
1 Open Watcom C++ Diagnostic Messages

The following is a list of all warning and error messages produced by the Open Watcom C++ compilers.

Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain references to %N, %S, %T, %s, %d and %u. They

represent strings that are substituted by the Open Watcom C++ compilers to make the error message more

exact. %d and %u represent a string of digits; %N, %S, %T and %s a string, usually a symbolic name.

Consider the following program, named err.cpp, which contains errors.

Example:
#include <stdio.h>

void main()

{

int i;

float i;

i = 383;

x = 13143.0;

printf("Integer value is %d\n", i);

printf("Floating-point value is %f\n", x);

}

If we compile the above program, the following messages will appear on the screen.

File: err.cpp

(6,12): Error! E042: symbol ’i’ already defined

’i’ declared at: (5,9)

(9,5): Error! E029: symbol ’x’ has not been declared

err.cpp: 12 lines, included 174, no warnings, 2 errors

The diagnostic messages consist of the following information:

1. the name of the file being compiled,

2. the line number and column of the line containing the error (in parentheses),

3. a message number, and

4. text explaining the nature of the error.

In the above example, the first error occurred on line 6 of the file err.cpp. Error number 042 (with the

appropriate substitutions) was diagnosed. The second error occurred on line 9 of the file err.cpp. Error

number 029 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed

during execution) do not have message numbers associated with them.

A number of messages contain a reference to the ARM. This is the "Annotated C++ Reference Manual"

written by Margaret A. Ellis and Bjarne Stroustrup and published by Addison-Wesley (ISBN

0-201-51459-1).

Open Watcom C++ Diagnostic Messages 1

Chapter 1

1.1 Diagnostic Messages

000 internal compiler error

If this message appears, please report the problem directly to the Open Watcom

development team. See https://discord.com/channels/922934435744206908 .

001 assignment of constant found in boolean expression

An assignment of a constant has been detected in a boolean expression. For example: "if(

var = 0)". It is most likely that you want to use "==" for testing for equality.

002 constant out of range; truncated

This message is issued if a constant cannot be represented in 32 bits or if a constant is

outside the range of valid values that can be assigned to a variable.

Example:
int a = 12345678901234567890;

003 missing return value

A function has been declared with a non-void return type, but no return statement was

found in the function. Either add a return statement or change the function return type to

void.

Example:
int foo(int a)

{

int b = a + a;

}

The message will be issued at the end of the function.

004 base class ’%T’ does not have a virtual destructor

A virtual destructor has been declared in a class with base classes. However, one of those

base classes does not have a virtual destructor. A delete of a pointer cast to such a base

class will not function properly in all circumstances.

Example:
struct Base {

~Base();

};

struct Derived : Base {

virtual ~Derived();

};

It is considered good programming practice to declare virtual destructors in all classes used

as base classes of classes having virtual destructors.

2 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

005 pointer or reference truncated

The expression contains a transfer of a pointer value to another pointer value of smaller

size. This can be caused by __near or __far qualifiers (i.e., assigning a far pointer to a

near pointer). Function pointers can also have a different size than data pointers in certain

memory models. This message indicates that some information is being lost so check the

code carefully.

Example:
extern int __far *foo();

int __far *p_far = foo();

int __near *p_near = p_far; // truncated

006 syntax error; probable cause: missing ’;’

The compiler has found a complete expression (or declaration) during parsing but could not

continue. The compiler has detected that it could have continued if a semicolon was

present so there may be a semicolon missing.

Example:
enum S {

} // missing ’;’

class X {

};

007 ’&array’ may not produce intended result

The type of the expression ’&array’ is different from the type of the expression ’array’.

Suppose we have the declaration char buffer[80]. Then the expression (&buffer

+ 3) will be evaluated as (buffer + 3 * sizeof(buffer)) which is (buffer

+ 3 * 80) and not (buffer + 3 * 1) which is what one may have expected. The

address-of operator ’&’ is not required for getting the address of an array.

008 returning address of function argument or of auto or register variable

This warning usually indicates a serious programming error. When a function exits, the

storage allocated on the stack for auto variables is released. This storage will be

overwritten by further function calls and/or hardware interrupt service routines. Therefore,

the data pointed to by the return value may be destroyed before your program has a chance

to reference it or make a copy of it.

Example:
int *foo()

{

int k = 123;

return &k; // k is automatic variable

}

Diagnostic Messages 3

Chapter 1

009 option requires a file name

The specified option is not recognized by the compiler since there was no file name after it

(i.e., "-fo=my.obj").

010 asm directive ignored

The asm directive (e.g., asm("mov r0,1");) is a non-portable construct. The Open

Watcom C++ compiler treats all asm directives like comments.

011 all members are private

This message warns the programmer that there will be no way to use the contents of the

class because all accesses will be flagged as erroneous (i.e., accessing a private member).

Example:
class Private {

int a;

Private();

~Private();

Private(const Private&);

};

012 template argument cannot be type ’%T’

A template argument can be either a generic type (e.g., template < class T >), a

pointer, or an integral type. These types are required for expressions that can be checked at

compile time.

013 unreachable code

The indicated statement will never be executed because there is no path through the

program that causes control to reach that statement.

Example:
void foo(int *p)

{

*p = 4;

return;

*p = 6;

}

The statement following the return statement cannot be reached.

014 no reference to symbol ’%S’

There are no references to the declared variable. The declaration for the variable can be

deleted. If the variable is a parameter to a function, all calls to the function must also have

the value for that parameter deleted.

In some cases, there may be a valid reason for retaining the variable. You can prevent the

message from being issued through use of #pragma off(unreferenced), or adding a

statement that assigns the variable to itself.

4 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

015 nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected /* for the start of another

comment. Nested comments are not allowed in ISO/ANSI C. You may be missing the */

for the previous comment.

016 template argument list cannot be empty

An empty template argument list would result in a template that could only define a single

class or function.

017 label ’%s’ has not been referenced by a goto

The indicated label has not been referenced and, as such, is useless. This warning can be

safely ignored.

Example:
int foo(int a, int b)

{

un_refed:

return a + b;

}

018 no reference to anonymous union member ’%S’

The declaration for the anonymous member can be safely deleted without any effect.

019 ’break’ may only appear in a for, do, while, or switch statement

A break statement has been found in an illegal place in the program. You may be missing

an opening brace { for a while, do, for or switch statement.

Example:
int foo(int a, int b)

{

break; // illegal

return a+b;

}

020 ’case’ may only appear in a switch statement

A case label has been found that is not inside a switch statement.

