. This value is a font name defined by a device font
block in the device definition. The font name must be specified in a devicefont block within the current
device definition.

15.10.4.3 FONT_HEIGHT Attribute

The font_height attribute specifies a number value. This value is the point size of the characters in a
scaled font. The attribute does not have to be specified if the font is not scaled.

15.10.4.4 FONT_SPACE Attribute

The font_space attribute specifies a number value. This value is the space between lines of the font, and
is specified in points. The attribute does not have to be specified if the font is not scaled.

Defining a Device 213

Device Reference

15.10.4.5 FONTSTYLE Attribute

The font style values may be applied to any font. The value of the fontstyle attribute value is a keyword
value which defines the style of the font. The keyword value may be one of PLAIN, UNDERSCORE,
BOLD, USBOLD, UNDERLINE, or ULBOLD.

PLAIN The characters of the font are sent to the output device without modification.

UNDERSCORE With the exception of space characters, all characters of the font are underlined.

BOLD The characters of the font are bolded.

USBOLD With the exception of space characters, all characters of the font are underlined and
bolded.

UNDERLINE The characters of the font are underlined.

ULBOLD The characters of the font are underlined and bolded.

15.10.5 FONTPAUSE Block

A change from one font to another font often requires WATCOM Script/GML to send a control sequence
to the output device. In some cases, the font switch may require physical intervention at the output device
by the operator. Examples of such an intervention would be changing a print wheel or color ribbon. The
fontpause block defines a pausing method to use, and is referenced by the device font block. The font
pause block is not required if font pausing is not needed.

:FONTPAUSE
type = ’character string’
:value.

<device functions>
:evalue.

:eFONTPAUSE.

Figure 131. The FONTPAUSE Block

A fontpause block begins with the :fontpause tag and ends with the :efontpause tag. The type attribute
and the value section must both be specified.

:FONTPAUSE
type = ’12-pitch wheel’
:value.

%text("Please attach the 12 pitch wheel")
%recordbreak()%wait()

:evalue.
:eFONTPAUSE.

Figure 132. Example of the FONTPAUSE Block

15.10.5.1 TYPE Attribute

The type attribute specifies a character value. The specified value is referenced by the device font block
when a font pause method is required. The attribute value must be unique among the font pause blocks in
the device definition.

214 Defining a Device

Devices

15.10.5.2 VALUE Section

The value section specifies the pausing control sequences to be output before the font switch, and is
started with the :value tag. Device functions are then entered after the :value tag, and may be specified
on more than one line. The :evalue tag delimits the end of a value section, and must be the first
non-space characters in the line.

15.10.6 RULE Block

The rule block specifies the information necessary for WATCOM Script/GML to create a rule line, and
must be specified.

:RULE
font = number | ’character string’
rule_value = number | ’character’

:eRULE.

Figure 133. The RULE Block

A rule block begins with the :rule tag and ends with the :erule tag. Both of the attribute values in the
rule block must be specified.

:RULE
font = 0
rule_value = ’-’

:eRULE.

Figure 134. Example of the RULE Block

15.10.6.1 FONT Attribute

The font attribute value may be either a non-negative integer number or a character value. If a number is
specified, the font of the rule line will be the default font with the corresponding font number. A
character attribute value must be a font name defined in a device font block. The font style PLAIN will
be used in this case. Using a specific font name will ensure that the rule line will be drawn with a
particular font regardless of the selected default fonts.

15.10.6.2 RULE_VALUE Attribute

The rule_value attribute may be either a number or a character value. The number value may be either a
non-negative integer or a hexadecimal number beginning with a dollar($) sign. The number represents a
character available in the font being used for the rule line, and is usually used when the character cannot
be entered at the terminal. If a character value is specified, it must be delimited by quotes and only one
character in length. The attribute value is used to construct the rule line.

15.10.7 BOX Block

The box block specifies the information necessary for WATCOM Script/GML to create a box, and must
be specified.

Defining a Device 215

Device Reference

:BOX
font = number | ’character string’
top_line = number | ’character’
bottom_line = number | ’character’
left_side = number | ’character’
right_side = number | ’character’
top_left = number | ’character’
top_right = number | ’character’
bottom_left = number | ’character’
bottom_right = number | ’character’

:eBOX.

Figure 135. The BOX Block

A box block begins with the :box tag and ends with the :ebox tag. All of the box block attributes must be
specified. With the exception of the font attribute, all of the attribute values may be either a number or a
character value. The number value may be either a non-negative integer or a hexadecimal number
starting with a dollar($) sign. The number represents a character available in the font being used for the
box, and is usually used when the value cannot be entered as a character at the terminal. If a character
value is specified, it must be delimited by quotes and only one character in length.

:BOX
font = 0
top_line = ’-’
bottom_line = ’-’
left_side = ’!’
right_side = ’!’
top_left = ’+’
top_right = ’+’
bottom_left = ’+’
bottom_right = ’+’

:eBOX.

Figure 136. Example of the BOX Block

15.10.7.1 FONT Attribute

The font attribute may be either a non-negative integer number or a character value. If a number is
specified, the font of the box will be the default font with the corresponding font number. A character
attribute value must be a font name defined in a device font block. Using a specific font name will ensure
that the box will be drawn with a particular font regardless of the selected default fonts.

15.10.7.2 TOP_LINE Attribute

The top_line attribute value specifies the character used to create the top line of the box.

15.10.7.3 BOTTOM_LINE Attribute

The bottom_line attribute value specifies the character used to create the bottom line of the box.

15.10.7.4 LEFT_SIDE Attribute

The left_side attribute value specifies the character used to create the left side line of the box.

15.10.7.5 RIGHT_SIDE Attribute

The right_side attribute value specifies the character used to create the right side line of the box.

216 Defining a Device

Devices

15.10.7.6 TOP_LEFT Attribute

The top_left attribute value specifies the character used to create the top left corner of the box.

15.10.7.7 TOP_RIGHT Attribute

The top_right attribute value specifies the character used to create the top right corner of the box.

15.10.7.8 BOTTOM_LEFT Attribute

The bottom_left attribute value specifies the character used to create the bottom left corner of the box.

15.10.7.9 BOTTOM_RIGHT Attribute

The bottom_right attribute value specifies the character used to create the bottom right corner of the box.

15.10.8 UNDERSCORE Block

The underscore block specifies the character information needed by WATCOM Script/GML to perform
underscoring. If the underscore block is not specified, the standard underscore character will be used.

:UNDERSCORE
font = number | ’character string’
score_value = number | ’character’

:eUNDERSCORE.

Figure 137. The UNDERSCORE Block

An underscore block begins with the :underscore tag and ends with the :eunderscore tag. All of the
attributes in the underscore block must be specified.

:UNDERSCORE
font = 0
score_value = ’_’

:eUNDERSCORE.

Figure 138. Example of the UNDERSCORE Block

15.10.8.1 FONT Attribute

The font attribute value may be either a non-negative integer number or a character value. If a number is
specified, the font of the underscore character will the default font with the corresponding font number.
A character attribute value must be a font name defined in a device font block. The font style PLAIN will
be used in this case. Using a specific font name will ensure that the underscore character will be used
with a particular font regardless of the selected default fonts.

15.10.8.2 SCORE_VALUE Attribute

The score_value attribute may be either a number or a character value. The number value may be either
a non-negative integer or a hexadecimal number beginning with a dollar($) sign. The number represents
a character available in the font being used for the underscore character, and is usually used when the
character cannot be entered at the terminal. If a character value is specified, it must be delimited by
quotes and only one character in length. The specified attribute is used to underscore text.

Defining a Device 217

Device Reference

15.10.9 PAGESTART Block

The pagestart block specifies the address of the first line on the output page.

:PAGESTART
x_start = number
y_start = number

:ePAGESTART.

Figure 139. The PAGESTART Block

A pagestart block begins with the :pagestart tag and ends with the :epagestart tag. All of the attributes
in the pagestart block must be specified.

:PAGESTART
x_start = 300
y_start = 500

:ePAGESTART.

Figure 140. Example of the PAGESTART Block

15.10.9.1 X_START Attribute

The x_start attribute value is a non-negative integer number. The value is in horizontal base units.

15.10.9.2 Y_START Attribute

The y_start attribute value is a non-negative integer number. The value is in vertical base units.

218 Defining a Device

16 Running WATCOM GENDEV

This section describes how you invoke WATCOM GENDEV and the options that may be specified.

WATCOM GENDEV is invoked by entering:

GENDEV file-name options

The "file-name" specifies the file containing the device, font and/or driver definitions. If the file type part
of the file name (see "Files" on page 221) is not specified, WATCOM GENDEV searches for source files
with the default file type for device and driver definitions. The font definition file type is the default
alternate extension.

File Type Definition (IBM VM/CMS)

VMD default file type for the device and driver definition.
FONT default file type for the font definition.
COPY default file type for the created member name.

File Type Definition (IBM PC/DOS)

PCD default file type for the device and driver definition.
FON default file type for the font definition.
COP default file type for the created member name.

File Type Definition (DEC VAX/VMS)

VXD default file type for the device and driver definition.
FON default file type for the font definition.
TXT default file type for the created member name.

16.1 Options

The following options may be specified on the WATCOM GENDEV command line. The options are
illustrated with an example showing the format for each of the computer systems supported by
WATCOM GENDEV. With each option, upper case letters are used to indicate the minimum number of
characters that must be specified. Refer to "Running WATCOM Script/GML" on page 165 for more
information about specifying command lines on your system.

16.1.1 ALTEXTension
IBM VM/CMS and IBM PC/DOS

ALTEXT dev
DEC VAX/VMS

/ALTEXT=dev

When a GENDEV source file is specified on the GENDEV command line, or as an include file, the file
type may be omitted. A default file type will be supplied by WATCOM GENDEV. If the source file

Options 219

Device Reference

cannot be found with the default file type, the alternate extension option supplies a second file type to
find with the source file.

16.1.2 DELim
IBM VM/CMS and IBM PC/DOS

DEL #
DEC VAX/VMS

/DEL=#

The value of the delimiter option is a single character. The delimiter value is used in the definition as the
tag delimiter in place of the colon character.

16.1.3 INCList/NOINCList
IBM VM/CMS and IBM PC/DOS

INCL
NOINCL

DEC VAX/VMS
/INCL
/NOINCL

The INCLIST option displays on the terminal the name of each source file as it is included. The name of
each include file is not displayed on the terminal as it is included when the NOINCLIST option (the
default) is specified.

16.1.4 WARNing/NOWARNing
IBM VM/CMS and IBM PC/DOS

WARN
NOWARN

DEC VAX/VMS
/WARN
/NOWARN

The WARNING option (the default) causes WATCOM GENDEV warning messages about possible error
situations to be displayed on the screen. Processing of the definition is not halted when a warning
message is displayed. WATCOM GENDEV warnings about possible error situations are not displayed
on the screen when the NOWARNING option is specified.