Example:
int foo(int a, int b)

{

case 4: // illegal

return a+b;

}

Diagnostic Messages 5

Chapter 1

021 ’continue’ may only appear in a for, do, or while statement

The continue statement must be inside a while, do or for statement. You may have too

many } between the while, do or for statement and the continue statement.

Example:
int foo(int a, int b)

{

continue; // illegal

return a+b;

}

022 ’default’ may only appear in a switch statement

A default label has been found that is not inside a switch statement. You may have too

many } between the start of the switch and the default label.

Example:
int foo(int a, int b)

{

default: // illegal

return a+b;

}

023 misplaced ’}’ or missing earlier ’{’

An extra } has been found which cannot be matched up with an earlier {.

024 misplaced #elif directive

The #elif directive must be inside an #if preprocessing group and before the #else directive

if present.

Example:
int a;

#else

int c;

#elif IN_IF

int b;

#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that

corresponds to them.

025 misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all #elif directives

if present.

6 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int a;

#else

int c;

#elif IN_IF

int b;

#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that

corresponds to them.

026 misplaced #endif directive

A #endif preprocessing directive has been found without a matching #if directive. You

either have an extra #endif or you are missing an #if directive earlier in the file.

Example:
int a;

#else

int c;

#elif IN_IF

int b;

#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that

corresponds to them.

027 only one ’default’ per switch statement is allowed

You cannot have more than one default label in a switch statement.

Example:
int translate(int a)

{

switch(a) {

case 1:

a = 8;

break;

default:

a = 9;

break;

default: // illegal

a = 10;

break;

}

return a;

}

Diagnostic Messages 7

Chapter 1

028 expecting ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should help you to

determine the problem.

029 symbol ’%N’ has not been declared

The compiler has found a symbol which has not been previously declared. The symbol

may be spelled differently than the declaration, or you may need to #include a header file

that contains the declaration.

Example:
int a = b; // b has not been declared

030 left expression must be a function or a function pointer

The compiler has found an expression that looks like a function call, but it is not defined as

a function.

Example:
int a;

int b = a(12);

031 operand must be an lvalue

The operand on the left side of an "=" sign must be a variable or memory location which

can have a value assigned to it.

Example:
void foo(int a)

{

(a + 1) = 7;

int b = ++ (a + 6);

}

Both statements within the function are erroneous, since lvalues are expected where the

additions are shown.

032 label ’%s’ already defined

All labels within a function must be unique.

Example:
void bar(int *p)

{

label:

*p = 0;

label:

return;

}

The second label is illegal.

8 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

033 label ’%s’ is not defined in function

A goto statement has referenced a label that is not defined in the function. Add the

necessary label or check the spelling of the label(s) in the function.

Example:
void bar(int *p)

{

labl:

*p = 0;

goto label;

}

The label referenced in the goto is not defined.

034 dimension cannot be zero

The dimension of an array must be non-zero.

Example:
int array[0]; // not allowed

035 dimension cannot be negative

The dimension of an array must be positive.

Example:
int array[-1]; // not allowed

036 dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only exception is the

first dimension which can declared as "[]".

Example:
int array[][]; // not allowed

037 invalid storage class for function

If a storage class is given for a function, it must be static or extern.

Example:
auto void foo()

{

}

038 expression must have pointer type

An attempt has been made to de-reference a variable or expression which is not declared to

be a pointer.

Diagnostic Messages 9

Chapter 1

Example:
int a;

int b = *a;

039 cannot take address of an rvalue

You can only take the address of a variable or memory location.

Example:
char c;

char *p1 = & & c; // not allowed

char *p2 = & (c+1); // not allowed

040 expression for ’.’ must be a class, struct or union

The compiler has encountered the pattern "expression" "." "field_name" where the

expression is not a class, struct or union type.

Example:
struct S

{

int a;

};

int &fun();

int a = fun().a;

041 expression for ’->’ must be pointer to class, struct or union

The compiler has encountered the pattern "expression" "->" "field_name" where the

expression is not a pointer to class, struct or union type.

Example:
struct S

{

int a;

};

int *fun();

int a = fun()->a;

042 symbol ’%S’ already defined

The specified symbol has already been defined.

Example:
char a = 2;

char a = 2; // not allowed

043 static function ’%S’ has not been defined

A prototype has been found for a static function, but a definition for the static function has

not been found in the file.

10 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
static int fun(void);

int k = fun();

// fun not defined by end of program

044 expecting label for goto statement

The goto statement requires the name of a label.

Example:
int fun(void)

{

goto;

}

045 duplicate case value ’%s’ found

Every case value in a switch statement must be unique.

Example:
int fun(int a)

{

switch(a) {

case 1:

return 7;

case 2:

return 9;

case 1: // duplicate not allowed

return 7;

}

return 79;

}

046 bit-field width is too large

The maximum field width allowed is 16 bits in the 16-bit compiler and 32 bits in the 32-bit

compiler.

Example:
struct S

{

unsigned bitfield :48; // too wide

};

047 width of a named bit-field must not be zero

A bit field must be at least one bit in size.

Diagnostic Messages 11

Chapter 1

Example:
struct S {

int bitfield :10;

int :0; // okay, aligns to int

int h :0; // error, field is named

};

048 bit-field width must be positive

You cannot have a negative field width.

Example:
struct S

{

unsigned bitfield :-10; // cannot be negative

};

049 bit-field base type must be an integral type

The types allowed for bit fields are signed or unsigned varieties of char, short and int.

Example:
struct S

{

float bitfield : 10; // must be integral

};

050 subscript on non-array

One of the operands of ’[]’ must be an array or a pointer.

Example:
int array[10];

int i1 = array[0]; // ok

int i2 = 0[array]; // same as above

int i3 = 0[1]; // illegal

051 incomplete comment

The compiler did not find */ to mark the end of a comment.

052 argument for # must be a macro parm

The argument for the stringize operator ’#’ must be a macro parameter.

053 unknown preprocessing directive ’#%s’

An unrecognized preprocessing directive has been encountered. Check for correct spelling.

12 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#i_goofed // not valid

054 invalid #include directive

A syntax error has been encountered in a #include directive.

Example:
#include // no header file

#include stdio.h

Both examples are illegal.

055 not enough parameters given for macro ’%s’

You have not supplied enough parameters to the specified macro.

Example:
#define mac(a,b) a+b

int i = mac(123); // needs 2 parameters

056 not expecting a return value

The specified function is declared as a void function. Delete the return value, or change

the type of the function.

Example:
void fun()

{

return 14; // not expecting return value

}

057 cannot take address of a bit-field

The smallest addressable unit is a byte. You cannot take the address of a bit field.

Example:
struct S

{ int bits :6;

int bitfield :10;

};

S var;

void* p = &var.bitfield; // illegal

058 expression must be a constant

The compiler expects a constant expression. This message can occur during static

initialization if you are trying to initialize a non-pointer type with an address expression.