220 Options

17 Files

17.1 Introduction

This chapter introduces the concept of files and output devices which are used to store and display data.
For example, a disk can be used to store a file containing document text. A device such as a printer can
also be treated as if it were a file, although it is only useful for displaying data; an attempt to read
information from this device is invalid.

A software system such as the WATCOM Editor or WATCOM Script/GML can access a number of
devices. Some devices (such as disks) can be used to store a number of files. Other devices (such as
printers or a screen) have limited, special purpose uses.

17.2 File Specification

The general format of a file specification is as follows (items enclosed in brackets([]) are optional):

[(attribute[:attribute...])]file-designation

There are two components of a file specification. The attribute component describes the records which
are in the file. The file-designation component describes the location and name of the file.

17.3 Files with IBM PC/DOS

This section describes the specification of a file on an IBM PC/DOS system. The attributes of a file are
not stored with the file on the IBM PC/DOS system. A file created with a particular set of attributes must
therefore have those attributes specified when that file is later referenced. It should also be noted that
there is an upper limit on the number of open files. The default system limit can be increased with the
FILES command in the CONFIG.SYS file. See your DOS manual for more information.

17.3.1 Record Attributes

The attributes are specified inside a pair of parentheses and must precede the file designation with no
intervening spaces. The attributes are all optional. When specified, attributes must be separated by a
colon. Non-numeric attributes can be abbreviated by truncating characters from the end to a minimum of
one character.

17.3.1.1 Record Type

A file should be viewed as a number of records, where each record is a sequence of zero or more
characters. WATCOM Script/GML supports files with three different types of records.

Text A text file consists of variable length records. Some of the possible character values
cannot normally be entered at the keyboard. Text files are most commonly used for
containing document source and other human-readable data. Two special characters

Files with IBM PC/DOS 221

Device Reference

are used to signify the end of a record. The CR (carriage return) and LF (line feed)
characters separate records in a text file. These characters are automatically added
to the end of each record, and should not be accounted for when determining the
appropriate record size for the file. The record size of a text file specifies the size of
the largest record which may be read from or written to that file.

Variable A variable file consists of variable length records. A variable file may contain any
possible character. A 16 bit number at the beginning of the record specifies the
length of each record. This number is automatically added to the beginning of each
record, and should not be accounted for when determining the appropriate record
size for the file. The record size of a variable file specifies the size of the largest
record which may be read from or written to that file.

Fixed A fixed file consists of fixed length records. A fixed file may contain any possible
character. The record size of a fixed file specifies the size of each record read from
or written to that file.

The default record type of a document source file read by WATCOM Script/GML is text. The default
record type of the WATCOM Script/GML output file or device is determined by the device definition
being used.

17.3.1.2 Record Size

The record size attribute is a sequence of numeric digits which specifies the record length for the file. A
record which is longer than the specified record size will be truncated. A record size of 132 is the default
record size of a document source file read by WATCOM Script/GML. The default record size of the
WATCOM Script/GML output file or device is determined by the device definition being used.

17.3.2 File Designation

A file designation may be any valid filename recognized by the IBM PC/DOS system. In general, a file
designation looks like:

drive:\path\filename.ext

drive: If the drive name is omitted, the default drive is assumed. Examples of drive names
are:

A: disk drive A
B: disk drive B
C: disk drive C

\path\ If the path specification is omitted, the current directory is used. The path may be
used to refer to files that are stored in sub-directories of the disk. Some examples of
path specifications are:

\top\
\gml\data\
..\tests\

Your IBM PC/DOS manual can tell you more about directories: how to create
them; how to store files in them; how to specify a path; etc.

filename The filename may contain up to eight characters, and is the main part of the file’s
name. If more than eight characters are used, only the first eight are meaningful.
This is an important point. IBM PC/DOS does not check that the name is too long.

222 Files with IBM PC/DOS

Files

If you specify more than eight characters then you may inadvertently destroy an
existing file whose name happens to match the first eight characters.

.ext The file extension is an optional one to three character value which is a convenience
in classifying files. The extension may only be used with disk file names. If it is
specified, the period character separates the extension from the filename. The
experienced user will specify the file extension to identify the type of information
stored in the file. The files of source text for WATCOM Script/GML usually have
gml as the file extension.

17.3.3 Special Device Names

IBM PC/DOS has reserved some names for devices. These special device names are:

CON the console (or terminal)
AUX the serial port
COM1 serial port 1
COM2 serial port 2
PRN the parallel printer
LPT1 the first parallel printer
LPT2 the second parallel printer
LPT3 the third parallel printer
NUL nonexistent device

When using one of these special device names, no other part of the file specification may be specified.
Earlier versions of DOS allowed a trailing ":" to be specified after a special device name. Starting with
DOS 2.0, a trailing ":" may not be specified. For example, "CON" is acceptable but "CON:" is not.

17.3.4 File Specification Examples

The following are some examples of a valid file specification.

1. The following file specification refers to a file in the current directory of the default disk.

DATA.FIL

2. The file specification below indicates that the file is to have fixed-length records of length 130.

(F:130)EXAMPLE1.TST

3. The file specification below indicates that the file is to have variable-length records of
maximum length 145, and resides on the "C" disk.

(V:145)C:NOVEMBER.RPT

4. The file specification below indicates that the file resides in the "RECORDS" directory of the
"B" disk.

b:\records\bigmanual.gml

Note that the trailing "l" in the file name will be ignored. Thus the following designation is
equivalent.

b:\records\bigmanua.gml

5. The file specification below refers to a second parallel printer.

Files with IBM PC/DOS 223

Device Reference

LPT2

17.4 Files with IBM VM/CMS

This section describes the specification of a file on the IBM VM/CMS system.

17.4.1 Record Attributes

The attributes are specified inside a pair of parentheses and must precede the file designation with no
intervening spaces. The attributes are all optional. When specified, attributes must be separated by a
colon. Non-numeric attributes can be abbreviated by truncating characters from the end to a minimum of
one character.

17.4.1.1 Record Type

A file should be viewed as a number of records, where each record is a sequence of one or more
characters. WATCOM Script/GML supports files with three different types of records.

Text A text file consists of variable length records. Some of the possible character values
cannot normally be entered at the keyboard. Text files are most commonly used for
containing document source and other human-readable data. The record size of a
text file specifies the size of the largest record which may be read from or written to
that file.

Variable A variable file consists of variable length records. A variable file may contain any
possible character. The record size of a variable file specifies the size of the largest
record which may be read from or written to that file.

Fixed A fixed file consists of fixed length records. A fixed file may contain any possible
character. The record size of a fixed file specifies the size of each record read from
or written to that file.

The default record type of a document source file read by WATCOM Script/GML is text. The default
record type of the WATCOM Script/GML output file or device is determined by the device definition
being used.

17.4.1.2 Record Size

The record size attribute is a sequence of numeric digits which specifies the record length for the file. A
record which is longer than the specified record size will be truncated. A record size of 132 is the default
record size of a document source file read by WATCOM Script/GML. The default record size of the
WATCOM Script/GML output file or device is determined by the device definition being used.

17.4.2 File Designation

A file designation may be any valid filename recognized by the IBM VM/CMS system. In general, a file
designation looks like:

filename filetype filemode

224 Files with IBM VM/CMS

Files

filename The filename may contain up to eight characters, and is the main part of the file’s
name. If more than eight characters are used, only the first eight are meaningful.
This is an important point. IBM VM/CMS does not check that the name is too long.
If you specify more than eight characters then you may inadvertently destroy an
existing file whose name happens to match the first eight characters.

filetype The filetype is a one to eight character value which is a convenience in classifying
files. The file type may only be used with disk file names. If it is specified, the
space character separates the file type from the filename. The file type may be
omitted from a disk file name, but the experienced user will probably always use it.
The default file type is file if it is not specified. The files of source text for
WATCOM Script/GML usually have gml as the file type.

filemode The filemode is an optional two character value which specifies the CMS mini-disk
containing the file. The first character is a letter identifying the mini-disk. The
second character is a mode number for the file. The file mode may only be used
with disk file names. If it is specified, the space character separates the file mode
from the filetype.

If the file mode is not specified, then it will default to "*". For a new file, this will
result in a file mode of "A1". For an existing file, "*" will match the first mini-disk
that contains a file with the specified file name and type. You should consult the
appropriate CMS documentation for more information on the file mode.

The components of a file designation are case insensitive. Upper and lower case letters are treated
identically. For example, the following file designations are equivalent and refer to the same file.

Book Gml
BOOK GML
book gml

Each component of the file designation is separated from the next by one or more space characters.
WATCOM Script/GML also allows a period to separate the components of the file designation. The
following file designations refer to the same file.

book gml a
book.gml a
book.gml.a

17.4.3 Special File Names

Some file names have been reserved for devices. These special names are:

TERMINAL the terminal screen
TERM the terminal screen
READER the VM virtual reader
RDR the VM virtual reader
PRINTER the VM virtual printer
PRT the VM virtual printer
PUNCH the VM virtual punch
PUN the VM virtual punch

When using one of these special file names, no other part of the file specification may be specified.

Files with IBM VM/CMS 225

Device Reference

17.4.4 File Specification Examples

The following are some examples of a valid file specification.

1. The following file specification refers to a file on the current mini-disk.

DATA.FIL

2. The file specification below indicates that the file is to have fixed-length records of length 130.

(F:130)EXAMPLE1.TST

3. The file specification below indicates that the file is to have variable-length records of
maximum length 145, and resides on the "C" mini-disk.

(V:145)NOVEMBER.RPT.C

4. The file specification below indicates that the file resides on the ""C" mini-disk.

testables.dat.c

Note that the trailing "s" in the file name will be ignored. Thus the following designation is
equivalent.

testable.dat.c

5. The file specification below refers to the terminal device.

TERMINAL

17.5 Files with DEC VAX/VMS

This section describes the specification of a file on the DEC VAX/VMS system.

17.5.1 Record Attributes

The attributes are specified inside a pair of parentheses and must precede the file designation with no
intervening spaces. The attributes are all optional. When specified, attributes must be separated by a
colon. Non-numeric attributes can be abbreviated by truncating characters from the end to a minimum of
one character.

17.5.1.1 File Type

Carriage The carriage attribute specifies the file as having ASA (American Standards
Association) carriage control characters. A control character begins each record and
is used for vertical spacing control. The VAX VMS system saves the carriage
control attribute with the file. The attribute is later used when printing the file to
indicate to the system that the carriage control characters should be used for vertical
spacing. The valid characters and their interpretation are:

’1’ Advance to the top of the next page.
’+’ Advance zero lines (overprint).
’ ’ Advance one line.
’0’ Advance two lines.

226 Files with DEC VAX/VMS

Files

’-’ Advance three lines. This carriage control character is not
supported by some printers. It should only be used when the
printer is known to support ASA triple spacing.

17.5.1.2 Record Type

A file should be viewed as a number of records, where each record is a sequence of zero or more
characters. WATCOM Script/GML supports files with three different types of records.

Text A text file consists of variable length records. Some of the possible character values
cannot normally be entered at the keyboard. Text files are most commonly used for
containing document source and other human-readable data. The record size of a
text file specifies the size of the largest record which may be read from or written to
that file.

Variable A variable file consists of variable length records. A variable file may contain any
possible character. The record size of a variable file specifies the size of the largest
record which may be read from or written to that file.

Fixed A fixed file consists of fixed length records. A fixed file may contain any possible
character. The record size of a fixed file specifies the size of each record read from
or written to that file.

The default record type of a document source file read by WATCOM Script/GML is text. The default
record type of the WATCOM Script/GML output file or device is determined by the device definition
being used.

17.5.1.3 Record Size

The record size attribute is a sequence of numeric digits which specifies the record length for the file. A
record which is longer than the specified record size will be truncated. A record size of 132 is the default
record size of a document source file read by WATCOM Script/GML. The default record size of the
WATCOM Script/GML output file or device is determined by the device definition being used.

17.5.2 File Designation

A file designation may be any valid filename recognized by the VMS Record Management Services
(RMS). In general, a file designation looks like:

node::device:[directory]filename.type;version

node:: The node:: is the DECnet node name (This feature may not be installed on your
VAX/VMS system).

device: The device: is the device name. The device name is optional and defaults to the
disk containing your current directory. The device name is followed by a ":".
Usually, the device name is not present because most files are located on the default
disk. Some of the device names on the VAX/VMS system are:

DRA1: A disk drive.
MSA0: A magtape drive.
TT: The screen/keyboard.
LPA0: The printer.

Files with DEC VAX/VMS 227

Device Reference

Devices may have logical names. It is usually more convenient to refer to a disk by
its logical name. Some examples of logical names are:

SYS$SYSDEVICE:
SYS$SYSROOT:
DISK$CUSTOMER:

The logical name can be 1 to 63 characters (letters A-Z, $, and/or numbers 0-9 only)
in length.

[directory] The file is located in the specified "directory". The default is the current directory;
consequently it is often not specified. Directory names have up to nine characters.
If a file is contained in a subdirectory of another directory, the subdirectory name is
specified following the directory name. These names are separated from each other
by a period. A minus sign at the start of a directory specification indicates the
parent directory of the current directory. The directory name, including any
subdirectories, is enclosed by square brackets ([]). Some examples of directory
names are:

[USERFILES]
[EXAMPLE.PROGRAMS]
[-.reports]

filename The filename is the main part of the file’s name. File names have one to thirty-nine
characters (letters A-Z and/or numbers 0-9 only). Some examples of file names are:

TEST1
setup
MSGBOARD

.type The type is an optional file type consisting of one to thirty-nine characters (letters
A-Z and/or numbers 0-9 only). The extension may only be used with disk file
names. If it is specified, the period(.) character separates the extension from the
filename. The file extension may be omitted from a disk file name, but the
experienced user will probably always use it. The files of source text for
WATCOM Script/GML usually have gml as the file extension.

;version The version is the version number of the file. Any time you create a new file that
has the same name as a file already in the directory, the system automatically selects
a version number that is one greater than the last version number. If you have more
than one file with the same name, you can explicitly identify which file you want by
its version number. The latest version of a file is used if the version number is not
specified. The version number is preceded by a semicolon(;). Some examples of
file designations with their version numbers are:

SAMPLE.DAT;1
SAMPLE.DAT;2
REPORT.GML;15
TRIAL.;4
[LIBRARY]WEDIT.EXE;1

Most of the fields are optional. For example, a file under the current default directory can be referenced
without specifying a node name, device name, or directory, and often without a version number. Devices
such as a printer can be referenced without specifying any fields other than the device name.

In general, the different components of a file designation are made up of the letters A through Z and the
digits 0 through 9. Component specifications are case insensitive. Upper and lower case letters are
treated identically. For example, the file designations

228 Files with DEC VAX/VMS

Files

Sample.Dat
SAMPLE.DAT
sample.dat

are equivalent.

17.5.3 Writing to the Printer

Output can be written to a printer by using the printer device name as a file name. A better way of doing
this (from the point of view of document portability) is to define the name "printer" using the VMS
DEFINE command prior to invoking the software, and then to use "printer" as a device name. The device
name "printer" is used by the software on most computer systems to designate the system printer. The
required DEFINE could appear in a "LOGIN" command file, and would be similar to:

DEFINE PRINTER LPA0

17.5.4 Using the Terminal as a File

The terminal can be used for input or output by opening a file whose name is the device name of the
terminal. One alternative is to use the logical names SYS$INPUT and SYS$OUTPUT to refer to the
terminal. Another possibility is to define a logical name "terminal" using the VMS DEFINE command
prior to invoking the software. Use of the device name "terminal" provides a degree of portability, since
this name is used by the software on most computer systems to designate the terminal. The required
DEFINE command could appear in a "LOGIN" command file, and would be similar to:

DEFINE TERMINAL TT

17.5.5 File Specification Examples

The following are some examples of a valid file specification.

1. The following file specification refers to the file "data.gml" in the current default directory:

data.gml

2. If the current default directory is [USERFILES], the following file specification will refer to
the file FILE1.REP in the [EXAMPLES] directory:

[examples]file1.rep

3. The file designation below indicates that the file resides on a logical device called "source" and
in the directory called "document.text". Version number 5 of the file is specified:

source:[document.text]book.gml;5

Files with DEC VAX/VMS 229

Device Reference

230 Files with DEC VAX/VMS

18 Libraries

When WATCOM Script/GML processes a document, it must have information about the output device
and character sets being used. The WATCOM GENDEV program is used to create and modify this
information (see "Creating a Definition" on page 182). The definition of each device and character set is
saved in a separate file. These definition files are grouped together in a library. Each of the individual
files is called a member of the library. Libraries are used by WATCOM Script/GML to localize the
placement of definitions needed to process a document.

Since a member in a library is created by the WATCOM GENDEV program as a file, the length and
character composition of the member name is limited by the file name restrictions of the computer
system. To minimize this restriction, every definition has two names associated with it. The member

name is the name of the file or library member which contains the definition. The defined name is the
name used by WATCOM Script/GML and WATCOM GENDEV when referring to the definition. A
defined name can be up to 78 characters in length.

When a defined name is referenced, the member name associated with that defined name must be known.
This is accomplished through the use of a "directory" file which contains the defined name and its
associated member name for each definition contained in the library. This file is named WGMLST, and
is automatically created when the WATCOM GENDEV program is used to process a definition. The
name WGMLST must not be used as a member name for any of the definitions.

More than one definition library may be defined. When there is a central place where a number of people
share data, a library containing all common definitions may be shared. If an individual wishes to modify
an existing definition without affecting the shared library, they may create a personal library containing
their modifications. When a definition is required, the personal library will be searched first. If the
definition is not found, then the shared library is searched. The number of search levels can be extended
to the requirements of the people using the system.

Before WATCOM Script/GML or WATCOM GENDEV is invoked, a list of the library names must be
defined. The search order for the libraries is from the first name in the list to the last name. When the
WATCOM GENDEV program is used, this library list should only contain the name of the library you
wish to create or update. In addition, WATCOM GENDEV will always try to find the WGMLST
member file on the current directory or disk before trying to find it in a library. The method for
specifying the library list depends on the machine being used, and is discussed further in the following
subsections.

18.1 Libraries with IBM VM/CMS

18.1.1 Creating and Updating a Library

A definition library is maintained with the use of the MACLIB command. A maclib is a file which
contains the contents of many individual files. The definition files produced by the WATCOM GENDEV
program are added to and deleted from a maclib. The file type of a maclib member file must be COPY.
This is the default file type produced by WATCOM GENDEV. All maclib operations are in terms of the
member name, not the defined name of a definition.

Libraries with IBM VM/CMS 231

Device Reference

The MACLIB GEN command is used to create a maclib.

MACLIB GEN gmllib wgmlst

Figure 141. Creating an IBM VM/CMS Library

The first name after the command is the name of the library to be created. If this library already exists, it
is erased first. The file type of the library will always be MACLIB. The second name after the command
is the name of the member file to place in the library. Once a member is in a library, the member file may
be erased.

The MACLIB DEL command is used to delete a member from a library.

MACLIB DEL gmllib qume

Figure 142. Deleting an IBM VM/CMS Library Member

The member in the gmllib maclib with the name qume is deleted.

The MACLIB ADD command is used to add a member to an existing library.

MACLIB ADD gmllib qume

Figure 143. Adding an IBM VM/CMS Library Member

The member file with the name qume is added to the gmllib maclib. If a member already exists in the
maclib with the same name, it is NOT deleted from the maclib first. There would then be two versions of
the same member in the maclib. In this case, WATCOM Script/GML would find the old version. It is
therefore important to ensure a member is first deleted from the maclib before a new version is added.

The maclib command is more completely described by the documentation available with the system.

18.1.2 Defining a Library List

The name of a definition library can be any arbitrary file name. To locate the library, WATCOM
Script/GML and WATCOM GENDEV must have a list of library names. This list is defined with the
GLOBAL MACLIB command.

GLOBAL MACLIB gmllib

Figure 144. Defining the IBM VM/CMS Library List

The global maclib command must be performed before either WATCOM Script/GML or WATCOM
GENDEV are invoked. If gmllib is the shared library and mylib is the personal library, the following
command specifies the proper library list.

GLOBAL MACLIB mylib gmllib

Figure 145.

232 Libraries with IBM VM/CMS

Libraries

18.2 Libraries with DEC VAX/VMS

18.2.1 Creating and Updating a Library

A definition library is maintained with the use of the VMS LIBRARY command. A library is a file
which contains the contents of many individual files. The definition files produced by the WATCOM
GENDEV program are added to and deleted from the library. The library member file can have an
arbritrary file type. The default file type produced by WATCOM GENDEV is TXT. All library
operations are in terms of the member name, not the defined name of a definition.

The LIBRARY/TEXT/CREATE command is used to create a library.

LIBRARY/TEXT/CREATE gmllib.tlb wgmlst.txt

Figure 146. Creating a DEC VAX/VMS Library

The first name after the command is the name of the library to be created. If this library already exists, a
new version is created. The second name after the command is the name of the member file to place in
the library. Once a member is in a library, the member file can be erased.

The LIBRARY/TEXT/DELETE command is used to delete a member from a library.

LIBRARY/TEXT/DELETE=qume gmllib.tlb

Figure 147. Deleting a DEC VAX/VMS Library Member

The member in the gmllib library with the name qume is deleted. Once a member is in the library, the file
type is no longer needed.

The LIBRARY/TEXT/INSERT command is used to add a member to an existing library.