Diagnostic Messages 13

Chapter 1

059 unable to open ’%s’

The file specified in an #include directive could not be located. Make sure that the file

name is spelled correctly, or that the appropriate path for the file is included in the list of

paths specified in the INCLUDE or INCLUDE environment variables or in the "i=" option

on the command line.

060 too many parameters given for macro ’%s’

You have supplied too many parameters for the specified macro. The extra parameters are

ignored.

Example:
#define mac(a,b) a+b

int i = mac(1,2,3); // needs 2 parameters

061 cannot use __based or __far16 pointers in this context

The use of __based and __far16 pointers is prohibited in throw expressions and catch

statements.

Example:
extern int __based(__segname("myseg")) *pi;

void bad()

{

try {

throw pi;

} catch(int __far16 *p16) {

*p16 = 87;

}

}

Both the throw expression and catch statements cause this error to be diagnosed.

062 only one type is allowed in declaration specifiers

Only one type is allowed for the first part of a declaration. A common cause of this

message is that there may be a missing semi-colon (’;’) after a class definition.

Example:
class C

{

public:

C();

} // needs ";"

int foo() { return 7; }

14 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

063 out of memory

The compiler has run out of memory to store information about the file being compiled.

Try reducing the number of data declarations and or the size of the file being compiled. Do

not #include header files that are not required.

064 invalid character constant

This message is issued for an improperly formed character constant.

Example:
char c = ’12345’;

char d = ’’’;

065 taking address of variable with storage class ’register’

You can take the address of a register variable in C++ (but not in ISO/ANSI C). If there is

a chance that the source will be compiled using a C compiler, change the storage class from

register to auto.

Example:
extern int foo(char*);

int bar()

{

register char c = ’c’;

return foo(&c);

}

066 ’delete’ expression size is not allowed

The C++ language has evolved to the point where the delete expression size is no longer

required for a correct deletion of an array.

Example:
void fn(unsigned n, char *p) {

delete [n] p;

}

067 ending " missing for string literal

The compiler did not find a second double quote to end the string literal.

Example:
char *a = "no_ending_quote;

068 invalid option

The specified option is not recognized by the compiler.

Diagnostic Messages 15

Chapter 1

069 invalid optimization option

The specified option is an unrecognized optimization option.

070 invalid memory model

Memory model option must be one of "ms", "mm", "mc", "ml", "mh" or "mf" which selects

the Small, Medium, Compact, Large, Huge or Flat memory model.

071 expression must be integral

An integral expression is required.

Example:
int foo(int a, float b, int *p)

{

switch(a) {

case 1.3: // must be integral

return p[b]; // index not integer

case 2:

b <<= 2; // can only shift integers

default:

return b;

}

}

072 expression must be arithmetic

Arithmetic operations, such as "/" and "*", require arithmetic operands unless the operation

has been overloaded or unless the operands can be converted to arithmetic operands.

Example:
class C

{

public:

int c;

};

C cv;

int i = cv / 2;

073 statement required after label

The C language definition requires a statement following a label. You can use a null

statement which consists of just a semicolon (";").

Example:
extern int bar(int);

void foo(int a)

{

if(a) goto ending;

bar(a);

ending:

// needs statement following

}

16 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

074 statement required after ’do’

A statement is required between the do and while keywords.

075 statement required after ’case’

The C language definition requires a statement following a case label. You can use a null

statement which consists of just a semicolon (";").

Example:
int foo(int a)

{

switch(a) {

default:

return 7;

case 1: // needs statement following

}

return 18;

}

076 statement required after ’default’

The C language definition requires a statement following a default label. You can use a

null statement which consists of just a semicolon (";").

Example:
int foo(int a)

{

switch(a) {

case 7:

return 7;

default:

// needs statement following

}

return 18;

}

077 missing matching #endif directive

You are missing a #endif to terminate a #if, #ifdef or #ifndef preprocessing directive.

Example:
#if 1

int a;

// needs #endif

078 invalid macro definition, missing ’)’

The right parenthesis ")" is required for a function-like macro definition.

Diagnostic Messages 17

Chapter 1

Example:
#define bad_mac(a, b

079 missing ’)’ for expansion of ’%s’ macro

The compiler encountered end-of-file while collecting up the argument for a function-like

macro. A right parenthesis ")" is required to mark the end of the argument(s) for a

function-like macro.

Example:
#define mac(a, b) a+b

int d = mac(1, 2

080 %s

This is a user message generated with the #error preprocessing directive.

Example:
#error my very own error message

081 cannot define an array of functions

You can have an array of pointers to functions, but not an array of functions.

Example:
typedef int TD(float);

TD array[12];

082 function cannot return an array

A function cannot return an array. You can return a pointer to an array.

Example:
typedef int ARR[10];

ARR fun(float);

083 function cannot return a function

You cannot return a function. You can return a pointer to a function.

Example:
typedef int TD();

TD fun(float);

084 function templates can only have type arguments

A function template argument can only be a generic type (e.g., template < class T >

). This is a restriction in the C++ language that allows compilers to automatically

instantiate functions purely from the argument types of calls.

18 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

085 maximum class size has been exceeded

The 16-bit compiler limits the size of a struct or union to 64K so that the compiler can

represent the offset of a member in a 16-bit register. This error also occurs if the size of a

structure overflows the size of an unsigned integer.

Example:
struct S

{

char arr1[0xfffe];

char arr2[0xfffe];

char arr3[0xfffe];

char arr4[0xfffffffe];

};

086 definition of macro ’%s’ not identical to previous definition

If a macro is defined more than once, the definitions must be identical. If you want to

redefine a macro to have a different definition, you must #undef it before you can define it

with a new definition.

Example:
#define CON 123

#define CON 124 // not same as previous

087 initialization of ’%S’ must be in file scope

A file scope variable must be initialized in file scope.

Example:
void fn()

{

extern int v = 1;

}

088 default argument for ’%S’ declared outside of class definition

Problems can occur with member functions that do not declare all of their default

arguments during the class definition. For instance, a copy constructor is declared if a class

does not define a copy constructor. If a default argument is added later on to a constructor

that makes it a copy constructor, an ambiguity results.

Example:
struct S {

S(S const &, int);

// S(S const &); <-- declared by compiler

};

// ambiguity with compiler

// generated copy constructor

// S(S const &);

S::S(S const &, int = 0)

{

}

Diagnostic Messages 19

Chapter 1

089 ## must not be at start or end of replacement tokens

There must be a token on each side of the "##" (token pasting) operator.