LIBRARY/TEXT/INSERT gmllib.tlb qume.txt

Figure 148. Adding a DEC VAX/VMS Library Member

The member file with the name qume is added to the gmllib library. If a member already exists in the
library with the same name, the library command generates an error message. A member must first be
deleted from the library before a new version is added.

The library command is more completely described by the documentation available with the system.

18.2.2 Defining a Library List

The name of a definition library can be any arbitrary file name. To locate the library, WATCOM
Script/GML and WATCOM GENDEV must have a list of library names. This list is defined with the
ASSIGN command.

ASSIGN <gml>gmllib.tlb GMLLIB:

Figure 149. Defining the DEC VAX/VMS Library List

Libraries with DEC VAX/VMS 233

Device Reference

The assign command must be performed before either WATCOM Script/GML or WATCOM GENDEV
are invoked. The assigned name GMLLIB: must be used. If gmllib is the shared library and mylib is the
personal library, the following command specifies the proper library list.

ASSIGN <dave>mylib.tlb,<gml>gmllib.tlb GMLLIB:

Figure 150.

18.3 Libraries with IBM PC/DOS

18.3.1 Creating and Updating a Library

A definition library is a specific directory on a device. Creating a directory on a disk and placing the
member files in it is accomplished with standard IBM PC/DOS file commands.

18.3.2 Defining a Library List

To locate the library, WATCOM Script/GML and WATCOM GENDEV must have a list of library
directories. This list is defined with the DOS SET command.

SET GMLLIB=A:\wgmlib\

Figure 151. Defining the IBM PC/DOS Library List

The set command must be performed before either WATCOM Script/GML or WATCOM GENDEV are
invoked. The name GMLLIB must be used, and there should be no blanks between it and the equals
sign. If wgmlib is the shared library directory and mylib is the personal library directory, the following
command specifies the proper library list.

SET GMLLIB=A:\mylib\;A:\wgmlib\

Figure 152.

Each library directory is separated from the next by a semi-colon.

234 Libraries with IBM PC/DOS

Appendices

Device Reference

236

 UnProcessed Script Control Words

A UnProcessed Script Control Words
bf bs df du eq
gg hw hy hw hy
it oo pf ph rc
sv uw zc

237

Appendix A

238

 WATCOM Script/GML Error Messages

B WATCOM Script/GML Error Messages
Some error messages are ’continued’ by other messages. The ZZ error class contains the continuation
messages, with references to them noted after the text of the starting error message.

A number of special symbols are used to insert information known only when the error occurs. The are:

%s a text string replaces the %s
%d a number replaces the %n
%n a new line is started on the screen
%t a tab to the screen position indicated by the number following the %t (zero(0) means

the number is supplied when the error occurs)

The error messages are:

AT Attribute Messages

AT--001 Required attribute not found
AT--002 Missing attribute value
AT--003 Invalid attribute value
AT--004 Attribute already found
AT--005 Missing or invalid closing quote on attribute
AT--006 Attribute invalid for current format
AT--007 The attribute value cannot have more than one character
AT--008 Missing required equals sign
AT--009 Illegal banner reference, banner does not exist
AT--010 Illegal banner region reference
AT--011 Cannot reference banner currently being defined
AT--012 If one of refdoc or refplace is specified both are required
AT--013 All attributes required when defining new banner
AT--014 All attributes required when defining new banner region
AT--015 Id attribute only valid for ordered list items
AT--016 Number value cannot be greater than 32767
AT--017 Number value must be greater than zero
AT--018 Horizontal space unit is too large
AT--019 Vertical space unit is too large
AT--020 The BOX and ’string’ values are not supported with the %n frame attribute of the

FN layout tag -- Setting to RULE
AT--021 The script_format attribute has been set to NO %n for the banner region with a

keyword content value
AT--022 The ix attribute has a range of 1 through 9
AT--023 If a new content is specified for an existing banner %n region, the previous

script_format value of yes %n must be re-specified

CL Command Line Messages

CL--001 For ’%s’%n Value is an invalid option in the command line
CL--002 Must have a device specification
CL--003 For format ’%s’%n Missing or invalid format
CL--004 Missing option value for ’%s’
CL--005 Name of command file is not specified
CL--006 The font number value must be between 1 and 255 inclusive
CL--007 Document source file specified more than once

239

Appendix B

CL--008 For passes option, value must be between 1 and 255 inclusive
CL--009 The FROM option value must be greater than zero
CL--010 The TO option value must be greater than zero
CL--011 For the FONT option value ’%s’%n Number is too large or contains invalid

characters
CL--012 The option file ’%s’ is recursively included
CL--013 The CPInch option value may not be less than zero

FN Footnote Messages

FN--001 DELETED
FN--002 Footnote too large, it exceeded a page

LO Layout Messages

LO--001 For banner with docsect = %s and place = %s
followed by the error message ZZ--01

LO--002 For banner with docsect = %s and place = %s
followed by the error message ZZ--02

LO--003 For banner with docsect = %s and place = %s
followed by the error message ZZ--03

LO--004 For banner with docsect = %s and place = %s
followed by the error messages ZZ--04 and ZZ--08

LO--005 For banner with docsect = %s and place = %s
followed by the error messages ZZ--04 and ZZ--07

LO--006 For banner with docsect = %s and place = %s
followed by the error messages ZZ--04 and ZZ--05

LO--007 For :H%d layout tag - a heading that forces%n a page eject must also force a line
break

LO--008 For banner with docsect = %s and place = %s
followed by the error messages ZZ--04 and ZZ--06

LO--009 First page of letter cannot be even
LO--010 Left margin plus binding must be greater than zero
LO--011 For the number_form attribute (layout tag H%d) %n Should not have value ’prop’

without having %n value ’new’ for a higher heading level
LO--012 For :H%d layout tag, the indent attribute is%n greater than or equal to the line width
LO--013 For the level attribute (layout tag %s) %n Level number %d must be specified
LO--014 The layout right margin is greater %n than the device page width
LO--015 The right margin must be greater than the left margin
LO--016 The right margin is too small when adjusted %n for the uprintable area of the device

page
LO--017 The page depth is too small when adjusted %n for the uprintable area of the device

page

IN Informative messages

IN--001 Processing layout
IN--002 Formatting document
IN--003 Formatting complete
IN--004 Number of tags processed: %t40%s
IN--005 Number of words processed: %t40%s
IN--006 Number of source lines processed: %t40%s
IN--007 Number of files included: %t40%s
IN--008 Number of unformatted lines processed: %t40%s
IN--009 Number of headings processed: %t40%s

240

 WATCOM Script/GML Error Messages

IN--010 Total size of headings processed: %t40%s
IN--011 Number of footnotes processed: %t40%s
IN--012 Number of index entries created: %t40%s
IN--013 Number of text lines produced: %t40%s
IN--014 Number of pages produced: %t40%s
IN--015 Time to process: %t40%s.%d
IN--016 DELETED
IN--017 pass #%d
IN--018 %t0%s
IN--019 Current file is ’%s’
IN--020 Number of output records produced: %t40%s
IN--021 Page %d specified by the TO option has been processed
IN--022 Processing device information

IO I/O Messages

IO--001 For file ’%s’
followed by the error messages ZZ--09 and ZZ--10

IO--002 Having more than %s hundred file includes and macro %n invocations is probably
the result of recursion

IO--003 Invalid imbed file
IO--004 System message is ’%s’%n Error number is %d%n Output operation failed
IO--005 System message is ’%s’%n Error reading input file
IO--006 GML interrupted by ATTN key
IO--007 The device directory or library%n ’%s’%n does not exist
IO--008 For the device (or font) ’%s’:%n The information file for this name cannot be

found.%n If the device/font has been defined, the problem may%n be that the DOS
SET symbol GMLLIB has not been%n correctly set to point to the device library.

IO--009 Error reading device/font library
IO--010 Error finding device/font member
IO--011 Output file’s record size is too small for%n the device ’%s’
IO--012 The valueset file has no value records
IO--013 Error reading device/font library%n Member name is ’%s’
IO--014 Error opening virtual page file %n probable causes are a full disk or no more file

handles
IO--015 .SY failed %n System message is ’%s’

IX Index Messages

IX--001 Id not defined
IX--002 Referencing not allowed for :I1 tag
IX--003 Parent index entry not defined
IX--004 Id already defined
IX--005 Major page number reference already defined
IX--006 Page range incomplete
IX--007 Page range starting entry not allowed inside floating block
IX--008 Page range starting entry already specified
IX--009 No page range starting entry specified
IX--010 Index option must be specified to process index tags

RF Referencing Messages

RF--001 For id ’%s’%n Figure id not defined
RF--002 For id ’%s’%n More passes required for figure referencing
RF--003 For id ’%s’%n Heading id not defined

241

Appendix B

RF--004 For id ’%s’%n More passes required for heading referencing
RF--005 More passes required for TOC or FIGLIST
RF--006 For id ’%s’%n More passes required for footnote referencing
RF--007 For id ’%s’ Duplicate figure id
RF--008 For id ’%s’ Duplicate heading id
RF--009 For id ’%s’ Duplicate footnote id
RF--010 For id ’%s’%n Footnote id not defined
RF--011 Two passes needed to get TOC or FIGLIST %n in front material
RF--012 For id ’%s’%n Duplicate list item id
RF--013 For id ’%s’%n List item id not defined
RF--014 For id ’%s’%n More passes required for list item referencing
RF--015 For id ’%s’%n Identifier name should have no more than %n seven characters
RF--016 For the character ’%c’ in the id ’%s’%n Identifier name should consist of letters and

numbers

SN Syntax Messages

SN--001 Number is too large or contains invalid characters
SN--002 Missing or invalid filename
SN--003 Expecting a layout tag or attribute, found text
SN--004 Expecting text, found a GML tag %n or Script control word/macro
SN--005 %s cannot be in a footnote, figure, example,%n floating block, floating keep,

conditional column,%n or conditional page
SN--006 Symbol does not exist, cannot delete it
SN--007 Expecting EBANNER tag
SN--008 Expecting EBANREGION tag
SN--009 For a BINCLUDE %s%n the reposition attribute must equal START
SN--010 Tag not supported in this version
SN--011 Left and right margins are too close together
SN--012 Expecting a GDOC tag or the end of the file
SN--013 Expecting a FRONTM, BODY, APPENDIX or BACKM tag
SN--014 Expecting the end of the file
SN--015 Expecting ETITLEP tag
SN--016 Expecting EADDRESS tag
SN--017 Expecting DD tag
SN--018 Expecting EDL tag
SN--019 Expecting EXMP tag
SN--020 Expecting EFIG tag
SN--021 Expecting EFN tag
SN--022 Expecting ESL tag
SN--023 Expecting EOL tag
SN--024 Expecting EUL tag
SN--025 Expecting ELQ tag
SN--026 Expecting ECIT tag
SN--027 Expecting EHP1 tag
SN--028 Expecting EHP2 tag
SN--029 Expecting EHP3 tag
SN--030 Expecting EQ tag
SN--031 Invalid heading level
SN--032 No heading allowed
SN--033 Expecting EGDOC tag
SN--034 Expecting EHP0 tag
SN--035 No text in input file
SN--036 Missing DT tag to precede DD tag
SN--037 Missing DTHD tag to precede DDHD tag

242

 WATCOM Script/GML Error Messages

SN--038 Expecting DDHD tag
SN--039 Date already defined
SN--040 Document number already defined
SN--041 ATTN tag already specified
SN--042 Missing GT tag to precede GD tag
SN--043 Expecting OPEN tag
SN--044 Expecting CLOSE tag
SN--045 Expecting EDISTRIB tag
SN--046 Expecting ECLOSE tag
SN--047 Nesting of PSC tags is illegal
SN--048 Expecting EPSC tag
SN--049 Heading level(s) omitted: %n Encountered :H%d, expecting :H%d
SN--050 CMT tag should appear at start of line
SN--051 GRAPHIC output device will not support grey %n scales -- black and white image

will be produced
SN--052 Figure with an Id must have a caption
SN--053 Example is too wide for the column
SN--054 Figure is too wide
SN--055 Invalid header information%n in the GKS pixel graphic file
SN--056 For a multiple column figure, place attribute %n must equal TOP
SN--057 The symbol name must have at least one character
SN--058 PSC tag not found
SN--059 Expecting ELAYOUT tag
SN--060 Expecting EGL tag
SN--061 Expecting GD tag
SN--062 DELETED
SN--063 Output line is too large to fit on a page
SN--064 Device/font library was created with a %n different version of GENDEV
SN--065 For font switch ’%s’%n Font switch name is not defined
SN--066 For font ’%s’%n Font name is not defined as a device font
SN--067 Width for space character should not be zero
SN--068 DELETED
SN--069 Width for :box character should not be zero
SN--070 Width for :underscore character should not be zero
SN--071 Depth of BINCLUDE file is greater than a page
SN--072 BINCLUDE tag must appear after the GDOC tag
SN--073 For the symbol ’%s’%n The character ’%c’ is not valid
SN--074 For the symbol ’%s’%n The length of a symbol name may not exceed %n ten

characters
SN--075 :LI or :LP tag must follow the start of a list
SN--076 Heading is too large for the output page
SN--077 Expecting BANNER tag
SN--078 Expecting a GML tag, found text
SN--079 Cannot set more than 999 symbols with the ’valueset’ option
SN--080 SUBJECT tag already specified
SN--081 Cannot fit the text of a list item in the%n adjusted left and right margins
SN--082 Cannot fit the figure in the%n adjusted left and right margins
SN--083 Cannot fit the figure with a frame in the%n adjusted left and right margins
SN--084 Expecting ESF tag
SN--085 The GRAPHIC depth is greater than the page depth
SN--086 GRAPHIC tag must appear after the GDOC tag
SN--087 The GRAPHIC depth must be greater than zero
SN--088 The ’%s’ device cannot scale a GRAPHIC
SN--089 For device ’%s’, the GRAPHIC scale must%n be a multiple of 50 -- rounding will

occur

243

Appendix B

SN--090 For default font %d, the font_height attribute %n must be specified when the font is
scaled.

SN--091 Depth attribute required after GRAPHIC tag
SN--092 The GRAPHIC width is greater than the page width
SN--093 The GRAPHIC width must be greater than zero
SN--094 The GRAPHIC y-offset value is beyond the edge%n of the image -- none of the

image can be printed
SN--095 The GRAPHIC x-offset value is beyond the edge%n of the image -- none of the

image can be printed
SN--096 For device ’%s’, the GRAPHIC scale is too%n small -- setting scale to %d
SN--097 For device ’%s’, the GRAPHIC scale is too%n large -- setting scale to %d
SN--098 For font style ’%s’%n Font style name is not defined
SN--099 More than %s thousand symbol substitutions on%n one record is probably the result

of recursion

SC Script processing errors

SC--001 A control word parameter is required
SC--002 The control word parameter ’%s’ is invalid
SC--003 A macro is not being defined
SC--004 End of file reached %n macro/remote ’%s’ is still being defined
SC--005 Macro ’%s’ is not being defined
SC--006 Unrecognized control word
SC--007 Expecting %s END
SC--008 A tag name must be specified
SC--009 The tag name is too long
SC--010 The tag operation is missing
SC--011 The TEXTERR option conflicts with the %n TEXTDEF, TEXTLINE and

TEXTREQD options
SC--012 ’%s’ is an invalid tag operand
SC--013 User tag ’%s’ already exists
SC--014 User tag ’%s’ has not been defined
SC--015 Macro/Remote name is missing or invalid
SC--016 A tag is not currently being defined
SC--017 An attribute name must be specified
SC--018 The attribute name is too long
SC--019 An attribute is not currently being defined
SC--020 ’%s’ is an invalid attribute operand
SC--021 All attribute options except OFF, ON, UPPERCASE %n and RESET conflict with

the AUTOMATIC option
SC--022 A new .GA control word must be used to %n specify more attribute options after

’%s’
SC--023 The LENGTH option conflicts with the ANY, AUTOMATIC, %n RANGE,

VALUE and RESET options
SC--024 The RANGE option conflicts with the ANY, AUTOMATIC, %n LENGTH and

VALUE options
SC--025 Missing numeric operand
SC--026 Value name is missing or too long
SC--027 Value ’%s’ has already been specified
SC--028 USE operation must be specified before DEFAULT
SC--029 ’%s’ is only valid after the VALUE option
SC--030 Only USE or DEFAULT is valid after the VALUE option
SC--031 RESET option only applies to an ANY, AUTOMATIC, %n RANGE or VALUE

attribute
SC--032 VALUE ’%s’ has not been defined

244

 WATCOM Script/GML Error Messages

SC--033 Maximum value is smaller than the minimum
SC--034 The specified default is outside the range values
SC--035 AUTOMATIC option must have a defined value
SC--036 The tag ’%s’ has been deleted by %n a previous GT control word
SC--037 The macro ’%s’ for the gml tag ’%s’ %n is not defined
SC--038 Tag text may not be specified for the ’%s’ tag
SC--039 Tag text must be specified with the ’%s’ tag
SC--040 ’%s’ is not a valid attribute name
SC--041 Cannot specify the automatic attribute ’%s’
SC--042 A value must be specified for the attribute ’%s’
SC--043 Value for ’%s’ exceeds maxium length of %d
SC--044 Value for ’%s’ must be in the range %d to %d
SC--045 Value ’%s’ for the ’%s’ attribute is not defined
SC--046 The TEXTREQD and TEXTDEF options conflict
SC--047 For the tag ’%s’, the required attribute(s)

followed by the error message ZZ--16
SC--048 A control word parameter is missing
SC--049 A single character or a two character hexadecimal %n value must be specified
SC--050 .IF cannot be nested more than 10 levels
SC--051 .TH must follow a .IF
SC--052 .EL must follow a .IF, .TH or .DO END
SC--053 Parameter to .DO must be BEGIN or END
SC--054 .DO BEGIN must follow a .IF, .TH or .EL
SC--055 .DO must be specified within a .IF structure
SC--056 Expecting a .DO BEGIN
SC--057 Tab character defined by .TB SET must be one character
SC--058 Right string delimeter missing
SC--059 Invalid text before tab position
SC--060 Invalid text after tab information
SC--061 %s positions not in ascending order
SC--062 Invalid %s position
SC--063 Too many operands in .BX command
SC--064 %s must have one of operands BEGIN, END or DUMP
SC--065 Too many operands in %s BEGIN control word
SC--066 %s END not preceded by %s BEGIN
SC--067 ’%s’ is an invalid tag operation
SC--068 missing relational operator
SC--069 invalid relational operator
SC--070 require a second operand for the relational expression
SC--071 The tag ’%s’ was not defined with ATTRIBUTE specified
SC--072 Not expecting more operand data
SC--073 Invalid subscript for set symbol
SC--074 Expecting an equal sign
SC--075 Invalid value at %s(0) %n for auto increment
SC--076 Subscript index must be between -1000000 and 1000000
SC--077 Invalid control word parameter
SC--078 Too many operands for .UD command
SC--079 Number of delimiters in running title %n %s exceeds four
SC--080 Expecting a valid numeric control word parameter
SC--081 Only one parameter allowed for this control word
SC--082 Value cannot be negative
SC--083 .HM + .HS must be less than or equal to .TM
SC--084 .FM + .FS must be less than or equal to .BM
SC--085 Control word parameter must be between 1 and 32
SC--086 The ’%s’ attribute was not completely defined

245

Appendix B

SC--087 For %s %n The symbol function is missing a right parenthesis
SC--088 For %s %n Must specify an additional numeric operand
SC--089 For %s %n Must specify an additional string operand
SC--090 For %s %n Expecting a valid numeric (integer) operand
SC--091 For %s %n The numeric operand must be greater than zero
SC--092 For %s %n Too many operands are specified
SC--093 For %s %n Invalid operand, expecting %s
SC--094 Space value is not valid
SC--095 .TM + .BM must be less than the page length
SC--096 Label name missing
SC--097 Label name too long
SC--098 Duplicate label ’%s’
SC--099 Record number does not match ’...%d’
SC--000 Invalid numeric .GO target, no line ’%d’
SC--001 Missing .GO target
SC--002 Reached end of %s, forward %n .GO target ’%s’ not found
SC--003 Reached end of %s, unresolved %n .GO to line %d
SC--004 Can’t find backward .GO target ’%s’
SC--005 For .AP and .IM, line numbers can’t be less than 1
SC--006 For .AP and .IM, ending line can’t be less %n than starting line
SC--007 Extra operand(s) ignored: %n ’%s’
SC--008 Environment stack exceeds 10 items
SC--009 Can’t do .RE, environment ’%s’ %n does not exist
SC--010 Can’t do .RE, environment stack is empty
SC--011 No active tab stops
SC--012 Tab position not found
SC--013 .LN can’t be used inside .CC, .FN, .FK or other "in-storage" text block
SC--014 Line range is invalid for the .LN control word
SC--015 No further parameters expected after ’%s’ parameter
SC--016 String cannot be found from the change list for deletion
SC--017 Input record too large after change: %n %s
SC--018 Items have to be separated in Change Delete
SC--019 For .PU, workfile number must be between 1 and 9
SC--020 .ER %s: %s
SC--021 Numbered macro/remote labels must be %n between 1 and 32767
SC--022 Expecting DELETE, SAVE, NOSAVE or %n a remote invocation count
SC--023 Remote invocation count can’t be %n less than 1
SC--024 Expecting SAVE or NOSAVE
SC--025 The resulting margin is too %s
SC--026 For %s, offset will go past current %n %s margin
SC--027 Not expecting a control word operand
SC--028 For %s %n Length value must be between 0 and %d
SC--029 For %s %n Value cannot be negative if length is not specified
SC--030 For .LS, the resulting spacing is too %s
SC--031 For %s, the resulting %s length is out of range
SC--032 Number of columns must be from 1 through 9
SC--033 Maximum gutter length must be no less than the minumum gutter length
SC--034 Expecting BEGIN, END, ON, OFF or number of pages
SC--035 Must be inside a footnote or a footnote leader
SC--036 Leading value must not have a sign
SC--037 The resulting page number is out of range
SC--038 The resulting paragraph indent is out of range
SC--039 Pending output cannot be cleared while a keep is active
SC--040 The running heading is too large to fit on the page
SC--041 The running footing is too large to fit on the page