Example:
#define badmac(a, b) ## a ## b

090 invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

Example:
float f = 123.9E+Q;

091 ’sizeof’ is not allowed for a bit-field

The smallest object that you can ask for the size of is a char.

Example:
struct S

{ int a;

int b :10;

} v;

int k = sizeof(v.b);

092 option requires a path

The specified option is not recognized by the compiler since there was no path after it (i.e.,

"-i=d:\include;d:\path").

093 must use ’va_start’ macro inside function with variable arguments

The va_start macro is used to setup access to the parameters in a function that takes a

variable number of parameters. A function is defined with a variable number of parameters

by declaring the last parameter in the function as "...".

Example:
#include <stdarg.h>

int foo(int a, int b)

{

va_list args;

va_start(args, a);

va_end(args);

return b;

}

094 ***FATAL*** %s

A fatal error has been detected during code generation time. The type of error is displayed

in the message.

20 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

095 internal compiler error %d

A bug has been encountered in the compiler. Please report the specified internal compiler

error number and any other helpful details about the program being compiled to the Open

Watcom development team so that we can fix the problem. See

https://discord.com/channels/922934435744206908 .

096 argument number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

097 procedure ’%s’ has invalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.

098 illegal register modified by ’%s’ #pragma

For the 16-bit Open Watcom C/C++ compiler: The BP, CS, DS, and SS registers cannot

be modified in small data models. The BP, CS, and SS registers cannot be modified in

large data models.

For the 32-bit Open Watcom C/C++ compiler: The EBP, CS, DS, ES, and SS registers

cannot be modified in flat memory models. The EBP, CS, DS, and SS registers cannot be

modified in small data models. The EBP, CS, and SS registers cannot be modified in large

data models.

099 file must contain at least one external definition

Every file must contain at least one global object, (either a data variable or a function).

Note: This message has been disabled starting with Open Watcom v1.4. The ISO 1998

C++ standard allows empty translation units.

100 out of macro space

The compiler ran out of memory for storing macro definitions.

101 keyboard interrupt detected

The compilation has been aborted with Ctrl/C or Ctrl/Break.

102 duplicate macro parameter ’%s’

The parameters specified in a macro definition must be unique.

Example:
#define badmac(a, b, a) a ## b

Diagnostic Messages 21

Chapter 1

103 unable to open work file: error code = %d

The compiler tries to open a new work file by the name "__wrkN__.tmp" where N is the

digit 0 to 9. This message will be issued if all of those files already exist.

104 write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be

full.

105 read error on work file: error code = %d

An error was encountered trying to read information from the work file.

106 token too long; truncated

The token must be less than 510 bytes in length.

107 filename required on command line

The name of a file to be compiled must be specified on the command line.

108 command line contains more than one file to compile

You have more than one file name specified on the command line to be compiled. The

compiler can only compile one file at a time. You can use the Open Watcom Compile and

Link utility to compile multiple files with a single command.

109 virtual member functions are not allowed in a union

A union can only be used to overlay the storage of data. The storage of virtual function

information (in a safe manner) cannot be done if storage is overlaid.

Example:
struct S1{ int f(int); };

struct S2{ int f(int); };

union un { S1 s1;

S2 s2;

virtual int vf(int);

};

110 union cannot be used as a base class

This restriction prevents C++ programmers from viewing a union as an encapsulation unit.

If it is necessary, one can encapsulate the union into a class and achieve the same effect.

22 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
union U { int a; int b; };

class S : public U { int s; };

111 union cannot have a base class

This restriction prevents C++ programmers from viewing a union as an encapsulation unit.

If it is necessary, one can encapsulate the union into a class and inherit the base classes

normally.

Example:
class S { public: int s; };

union U : public S { int a; int b; };

112 cannot inherit an undefined base class ’%T’

The storage requirements for a class type must be known when inheritance is involved

because the layout of the final class depends on knowing the complete contents of all base

classes.

Example:
class Undefined;

class C : public Undefined {

int c;

};

113 repeated direct base class will cause ambiguities

Almost all accesses will be ambiguous. This restriction is useful in catching programming

errors. The repeated base class can be encapsulated in another class if the repetition is

required.

Example:
class Dup

{

int d;

};

class C : public Dup, public Dup

{

int c;

};

114 templates may only be declared in namespace scope

Currently, templates can only be declared in namespace scope. This simple restriction was

chosen in favour of more freedom with possibly subtle restrictions.

Diagnostic Messages 23

Chapter 1

115 linkages may only be declared in file scope

A common source of errors for C and C++ result from the use of prototypes inside of

functions. This restriction attempts to prevent such errors.

116 unknown linkage ’%s’

Only the linkages "C" and "C++" are supported by Open Watcom C++.

Example:
extern "APL" void AplFunc(int*);

117 too many storage class specifiers

This message is a result of duplicating a previous storage class or having a different storage

class. You can only have one of the following storage classes, extern, static, auto, register,

or typedef.

Example:
extern typedef int (*fn)(void);

118 nameless declaration is not allowed

A type was used in a declaration but no name was given.

Example:
static int;

119 illegal combination of type specifiers

An incorrect scalar type was found. Either a scalar keyword was repeated or the

combination is illegal.

Example:
short short x;

short long y;

120 illegal combination of type qualifiers

A repetition of a type qualifier has been detected. Some compilers may ignore repetitions

but strictly speaking it is incorrect code.

Example:
const const x;

struct S {

int virtual virtual fn();

};

24 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

121 syntax error

The C++ compiler was unable to interpret the text starting at the location of the message.

The C++ language is sufficiently complicated that it is difficult for a compiler to correct the

error itself.

122 parser stack corrupted

The C++ parser has detected an internal problem that usually indicates a compiler problem.

Please report this directly to the Open Watcom development team. See

https://discord.com/channels/922934435744206908 .

123 template declarations cannot be nested within each other

Currently, templates can only be declared in namespace scope. Furthermore, a template

declaration must be finished before another template can be declared.

124 expression is too complicated

The expression contains too many levels of nested parentheses. Divide the expression up

into two or more sub-expressions.

125 invalid redefinition of the typedef name ’%S’

Redefinition of typedef names is only allowed if you are redefining a typedef name to

itself. Any other redefinition is illegal. You should delete the duplicate typedef definition.

Example:
typedef int TD;

typedef float TD; // illegal

126 class ’%T’ has already been defined

This message usually results from the definition of two classes in the same scope. This is

illegal regardless of whether the class definitions are identical.

Example:
class C {

};

class C {

};

127 ’sizeof’ is not allowed for an undefined type

If a type has not been defined, the compiler cannot know how large it is.