246

 WATCOM Script/GML Error Messages

SC--042 A .%s off must correspond to a previous .%s on

SY Internal System Messages

SY--001 Memory exhausted!!!!!!!!!!!
SY--002 Internal GML processing error

ZZ Continued Messages

ZZ--001 Banner width is too small
ZZ--002 Banner depth is too small
ZZ--003 Depth of banner(s) too large for a page
ZZ--004 For region with hoffset = %s, voffset = %s,%n and indent = %s
ZZ--005 Banner regions overlap
ZZ--006 Cannot extend two regions into each other
ZZ--007 Banner region exceeds banner depth
ZZ--008 Banner region exceeds banner width
ZZ--009 System message is ’%s’
ZZ--010 Cannot open file
ZZ--011 %d is an invalid attribute classification
ZZ--012 Virtual page not found
ZZ--013 Syntax stack not empty
ZZ--014 Premature end of syntax stack
ZZ--015 Page count exceeded
ZZ--016 ’%s’
ZZ--017 have not been specified

LI Libman Messages

LI--001 %s %nis not a library file or a directory
LI--002 %s %nis incompatible with this version of the library manager

247

Appendix B

248

 WATCOM GENDEV Error Messages

C WATCOM GENDEV Error Messages
Some error messages are ’continued’ by other messages. The ZZ error class contains the continuation
messages, with references to them noted after the text of the starting error message.

A number of special symbols are used to insert information known only when the error occurs. The are:

%s a text string replaces the %s
%d a number replaces the %n
%n a new line is started on the screen
%t a tab to the screen position indicated by the number following the %t (zero(0) means

the number is supplied when the error occurs)

The error messages are:

AT Attribute Messages

AT--001 Required attribute not found
AT--002 Missing attribute value
AT--003 Invalid attribute value
AT--004 Attribute already found
AT--005 Missing or invalid closing quote on attribute
AT--006 Missing required equals
AT--007 The attribute value cannot have more than one character

CL Command line messages

CL--001 Invalid option in command line
CL--002 Source file already specified
CL--003 Missing or invalid command filename
CL--004 Missing delimiter specification

DF Device Function Messages

DF--001 Unrecognized device function tag
DF--002 Expecting an ending quote
DF--003 Need at least one hexadecimal digit following $
DF--004 Not a valid character in a device function
DF--005 Commas must separate device function parameters
DF--006 Too many parameters or too many commas
DF--007 Expecting more parameters
DF--008 This tag at start of device function sequence is invalid
DF--009 This device function tag cannot be a parameter of any tag
DF--010 This parameter cannot be used in this tag
DF--011 Need a newline with an advance of 1
DF--012 At least one device font definition must be specified

IN Informative Messages

IN--001 Processing file
IN--002 Processing complete

IO I/O Messages

249

Appendix C

IO--001 Cannot open file
IO--002 Recursive use of an include file
IO--003 Error reading device/font library
IO--004 Output operation failed
IO--005 Error reading input file
IO--006 GENDEV interrupted by ATTN key
IO--007 The device directory or library%n ’%s’%n does not exist

SN Syntax Messages

SN--001 Number is too large or contains invalid characters
SN--002 Missing or invalid filename
SN--003 Invalid placement of text
SN--004 Expecting :eevalvalue tag
SN--005 Type is too long
SN--006 Fontname is too long or is an empty string
SN--007 Fontname already exists
SN--008 Type cannot be an empty string in :fontpause
SN--009 Width value must be an integer number
SN--010 Tag not supported in this version
SN--011 Expecting :enewline tag
SN--012 Expecting :enewpage tag
SN--013 Expecting :ehtab tag
SN--014 Unexpected tag encountered
SN--015 Expecting :startvalue tag
SN--016 Expecting :estartvalue tag
SN--017 Expecting :eendvalue tag
SN--018 Expecting :efontswitch tag
SN--019 Fontname not specified in :devicefont
SN--020 Duplicate :fontpause type
SN--021 Must have a :defaultfont with font=0
SN--022 The fontpause in :devicefont has no match in :fontpause
SN--023 Invalid location for a TEXTPASS directive
SN--024 More than one TEXTPASS directive specified in :lineproc
SN--025 Expecting :estartword tag
SN--026 Expecting :eendword tag
SN--027 Expecting :edefaultfont tag
SN--028 Expecting :efirstword tag
SN--029 Both a TEXTPASS directive and a ULINEON or ULINEOFF found in a :lineproc
SN--030 Duplicate :fontswitch type
SN--031 More than one :htab specified
SN--032 More than one :newpage specified
SN--033 Expecting :newpage tag
SN--034 Expecting text before termination tag.
SN--035 No text in input file
SN--036 Expecting :edriver tag
SN--037 Expecting :eintrans tag
SN--038 Expecting :efont tag
SN--039 Default Font already specified
SN--040 Expecting :value tag
SN--041 Expecting :epause tag
SN--042 Expecting :efontpause tag
SN--043 Expecting :edevice tag
SN--044 Pause already specified
SN--045 Expecting :einit tag

250

 WATCOM GENDEV Error Messages

SN--046 Expecting :evalue tag
SN--047 Expecting :efontvalue tag
SN--048 Expecting :efinish tag
SN--049 Missing width value
SN--050 CMT tag should appear at start of line
SN--051 Invalid location for a ULINEON directive
SN--052 Invalid location for a ULINEOFF directive
SN--053 Duplicate :phrase exception chars
SN--054 Expecting :box tag
SN--055 Expecting :value tag
SN--056 except_chars value is too long
SN--057 Expecting :ebox tag
SN--058 Expecting :edevicefont tag
SN--059 For the defined name ’%s’%n the member name ’%s’ has already been used
SN--060 Expecting a ULINEON directive before a ULINEOFF
SN--061 No corresponding ULINEOFF directive for a ULINEON
SN--062 Expecting :eunderscore tag
SN--063 Expecting :epagestart tag
SN--064 Expecting :epageaddress tag
SN--065 Expecting :eabsoluteaddress tag
SN--066 More than one :pageaddress specified
SN--067 More than one :absoluteaddress specified
SN--068 Expecting :eouttrans tag
SN--069 Expecting :ewidth tag
SN--070 Missing input translation value
SN--071 Missing output translation value
SN--072 Expecting :ehline tag
SN--073 Expecting :evline tag
SN--074 Expecting :edbox tag
SN--075 More than one :hline specified
SN--076 More than one :vline specified
SN--077 More than one :dbox specified
SN--078 The line_height attribute must be specified %n if the scale_basis
SN--079 Expecting :epageoffset tag
SN--080 The font_space attribute must be specified %n if the font_height attribute is present
SN--081 Header at start of library file is invalid
SN--082 Current disk location and library path do not match
SN--083 Expecting :efontstyle tag
SN--084 Duplicate :fontstyle type
SN--085 Expecting :elineproc tag
SN--086 Invalid pass number
SN--087 2 lineproc blocks with identical pass numbers
SN--088 :fontswitch and :fontstyle have identical type
SN--089 Expecting :endvalue tag
SN--090 Expecting :ephrase tag
SN--091 Expecting :ebreakvalue tag
SN--092 Expecting :eoverride tag
SN--093 For font style ’%s’ %n the override value %s %n has not been declared
SN--094 Font style name may not contain spaces
SN--095 For the member name ’%s’ the defined name %n ’%s’ has already been used

SY Internal System Messages

SY--001 Memory exhausted!!!!!!!!!!!
SY--002 Cannot find device or font in order to delete it

251

Appendix C

SY--003 Internal GENDEV processing error

LI Libman Messages

LI--001 %s %nis not a library file or a directory
LI--002 %s %nis incompatible with this version of the library manager

252

Trademarks

Apple and LaserWriter are registered trademarks of Apple Computer, Inc.
DEC, VAX and VMS are registered trademarks of Digital Equipment Corporation.
HP is a registered trademark of the Hewlett-Packard Company.
IBM, IBM PC and IBM 370 VM/SP CMS are registered trademarks of International Business Machines
Corporation.
Multiwriter V is a registered trademark of Ahearn & Soper Inc.
PostScript is a trademark of Adobe Systems, Inc.

Index

A B

absolute addressing 205 back material 35, 155
:absoluteaddress tag 205 :backm tag 155
:abstract tag 154 reference section 70

reference section 69 layout section 108
layout section 102 tutorial section 40
tutorial section 37, 39 backm_string attribute

abstract_string attribute layout section 109
layout section 103 :banner tag

%add 184 layout section 109
:address tag 154, 157 banner symbols 59

reference section 70 :banregion tag
layout section 103 layout section 111
tutorial section 37, 39 basic document elements 155

addressing 181 binary include 70, 162
align attribute %binary1 184

reference section 91 %binary2 185
layout section 106, 121, 125, 129, 132, 140, 149, %binary4 185

151 :binclude tag 162
:aline tag 154, 157 reference section 70

reference section 70 bind option 168
layout section 104 binding attribute
tutorial section 39 layout section 118

altextension option 168 :body tag 35, 154
:appendix tag 35, 155 reference section 71

reference section 70 layout section 114
layout section 104 tutorial section 6, 39
tutorial section 39 body_string attribute

appendix_string attribute layout section 114
layout section 106 :boldend tag 202

:attn tag bolding 201
reference section 91 :boldstart tag 201
layout section 107 :box tag 216

attn_string attribute :box attributes
layout section 107 bottom_left attribute 217

attribute 65 bottom_line attribute 216
attribute control word 96 bottom_right attribute 217
attribute strings 65 font attribute 216
attributes 49, 65 left_side attribute 216

strings 65 right_side attribute 216
augmented devices 181 top_left attribute 217
:author tag 154 top_line attribute 216

reference section 70 top_right attribute 217
layout section 107 boxes 207
tutorial section 37, 39 break attribute 9, 157

reference section 72
bullet attribute

layout section 151
bullet_font attribute

layout section 151
bullet_translate attribute

255

Index

layout section 151
D

C

:date tag 154, 185
reference section 72, 91
layout section 116

%cancel 185 tutorial section 37-38
carriage control file 226 date symbol 186
case attribute date_form attribute

layout section 106, 132 layout section 116, 136
char_width attribute 193 :dbox tag 207
character sets 181 :dd tag 157
character strings 65 reference section 72, 73
:cit tag 160 layout section 117

reference section 71 tutorial section 31-32
layout section 115 :ddhd tag 157
tutorial section 44 reference section 72

citations 44 layout section 117
%clear3270 185 %decimal 186
%clearpc 185 :default tag
:close tag layout section 117

reference section 91 default layout 55
layout section 115 default_frame attribute