Diagnostic Messages 25

Chapter 1

Example:
class C;

int x = sizeof(C);

128 initializer for variable ’%S’ cannot be bypassed

The variable may not be initialized when code is executing at the position indicated in the

message. The C++ language places these restrictions to prevent the use of uninitialized

variables.

Example:
int foo(int a)

{

switch(a) {

case 1:

int b = 2;

return b;

default: // b bypassed

return b + 5;

}

}

129 division by zero in a constant expression

Division by zero is not allowed in a constant expression. The value of the expression

cannot be used with this error.

Example:
int foo(int a)

{

switch(a) {

case 4 / 0: // illegal

return a;

}

return a + 2;

}

130 arithmetic overflow in a constant expression

The multiplication of two integral values cannot be represented. The value of the

expression cannot be used with this error.

Example:
int foo(int a)

{

switch(a) {

case 0x7FFF * 0x7FFF * 0x7FFF: // overflow

return a;

}

return a + 2;

}

26 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

131 not enough memory to fully optimize procedure ’%s’

The indicated procedure cannot be fully optimized with the amount of memory available.

The code generated will still be correct and execute properly. This message is purely

informational (i.e., buy more memory).

132 not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during

optimization. All functions will be individually optimized but the optimizer will not be

able to share code between functions if this message appears. The code generated will still

be correct and execute properly. This message is purely informational (i.e., buy more

memory).

133 too many errors: compilation aborted

The Open Watcom C++ compiler sets a limit to the number of error messages it will issue.

Once the number of messages reaches the limit the above message is issued. This limit can

be changed via the "/e" command line option.

134 too many parm sets

An extra parameter passing description has been found in the aux pragma text. Only one

parameter passing description is allowed.

135 ’friend’, ’virtual’ or ’inline’ modifiers may only be used on functions

This message indicates that you are trying to declare a strange entity like an inline variable.

These qualifiers can only be used on function declarations and definitions.

136 more than one calling convention has been specified

A function cannot have more than one #pragma modifier applied to it. Combine the

pragmas into one pragma and apply it once.

137 pure member function constant must be ’0’

The constant must be changed to ’0’ in order for the Open Watcom C++ compiler to accept

the pure virtual member function declaration.

Example:
struct S {

virtual int wrong(void) = 91;

};

138 based modifier has been repeated

A repeated based modifier has been detected. There are no semantics for combining base

modifiers so this is not allowed.

Diagnostic Messages 27

Chapter 1

Example:
char *ptr;

char __based(void) __based(ptr) *a;

139 enumeration variable is not assigned a constant from its enumeration

In C++ (as opposed to C), enums represent values of distinct types. Thus, the compiler will

not automatically convert an integer value to an enum type.

Example:
enum Days { sun, mod, tues, wed, thur, fri, sat };

enum Days day = 2;

140 bit-field declaration cannot have a storage class specifier

Bit-fields (along with most members) cannot have storage class specifiers in their

declaration. Remove the storage class specifier to correct the code.

Example:
class C

{

public:

extern unsigned bitf :10;

};

141 bit-field declaration must have a base type specified

A bit-field cannot make use of a default integer type. Specify the type int to correct the

code.

Example:
class C

{

public:

bitf :10;

};

142 illegal qualification of a bit-field declaration

A bit-field can only be declared const or volatile. Qualifications like friend are not

allowed.

Example:
struct S {

friend int bit1 :10;

inline int bit2 :10;

virtual int bit3 :10;

};

All three declarations of bit-fields are illegal.

28 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

143 duplicate base qualifier

The compiler has found a repetition of base qualifiers like protected or virtual.

Example:
struct Base { int b; };

struct Derived : public public Base { int d; };

144 only one access specifier is allowed

The compiler has found more than one access specifier for a base class. Since the compiler

cannot choose one over the other, remove the unwanted access specifier to correct the code.

Example:
struct Base { int b; };

struct Derived : public protected Base { int d; };

145 unexpected type qualifier found

Type specifiers cannot have const or volatile qualifiers. This shows up in new expressions

because one cannot allocate a const object.

146 unexpected storage class specifier found

Type specifiers cannot have auto or static storage class specifiers. This shows up in new

expressions because one cannot allocate a static object.

147 access to ’%S’ is not allowed because it is ambiguous

There are two ways that this error can show up in C++ code. The first way a member can

be ambiguous is that the same name can be used in two different classes. If these classes

are combined with multiple inheritance, accesses of the name will be ambiguous.

Example:
struct S1 { int s; };

struct S2 { int s; };

struct Der : public S1, public S2

{

void foo() { s = 2; }; // s is ambiguous

};

The second way a member can be ambiguous involves multiple inheritance. If a class is

inherited non-virtually by two different classes which then get combined with multiple

inheritance, an access of the member is faced with deciding which copy of the member is

intended. Use the ’::’ operator to clarify what member is being accessed or access the

member with a different class pointer or reference.

Diagnostic Messages 29

Chapter 1

Example:
struct Top { int t; };

struct Mid : public Top { int m; };

struct Bot : public Top, public Mid

{

void foo() { t = 2; }; // t is ambiguous

};

148 access to private member ’%S’ is not allowed

The indicated member is being accessed by an expression that does not have permission to

access private members of the class.

Example:
struct Top { int t; };

class Bot : private Top

{

int foo() { return t; }; // t is private

};

Bot b;

int k = b.foo(); // foo is private

149 access to protected member ’%S’ is not allowed

The indicated member is being accessed by an expression that does not have permission to

access protected members of the class. The compiler also requires that protected members

be accessed through a derived class to ensure that an unrelated base class cannot be quietly

modified. This is a fairly recent change to the C++ language that may cause Open Watcom

C++ to not accept older C++ code. See Section 11.5 in the ARM for a discussion of

protected access.

Example:
struct Top { int t; };

struct Mid : public Top { int m; };

class Bot : protected Mid

{

protected:

// t cannot be accessed

int foo() { return t; };

};

Bot b;

int k = b.foo(); // foo is protected

150 operation does not allow both operands to be pointers

There may be a missing indirection in the code exhibiting this error. An example of this

error is adding two pointers.

30 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn()

{

char *p, *q;

p += q;

}

151 operand is neither a pointer nor an arithmetic type

An example of this error is incrementing a class that does not have any overloaded

operators.

Example:
struct S { } x;

void fn()

{

++x;

}

152 left operand is neither a pointer nor an arithmetic type

An example of this error is trying to add 1 to a class that does not have any overloaded

operators.

Example:
struct S { } x;

void fn()

{

x = x + 1;

}

153 right operand is neither a pointer nor an arithmetic type

An example of this error is trying to add 1 to a class that does not have any overloaded

operators.

Example:
struct S { } x;

void fn()

{

x = 1 + x;

}

154 cannot subtract a pointer from an arithmetic operand

The subtract operands are probably in the wrong order.