:cmt tag 161 layout section 123
device section 183 default_place attribute
reference section 71 layout section 123

columns attribute %default_width 186
layout section 103, 106, 109, 118, 125, 132, 144, :defaultfont tag 213

147-148 font attribute 213
command file 170 font_height attribute 213

command file 165 font_space attribute 213
DEC VAX/VMS 167 fontname attribute 213
IBM PC/DOS 166 fontstyle attribute 214
IBM VM/CMS 166 define macro control word 96

command line defined name 182
DEC VAX/VMS 167 defined_name attribute 192, 196, 209
IBM PC/DOS 165 defining a device 208
IBM VM/CMS 165 defining drivers 195

comments 71, 183 defining fonts 191
compact attribute 158 definition description 72

reference section 72, 79, 86, 88-89 definition description heading 72
contents attribute definition library 182

layout section 112 definition list 72
control sequences 181 definition term 73
control word indicator 63, 95 definition term heading 73
:convert tag 162 delim attribute

layout section 101-102, 116 layout section 115, 124, 129, 141
cpinch option 169, 172 delim option 169

depth attribute 156, 162
reference section 71, 76, 80, 89, 91
layout section 110-111, 115, 136, 142

description option 169
device attributes

256

Index

defined_name 209 numeric result 183
driver_name 210 translation 184
horizontal_base_units 210 device library 231
member_name 209 device option 169
output_name 210 :device tag 209
output_suffix 210 box block 215
page_depth 210 default font block 213
page_width 210 device font block 212
vertical_base_units 210 fontpause block 214

device definition 181 pagestart block 218
device driver 181 pause block 210

See also driver rule block 215
device fonts 181 underscore block 217
device functions 183 device tags 183

character result 184 :devicefont tag 212
%add 184 fontname attribute 212
%binary1 184 fontpause attribute 212
%binary2 185 resident attribute 212
%binary4 185 devices 181
%cancel 185 creating 182
%clear3270 185 defining 208
%clearpc 185 deleting 182
%date 185 device block 208
%decimal 186 directory 182
%default_width 186 display_heading attribute
%divide 186 layout section 106, 131
%flushpage 186 display_in_toc attribute
%font_height 186 layout section 149
%font_number 187 :dist tag
%font_outname1 187 reference section 92
%font_outname2 187 :distrib tag
%font_resident 187 reference section 92
%font_space 186 layout section 118
%hex 187 %divide 186
%image 188 :dl tag 157
%line_height 188 reference section 72

%line_space 188 layout section 120
%page_depth 188 tutorial section 32
%page_width 188 :docnum tag 154
%pages 188 reference section 73, 92
%recordbreak 189 layout section 119
%remainder 189 tutorial section 37-38
%sleep 189 docnum_string attribute
%subtract 189 layout section 119
%tab_width 189 docsect attribute
%text 189 layout section 110
%thickness 190 document structure 153
%time 190 document style 55
%wait 190 dos symbols 83, 183, 234
%wgml_header 190 GMLINC 83, 183
%x_address 190 GMLLIB 234
%x_size 190 driver 181
%y_address 191 defining 195
%y_size 191 driver block 195
final values 184 driver attributes

257

Index

defined_name 196 :edevice tag 209
fill_char 197 :edevicefont tag 212
member_name 196 :edistrib tag
rec_spec 197 reference section 92

:driver tag 196 :edl tag
absoluteaddress block 205 reference section 73

boldend block 202 tutorial section 32
boldstart block 201 :edriver tag 196
dbox block 207 :eendvalue tag 204
finish block 198 :efig tag
fontswitch block 203 reference section 74

hline block 205 tutorial section 47
htab block 200 :efinish tag 198
init block 197 :efn tag
newline block 199 reference section 74

newpage block 200 :efont tag 191
pageaddress block 204 :efontpause tag 214
underend block 203 :efontswitch tag 204
understart block 202 :efontvalue tag 198
vline block 206 :egdoc tag

driver_name attribute 210 reference section 74

:dt tag 157 tutorial section 6
reference section 73, 72 :egl tag
layout section 121 reference section 74

tutorial section 31-32 :ehline tag 206
:dthd tag :ehp0 tag

reference section 73 reference section 74

layout section 121 :ehp1 tag
duplex option 169 reference section 74

:ehp2 tag
reference section 74

:ehp3 tag
E reference section 74

:ehtab tag 200
:einit tag 197
:eintrans tag 194

:eabsoluteaddress tag 205 :elayout tag
:eaddress tag reference section 74

reference section 73 layout section 122
tutorial section 39 tutorial section 55

:ebanner tag :elq tag
layout section 121 reference section 75

:ebanregion tag tutorial section 46
layout section 121 :endvalue tag 204

:eboldend tag 202 :enewline tag 199
:eboldstart tag 201 :enewpage tag 200
:ebox tag 216 :eol tag
:ecit tag reference section 75

reference section 73 tutorial section 31
tutorial section 44 :eouttrans tag 195

:eclose tag :epageaddress tag 205
reference section 92 :epagestart tag 218
layout section 122 :epause tag 211

:edbox tag 207 :epsc tag
:edefaultfont tag 213 reference section 75

258

Index

:eq tag figure 156
reference section 75 figure caption 77
tutorial section 45 figure description 77

:erule tag 215 figure list 77
:esf tag figure reference 77, 156

reference section 75 figures 46, 76
:esl tag file attribute 161-162

reference section 75 reference section 71, 80, 83, 183
tutorial section 29 file designation 222, 224, 227

:estartvalue tag 204 file option 170
:etitlep tag file specification 221

reference section 75 attribute 221, 224, 226
tutorial section 37-38 file type 226

:eul tag record size 222, 224, 227
reference section 76 record type 221, 224, 227
tutorial section 30 file designation 221-222, 224, 227

:eunderend tag 203 device name 227
:eunderscore tag 217 directory 228
:eunderstart tag 202 drive name 222
:evline tag 207 file extension 223
:ewidth tag 194 file mode 225
examples 25, 156 file name 222, 225, 228
:exmp tag file type 225, 228

reference section 76 file version 228
tutorial section 25-26 node name 227

extract_threshold attribute path 222
layout section 115 file type 226

carriage control 226
files 221
fill_char attribute 197

F fill_string attribute
layout section 125, 148

:finish tag 198
place attribute 198

:fig tag 156 fixed file 222, 224, 227
reference section 76 :flpgnum tag
layout section 122 layout section 125
tutorial section 47 %flushpage 186

:figcap tag 156 :fn tag 159
reference section 77 reference section 78

layout section 123 layout section 125
tutorial section 47 :fnref tag

figcap_string attribute reference section 78

layout section 123 layout section 126
:figdesc tag 156 font attribute

reference section 77 layout section 102, 104-105, 107-109, 111,
layout section 124 114-119, 121-127, 129, 131, 133-136,
tutorial section 48 138-141, 143, 145-147, 149, 151-152

:figlist tag 154 font attributes
reference section 77 char_width 193
layout section 124 defined_name 192
tutorial section 37, 39 font_out_name1 192

:figref tag 156 font_out_name2 192
reference section 77 line_height 193
tutorial section 50 line_space 193

259

Index

member_name 192
mono_space_width 193 G

scale_basis 193
scale_max 193
scale_min 193

font linkage 64 :gd tag 158
font option 170 reference section 79

font layout section 127
attributes 170 :gdoc tag

:font tag 191 reference section 78

intrans block 194 tutorial section 6
outtrans block 195 :gl tag 158
width block 194 reference section 79

%font_height 186 layout section 128
%font_number 187 glossary list 79
font_out_name1 attribute 192 GML
font_out_name2 attribute 192 definition of 3
%font_outname1 187 GML attribute control word 96
%font_outname2 187 GML summary 153
%font_resident 187 GML tag control word 98
%font_space 186 :graphic tag 161
:fontpause tag 214 reference section 79

type attribute 214 graphic include 70
fonts 181, 198, 212-214 group attribute

character definition 191 layout section 130, 148
defining 191 :gt tag 158
font block 191 reference section 80, 79
:fontvalue tag 198 layout section 129

:fontswitch tag 204 gutter attribute
endvalue section 204 layout section 118
startvalue section 204
type attribute 204

:fontvalue tag 198
footers H

See :banner tag
footnote 78
format option 171
formatting 9 :h0 tag 157
formatting with Script 95 reference section 80

frame attribute 156 layout section 130
reference section 76 tutorial section 6, 36, 39-40
layout section 126, 134 :h1 tag 157

framing 207, 215 reference section 80

:from tag layout section 130
reference section 92 tutorial section 36, 39-40
layout section 127 :h2 tag 157

from option 171 reference section 80

front material 35, 78, 153 layout section 130
:frontm tag 153 tutorial section 36

reference section 78 :h3 tag 157
tutorial section 37 reference section 80

full page addressing 181 layout section 130
tutorial section 36

:h4 tag 157
reference section 80

260

Index

layout section 130
tutorial section 36 I

:h5 tag 157
reference section 80

layout section 130
tutorial section 36 :i1 tag 162

:h6 tag 157 reference section 82

reference section 80 layout section 135
layout section 130 tutorial section 51
tutorial section 36 :i2 tag 162

:hdref tag 157 reference section 82

reference section 81 layout section 135
tutorial section 50 tutorial section 51

header attribute :i3 tag 162
layout section 103, 106, 109, 114, 133-134, 143 reference section 82

headers layout section 135
See :banner tag tutorial section 51

headhi attribute 158 id attribute 156-159, 162
reference section 72 reference section 77-78, 81-82, 85

:heading tag id-name 66
layout section 129 identifiers 66

heading reference 81, 157 :ih1 tag 162
headings 35, 157 reference section 82, 83

restrictions 35 tutorial section 53
%hex 187 :ih2 tag 162
highlight phrase 81, 87 reference section 82

:hline tag 206 :ih3 tag 162
hoffset attribute reference section 82

layout section 111 %image 188
horizontal addressing 200 :imbed tag 162
horizontal base units 193 reference section 83

horizontal lines 205 inclist option 171
horizontal space unit :include tag 161

definition 63 device section 183
horizontal_base_units 210 reference section 83

horizontal_base_units attribute 210 include 172
hotspots 11 tutorial section 40-41
:hp0 tag 160 indent attribute

reference section 81 layout section 104, 111, 119, 130, 134-135, 148
hp0 170 :index tag 155
tutorial section 43 reference section 83