Diagnostic Messages 31

Chapter 1

Example:
int fn(char *p)

{

return(10 - p);

}

155 left expression must be arithmetic

Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;

void fn()

{

x = x * 1;

}

156 right expression must be arithmetic

Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;

void fn()

{

x = 1 * x;

}

157 left expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral

types.

Example:
struct S { } x;

void fn()

{

x = x ^ 1;

}

158 right expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral

types.

Example:
struct S { } x;

void fn()

{

x = 1 ^ x;

}

32 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

159 cannot assign a pointer value to an arithmetic item

The pointer value must be cast to the desired type before the assignment takes place.

Example:
void fn(char *p)

{

int a;

a = p;

}

160 attempt to destroy a far object when the data model is near

Destructors cannot be applied to objects which are stored in far memory when the default

memory model for data is near.

Example:
struct Obj

{ char *p;

~Obj();

};

Obj far obj;

The last line causes this error to be displayed when the memory model is small (switch

-ms), since the memory model for data is near.

161 attempt to call member function for far object when the data model is near

Member functions cannot be called for objects which are stored in far memory when the

default memory model for data is near.

Example:
struct Obj

{ char *p;

int foo();

};

Obj far obj;

int integer = obj.foo();

The last line causes this error to be displayed when the memory model is small (switch

-ms), since the memory model for data is near.

162 template type argument cannot have a default argument

This message was produced by earlier versions of the Open Watcom C++ compiler.

Support for default template arguments was added in version 1.3 and this message was

removed at that time.

Diagnostic Messages 33

Chapter 1

163 attempt to delete a far object when the data model is near

delete cannot be used to deallocate objects which are stored in far memory when the default

memory model for data is near.

Example:
struct Obj

{ char *p;

};

void foo(Obj far *p)

{

delete p;

}

The second last line causes this error to be displayed when the memory model is small

(switch -ms), since the memory model for data is near.

164 first operand is not a class, struct or union

The offsetof operation can only be performed on a type that can have members. It is

meaningless for any other type.

Example:
#include <stddef.h>

int fn(void)

{

return offsetof(double, sign);

}

165 syntax error: class template cannot be processed

The class template contains unbalanced braces. The class definition cannot be processed in

this form.

166 cannot convert right pointer to type of left operand

The C++ language will not allow the implicit conversion of unrelated class pointers. An

explicit cast is required.

Example:
class C1;

class C2;

void fun(C1* pc1, C2* pc2)

{

pc2 = pc1;

}

34 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

167 left operand must be an lvalue

The left operand must be an expression that is valid on the left side of an assignment.

Examples of incorrect lvalues include constants and the results of most operators.

Example:
int i, j;

void fn()

{

(i - 1) = j;

1 = j;

}

168 static data members are not allowed in an union

A union should only be used to organize memory in C++. Enclose the union in a class if

you need a static data member associated with the union.

Example:
union U

{

static int a;

int b;

int c;

};

169 invalid storage class for a member

A class member cannot be declared with auto, register, or extern storage class.

Example:
class C

{

auto int a; // cannot specify auto

};

170 declaration is too complicated

The declaration contains too many declarators (i.e., pointer, array, and function types).

Break up the declaration into a series of typedefs ending in a final declaration.

Example:
int ************p;

Example:
// transform this to ...

typedef int ****PD1;

typedef PD1 ****PD2;

PD2 ****p;

Diagnostic Messages 35

Chapter 1

171 exception declaration is too complicated

The exception declaration contains too many declarators (i.e., pointer, array, and function

types). Break up the declaration into a series of typedefs ending in a final declaration.

172 floating-point constant too large to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the

magnitude of the positive exponent is too large.

Example:
float f = 1.2e78965;

173 floating-point constant too small to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the

magnitude of the negative exponent is too large.

Example:
float f = 1.2e-78965;

174 class template ’%M’ cannot be overloaded

A class template name must be unique across the entire C++ program. Furthermore, a class

template cannot coexist with another class template of the same name.

175 range of enum constants cannot be represented

If one integral type cannot be chosen to represent all values of an enumeration, the values

cannot be used reliably in the generated code. Shrink the range of enumerator values used

in the enum declaration.

Example:
enum E

{ e1 = 0xFFFFFFFF

, e2 = -1

};

176 ’%S’ cannot be in the same scope as a class template

A class template name must be unique across the entire C++ program. Any other use of a

name cannot be in the same scope as the class template.

177 invalid storage class in file scope

A declaration in file scope cannot have a storage class of auto or register.

36 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
auto int a;

178 const object must be initialized

Constant objects cannot be modified so they must be initialized before use.

Example:
const int a;

179 declaration cannot be in the same scope as class template ’%S’

A class template name must be unique across the entire C++ program. Any other use of a

name cannot be in the same scope as the class template.

180 template arguments must be named

A member function of a template class cannot be defined outside the class declaration

unless all template arguments have been named.

181 class template ’%M’ is already defined

A class template cannot have its definition repeated regardless of whether it is identical to

the previous definition.

182 invalid storage class for an argument

An argument declaration cannot have a storage class of extern, static, or typedef.

Example:
int foo(extern int a)

{

return a;

}

183 unions cannot have members with constructors

A union should only be used to organize memory in C++. Allowing union members to

have constructors would mean that the same piece of memory could be constructed twice.

Example:
class C

{

C();

};

union U

{

int a;

C c; // has constructor

};

Diagnostic Messages 37

Chapter 1

184 statement is too complicated

The statement contains too many nested constructs. Break up the statement into multiple

statements.

185 ’%s’ is not the name of a class or namespace

The right hand operand of a ’::’ operator turned out not to reference a class type or

namespace. Because the name is followed by another ’::’, it must name a class or

namespace.

186 attempt to modify a constant value

Modification of a constant value is not allowed. If you must force this to work, take the

address and cast away the constant nature of the type.

Example:
static int const con = 12;

void foo()

{

con = 13; // error

(int)&con = 13; // ok

}

187 ’offsetof’ is not allowed for a bit-field

A bit-field cannot have a simple offset so it cannot be referenced in an offsetof expression.

Example:
#include <stddef.h>

struct S

{

unsigned b1 :10;

unsigned b2 :15;

unsigned b3 :11;

};

int k = offsetof(S, b2);

188 base class is inherited with private access

This warning indicates that the base class was originally declared as a class as opposed to a

struct. Furthermore, no access was specified so the base class defaults to private

inheritance. Add the private or public access specifier to prevent this message depending

on the intended access.

189 overloaded function cannot be selected for arguments used in call

Either conversions were not possible for an argument to the function or a function with the

right number of arguments was not available.

38 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C1;

class C2;

int foo(C1*);

int foo(C2*);

int k = foo(5);

190 base operator operands must be " __segment :> pointer "

The base operator (:>) requires the left operand to be of type __segment and the right

operand to be a pointer.

Example:
char _based(void) *pcb;

char __far *pcf = pcb; // needs :> operator

Examples of typical uses are as follows:

Example:
const __segment mySegAbs = 0x4000;

char __based(void) *c_bv = 24;

char __far *c_fp_1 = mySegAbs :> c_bv;

char __far *c_fp_2 = __segname("_DATA") :> c_bv;

191 expression must be a pointer or a zero constant

In a conditional expression, if one side of the ’:’ is a pointer then the other side must also be

a pointer or a zero constant.

Example:
extern int a;

int *p = (a > 7) ? &a : 12;

192 left expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,

arrays of unknown size, or void cannot be incremented because there is no size defined for

functions, arrays of unknown size, or void.

Example:
void *p;

void *q = p + 2;

193 right expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,

arrays of unknown size, or void cannot be incremented because there is no size defined for

functions, arrays of unknown size, or void.

Diagnostic Messages 39

Chapter 1

Example:
void *p;

void *q = 2 + p;

194 expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,

arrays of unknown size, or void cannot be incremented because there is no size defined for

functions, arrays of unknown size, or void.

Example:
void *p;

void *q = ++p;

195 ’sizeof’ is not allowed for a function

A function has no size defined for it by the C++ language specification.

Example:
typedef int FT(int);

unsigned y = sizeof(FT);

196 ’sizeof’ is not allowed for type void

The type void has no size defined for it by the C++ language specification.

Example:
void *p;

unsigned size = sizeof(*p);

197 type cannot be defined in this context

A type cannot be defined in certain contexts. For example, a new type cannot be defined in

an argument list, a new expression, a conversion function identifier, or a catch handler.

Example:
extern int goop();

int foo()

{

try {

return goop();

} catch(struct S { int s; }) {

return 2;

}

}

40 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

198 expression cannot be used as a class template parameter

The compiler has to be able to compare expressions during compilation so this limits the

complexity of expressions that can be used for template parameters. The only types of

expressions that can be used for template parameters are constant integral expressions and

addresses. Any symbols must have external linkage or must be static class members.

199 premature end-of-file encountered during compilation

The compiler expects more source code at this point. This can be due to missing

parentheses (’)’) or missing closing braces (’}’).

200 duplicate case value ’%s’ after conversion to type of switch expression

A duplicate case value has been found. Keep in mind that all case values must be

converted to the type of the switch expression. Constants that may be different initially

may convert to the same value.

Example:
enum E { e1, e2 };

void foo(short a)

{

switch(a) {

case 1:

case 0x10001: // converts to 1 as short

break;

}

}

201 declaration statement follows an if statement

There are implicit scopes created for most control structures. Because of this, no code can

access any of the names declared in the declaration. Although the code is legal it may not

be what the programmer intended.

Example:
void foo(int a)

{

if(a)

int b = 14;

}

202 declaration statement follows an else statement

There are implicit scopes created for most control structures. Because of this, no code can

access any of the names declared in the declaration. Although the code is legal it may not

be what the programmer intended.

Diagnostic Messages 41

Chapter 1

Example:
void foo(int a)

{

if(a)

int c = 15;

else

int b = 14;

}

203 declaration statement follows a switch statement

There are implicit scopes created for most control structures. Because of this, no code can

access any of the names declared in the declaration. Although the code is legal it may not

be what the programmer intended.

Example:
void foo(int a)

{

switch(a)

int b = 14;

}

204 ’this’ pointer is not defined

The this value can only be used from within non-static member functions.

Example:
void *fn()

{

return this;

}

205 declaration statement cannot follow a while statement

There are implicit scopes created for most control structures. Because of this, no code can

access any of the names declared in the declaration. Although the code is legal it may not

be what the programmer intended.

Example:
void foo(int a)

{

while(a)

int b = 14;

}

206 declaration statement cannot follow a do statement

There are implicit scopes created for most control structures. Because of this, no code can

access any of the names declared in the declaration. Although the code is legal it may not

be what the programmer intended.

42 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void foo(int a)

{

do

int b = 14;

while(a);

}

207 declaration statement cannot follow a for statement

There are implicit scopes created for most control structures. Because of this, no code can

access any of the names declared in the declaration. Although the code is legal it may not

be what the programmer intended. A for loop with an initial declaration is allowed to be

used within another for loop, so this code is legal C++:

Example:
void fn(int **a)

{

for(int i = 0; i < 10; ++i)

for(int j = 0; j < 10; ++j)

a[i][j] = i + j;

}

The following example, however, illustrates a potentially erroneous situation.

Example:
void foo(int a)

{

for(; a<10;)

int b = 14;

}

208 pointer to virtual base class converted to pointer to derived class

Since the relative position of a virtual base can change through repeated derivations, this

conversion is very dangerous. All C++ translators must report an error for this type of

conversion.

Example:
struct VBase { int v; };

struct Der : virtual public VBase { int d; };

extern VBase *pv;

Der *pd = (Der *)pv;

209 cannot use far pointer in this context

Only near pointers can be thrown when the data memory model is near.

Diagnostic Messages 43

Chapter 1

Example:
extern int __far *p;

void foo()

{

throw p;

}

When the small memory model (-ms switch) is selected, the throw expression is diagnosed

as erroneous. Similarly, only near pointers can be specified in catch statements when the

data memory model is near.

210 returning reference to function argument or to auto or register variable

The storage for the automatic variable will be destroyed immediately upon function return.

Returning a reference effectively allows the caller to modify storage which does not exist.

Example:
class C

{

char *p;

public:

C();

~C();

};

C& foo()

{

C auto_var;

return auto_var; // not allowed

}

211 #pragma attributes for ’%S’ may be inconsistent

A pragma attribute was changed to a value which matches neither the current default not

the previous value for that attribute. A warning is issued since this usually indicates an

attribute is being set twice (or more) in an inconsistent way. The warning can also occur

when the default attribute is changed between two pragmas for the same object.

212 function arguments cannot be of type void

Having more than one void argument is not allowed. The special case of one void

argument indicates that the function accepts no parameters.

Example:
void fn1(void) // OK

{

}

void fn2(void, void, void) // Error!

{

}

44 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

213 class template ’%M’ requires more parameters for instantiation

The class template instantiation has too few parameters supplied so the class cannot be

instantiated properly.

214 class template ’%M’ requires fewer parameters for instantiation

The class template instantiation has too many parameters supplied so the class cannot be

instantiated properly.