:hp1 tag 160 index 171
reference section 81 layout section 132
hp1 170 tutorial section 40, 51
tutorial section 43 index header 162

:hp2 tag 160 index headings 82
reference section 81 index option 171
hp2 170 index reference 84, 163
tutorial section 43 index tags 162

:hp3 tag 160 index_delim attribute
reference section 81 layout section 135
hp3 170 index_string attribute
tutorial section 43 layout section 133

:htab tag 200 indexing 51, 82
indicator 63, 95

261

Index

:init tag 197 :letdate tag
fontvalue section 198 layout section 136
place attribute 197 letter format 163

input escape 66 letter tags 91
input records 63 level attribute
input translation 66, 194 layout section 120, 128, 139, 144, 150
input_esc attribute :li tag 158-159

layout section 118 reference section 84

:intrans tag 194 tutorial section 29-31
invoking macros 96 library 231-234
invoking WATCOM GENDEV 219 creating 231, 233-234
invoking WATCOM Script/GML 165 defined name 231
:iref tag 163 individual 231

reference section 84 member name 231
ix attribute name list 231-234

reference section 83-84 search order 231
:ixhead tag updating 231, 233-234

layout section 133 library directory 182
:ixmajor tag library member 231

layout section 134 line_break attribute
:ixpgnum tag layout section 106, 121, 131

layout section 134 %line_height 188
line_height attribute 193
line_indent attribute

layout section 125, 137, 141-142
J line_left attribute

layout section 117
%line_space 188
line_space attribute 193

justify attribute linemode option 172
layout section 118 link 64

fonts 64
:liref tag 159

reference section 85

L list of figures 154
list part 85
list reference 159
lists

:layout tag 55, 162 address 157
default values 55 definition 157
reference section 84 definition list 28, 31
layout section 101, 136 glossary 157
specifying 55 list reference 157
tutorial section 55 nesting 32

layout option 172 ordered 157
layouts 3 ordered list 28, 30

definition of 3 simple 157
left_adjust attribute simple list 28

layout section 103, 107, 109, 116, 119, 122, 124, unordered 157
127, 132, 145-147 unordered list 28-29

left_indent attribute llength option 172
layout section 120, 128, 137-138, 140, 144, 150, logical line end 63

152 logical records 63
left_margin attribute long quotation 85

layout section 142 :lp tag 157-159

262

Index

reference section 85 number_form attribute
layout section 137 layout section 105, 131
tutorial section 33 number_frame attribute

:lq tag 160 number_reset attribute
reference section 85 layout section
layout section 137 number_style attribute
tutorial section 46 layout section 105, 126-127, 131, 140

M O

macro parameters 96 :ol tag 158
macro symbols 96 reference section 86

macros 96 layout section 139
macros, invoking 96 tutorial section 31
mailmerge option 172 :open tag
max_group attribute reference section 93

layout section 129 layout section 141
member name 182 options
member_name attribute 192, 196, 209 See WATCOM GENDEV options
mono_space_width attribute 193 See WATCOM Script/GML options
mouse, using 9 ordered list 86

output devices 181, 221
special names 223, 225

output option 174
N output translation 195

output_name attribute 210
output_suffix attribute 210
:outtrans tag 195

:newline tag 199
advance attribute 199

:newpage tag 200
noduplex option 169 P

noinclist option 171
noindex option 171
nopause option 174
noquiet option 174 :p tag 160
noscript option 175 reference section 86

:note tag 159 layout section 141
reference section 85 tutorial section 6, 27, 37
layout section 138 page attribute 156-157, 159
tutorial section 26-28 reference section 78, 81, 85

note_string attribute layout section 142
layout section 139 page addressing 181

notes 159 page banner
footnote 159 See :banner tag
footnote reference 159 %page_depth 188

nowait option 176 page_depth attribute 210
nowarning option 176 page_eject attribute
number styles 101 layout section 103, 105, 109, 114, 119, 131, 133,
number_font attribute 143

layout section 105-106, 126, 131, 140 page_position attribute

263

Index

layout section 103, 105, 107-108, 115-116, 119, printers
127, 131, 136, 145-147 See output devices

page_reset attribute proc attribute 163
layout section 103, 106, 109, 114, 133, 144 reference section 86

%page_width 188 process option 174
page_width attribute 210 process specific control 86, 163
:pageaddress tag 205 processing rules 63
%pages 188 :psc tag 163
:pagestart tag 218 reference section 86

x_start attribute 218 psc 174
y_start attribute 218

para_indent attribute
layout section 129

paragraph elements 28, 155 Q

parsing rules 63
passes option 174
pause option 174
:pause tag 211 :q tag 160

place attribute 211 reference section 87

pausing 190, 210, 214 tutorial section 45
wait 190 quiet option 174

:pc tag 160 quotations 45
reference section 86 long 45
layout section 142 short 45
tutorial section 26-28

personal library 231
pg attribute 162-163

reference section 82, 84 R

place attribute 156
reference section 77
layout section 110

point addressable 181 rec_spec attribute 197
post_skip attribute record attributes 221, 224, 226

layout section 102, 105, 108, 114, 120, 123, 128, record size 222, 224, 227
130, 132, 134-135, 137-143, 145, 149-150, record type 221, 224, 227
152 fixed file 222, 224, 227

pouring attribute text file 221, 224, 227
layout section 111 variable file 222, 224, 227

pre_lines attribute %recordbreak 189
layout section 123-124, 126 refdoc attribute

pre_skip attribute layout section 110
layout section 104, 108, 115-116, 119-120, 122, refid attribute 156-157, 159, 162

128, 130, 133, 135, 137-138, 140-142, 144, reference section 78, 81-82, 84-85
148, 150, 152 refnum attribute

pre_top_skip attribute layout section 111
layout section 102, 105, 107-108, 114, 118, 127, refplace attribute

130, 132, 141, 143, 145-147 layout section 110
:preface tag 154 region_position attribute

reference section 86 layout section 111
layout section 143 relative tabbing 200
tutorial section 37, 39 %remainder 189

preface_string attribute reposition attribute 162
layout section 143 reference section 71

print attribute 162 resetscreen option 175
reference section 83 right_adjust attribute

264

Index

layout section 103, 107, 110, 116, 119, 122, 124, sf 170
132, 146, 148 simple list 88

right_indent attribute size attribute
layout section 120, 128, 137-138, 140, 144, 150, layout section 125, 149

152 skip attribute
right_margin attribute layout section 104, 108, 118, 120, 124, 126, 128,

layout section 142 135, 140, 145-146, 148, 150
rule lines 205-207 :sl tag 158
:rule tag 215 reference section 88

font attribute 215 layout section 144
rule_value attribute 215 tutorial section 29

running titles %sleep 189
See :banner tag spacing attribute

running WATCOM GENDEV 219 layout section 103, 105, 117, 120, 123, 125-126,
running WATCOM Script/GML 9, 165 128, 130, 132, 137-140, 143, 145, 147-148,

150, 152
:startvalue tag 204
statistics option 175

S stitle attribute 154, 157
reference section 81, 88

stop_eject attribute
layout section 129

:save tag 162 stopping WATCOM Script/GML 9
layout section string_font attribute

scale attribute layout section 107, 124, 135
reference section 80 strings 65

scale_basis attribute 193 style 55
scale_max attribute 193 :subject tag
scale_min attribute 193 reference section 93
scanning rules 63 layout section 145
screen displays 9 substitution
Script 95 See symbols
Script indicator 63, 95 %subtract 189
script option 63, 95, 175 symbol attribute 161
script_format attribute reference section 87

layout section 112 symbolic substitution
sec attribute 153 See symbols

reference section 79 symbols 65, 83, 183, 234
section_eject attribute defined by WGML

layout section 106 banner symbols 112
see attribute 162-163 GMLINC 83, 183

reference section 83-84 GMLLIB 234
see_also_string attribute

layout section 133
see_string attribute

layout section 133 T

seeid attribute 162-163
reference section 83-84

separator 63
:set tag 87, 161 %tab_width 189

See also symbols table of contents 88, 154
reference section 87 tag control word 98

setsymbol option 175 tags 69
:sf tag 161 definition of 6

reference section 87 rules for processing 69

265

Index

termhi attribute 158
reference section 73, 79 U

terse option 176
%text 189

definition of 6
text file 221, 224, 227 :ul tag 159
text formatting reference section 88

definition of 3 layout section 150
text line 37, 69 tutorial section 30
%thickness 190 :underend tag 203
threshold attribute underlining 202, 217

layout section 129, 151 :underscore tag 217
%time 190 font attribute 217
time symbol 190 score_value attribute 217
:title tag 154 underscoring 202, 217

reference section 88 :understart tag 202
layout section 146 unordered list 88
tutorial section 37-38 user library 231

title page 88, 154
:titlep tag 154

reference section 88
tutorial section 37-38 V

:to tag
reference section 93
layout section 147

to option 176 value attribute 161
:toc tag 154 reference section 87

reference section 88 valueset option 176
layout section 147 variable file 222, 224, 227
tutorial section 37, 39 verbose option 176

toc_levels attribute vertical base units 193
layout section 148 vertical lines 206

:toch0 tag vertical space unit
layout section 148 definition 64

:toch1 tag vertical_base_units 210
layout section 148 vertical_base_units attribute 210

:toch2 tag :vline tag 207
layout section 148 voffset attribute

:toch3 tag layout section 111
layout section 148

:toch4 tag
layout section 148

:toch5 tag W

layout section 148
:toch6 tag

layout section 148
:tocpgnum tag %wait 190

layout section 149 wait option 176
top_margin attribute warning option 176

layout section 142 WATCOM GENDEV options 219
tsize attribute 158 altextension 219

reference section 73 delim 220
inclist 220
noinclist 220
nowarning 220

266

Index

warning 220 wrap_indent attribute
WATCOM Script/GML options 168 layout section 135

altextension 168 wscript option 177
bind 168
cpinch 169, 172
delim 169
description 169 X

device 169
duplex 169
file 170
font 170 %x_address 190
format 171 %x_size 190
from 171 :xmp tag 156
inclist 171 reference section 89

index 171 layout section 151
layout 172, 55 tutorial section 25-26
linemode 172 xoff attribute
llength 172 reference section 80
mailmerge 172 layout section
noduplex 169
noinclist 171
noindex 171
nopause 174 Y

noquiet 174
noscript 175
nowait 176
nowarning 176 %y_address 191
output 174 %y_size 191
passes 174 yoff attribute
pause 174 reference section 80
process 174 layout section
quiet 174 tutorial section
resetscreen 175
script 63, 95, 175
setsymbol 175
statistics 175
terse 176
to 176
valueset 176
verbose 176
wait 176
warning 176
wscript 177

%wgml_header 190
WGMLST directory 182
wgmlst library member 231
WGMLUI program 9

help 12
:widow tag

layout section 151
widowing 7
width attribute 156

reference section 77, 80
layout section 111

:width tag 194

267