215 no declared ’operator new’ has arguments that match

An operator new could not be found to match the new expression. Supply the correct

arguments for special operator new functions that are defined with the placement syntax.

Example:
#include <stddef.h>

struct S {

void *operator new(size_t, char);

};

void fn()

{

S *p = new (’a’) S;

}

216 wide character string concatenated with a simple character string

There are no semantics defined for combining a wide character string with a simple

character string. To correct the problem, make the simple character string a wide character

string by prefixing it with a L.

Example:
char *p = "1234" L"5678";

217 ’offsetof’ is not allowed for a static member

A static member does not have an offset like simple data members. If this is required, use

the address of the static member.

Example:
#include <stddef.h>

class C

{

public:

static int stat;

int memb;

};

int size_1 = offsetof(C, stat); // not allowed

int size_2 = offsetof(C, memb); // ok

Diagnostic Messages 45

Chapter 1

218 cannot define an array of void

Since the void type has no size and there are no values of void type, one cannot declare an

array of void.

Example:
void array[24];

219 cannot define an array of references

References are not objects, they are simply a way of creating an efficient alias to another

name. Creating an array of references is currently not allowed in the C++ language.

Example:
int& array[24];

220 cannot define a reference to void

One cannot create a reference to a void because there can be no void variables to supply for

initializing the reference.

Example:
void& ref;

221 cannot define a reference to another reference

References are not objects, they are simply a way of creating an efficient alias to another

name. Creating a reference to another reference is currently not allowed in the C++

language.

Example:
int & & ref;

222 cannot define a pointer to a reference

References are not objects, they are simply a way of creating an efficient alias to another

name. Creating a pointer to a reference is currently not allowed in the C++ language.

Example:
char& *ptr;

223 cannot initialize array with ’operator new’

The initialization of arrays created with operator new can only be done with default

constructors. The capability of using another constructor with arguments is currently not

allowed in the C++ language.

46 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S

{

S(int);

};

S *p = new S[10] (12);

224 ’%N’ is a variable of type void

A variable cannot be of type void. The void type can only be used in restricted

circumstances because it has no size. For instance, a function returning void means that it

does not return any value. A pointer to void is used as a generic pointer but it cannot be

dereferenced.

225 cannot define a member pointer to a reference

References are not objects, they are simply a way of creating an efficient alias to another

name. Creating a member pointer to a reference is currently not allowed in the C++

language.

Example:
struct S

{

S();

int &ref;

};

int& S::* p;

226 function ’%S’ is not distinct

The function being declared is not distinct enough from the other functions of the same

name. This means that all function overloads involving the function’s argument types will

be ambiguous.

Example:
struct S {

int s;

};

extern int foo(S*);

extern int foo(S* const); // not distinct enough

227 overloaded function is ambiguous for arguments used in call

The compiler could not find an unambiguous choice for the function being called.

Example:
extern int foo(char);

extern int foo(short);

int k = foo(4);

Diagnostic Messages 47

Chapter 1

228 declared ’operator new’ is ambiguous for arguments used

The compiler could not find an unambiguous choice for operator new.

Example:
#include <stdlib.h>

struct Der

{

int s[2];

void* operator new(size_t, char);

void* operator new(size_t, short);

};

Der *p = new(10) Der;

229 function ’%S’ has already been defined

The function being defined has already been defined elsewhere. Even if the two function

bodies are identical, there must be only one definition for a particular function.

Example:
int foo(int s) { return s; }

int foo(int s) { return s; } // illegal

230 expression on left is an array

The array expression is being used in a context where only pointers are allowed.

Example:
void fn(void *p)

{

int a[10];

a = 0;

a = p;

a++;

}

231 user-defined conversion has a return type

A user-defined conversion cannot be declared with a return type. The "return type" of the

user-defined conversion is implicit in the name of the user-defined conversion.

Example:
struct S {

int operator int(); // cannot have return type

};

232 user-defined conversion must be a function

The operator name describing a user-defined conversion can only be used to designate

functions.

48 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
// operator char can only be a function

int operator char = 9;

233 user-defined conversion has an argument list

A user-defined conversion cannot have an argument list. Since user-defined conversions

can only be non-static member functions, they have an implicit this argument.

Example:
struct S {

operator int(S&); // cannot have arguments

};

234 destructor cannot have a return type

A destructor cannot have a return type (even void). The destructor is a special member

function that is not required to be identical in form to all other member functions. This

allows different implementations to have different uses for any return values.

Example:
struct S {

void* ~S();

};

235 destructor must be a function

The tilde (’~’) style of name is reserved for declaring destructor functions. Variable names

cannot make use of the destructor style of names.

Example:
struct S {

int ~S; // illegal

};

236 destructor has an argument list

A destructor cannot have an argument list. Since destructors can only be non-static

member functions, they have an implicit this argument.

Example:
struct S {

~S(S&);

};

237 ’%N’ must be a function

The operator style of name is reserved for declaring operator functions. Variable names

cannot make use of the operator style of names.

Diagnostic Messages 49

Chapter 1

Example:
struct S {

int operator+; // illegal

};

238 ’%N’ is not a function

The compiler has detected what looks like a function body. The message is a result of not

finding a function being declared. This can happen in many ways, such as dropping the ’:’

before defining base classes, or dropping the ’=’ before initializing a structure via a braced

initializer.

Example:
struct D B { int i; };

239 nested type class ’%s’ has not been declared

A nested class has not been found but is required by the use of repeated ’::’ operators. The

construct "A::B::C" requires that ’A’ be a class type, and ’B’ be a nested class within the

scope of ’A’.

Example:
struct B {

static int b;

};

struct A : public B {

};

int A::B::b = 2; // B not nested in A

The preceding example is illegal; the following is legal

Example:
struct A {

struct B {

static int b;

};

};

int A::B::b = 2; // B nested in A

240 enum ’%s’ has not been declared

An elaborated reference to an enum could not be satisfied. All enclosing scopes have been

searched for an enum name. Visible variable declarations do not affect the search.

Example:
struct D {

int i;

enum E { e1, e2, e3 };

};

enum E enum_var; // E not visible

50 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

241 class or namespace ’%s’ has not been declared

The construct "A::B::C" requires that ’A’ be a class type or a namespace, and ’B’ be a

nested class or namespace within the scope of ’A’. The reference to ’A’ could not be

satisfied. All enclosing scopes have been searched for a class or namespace name. Visible

variable declarations do not affect the search.

Example:
struct A{ int a; };

int b;

int c = B::A::b;

242 only one initializer argument allowed

The comma (’,’) in a function like cast is treated like an argument list comma (’,’). If a

comma expression is desired, use parentheses to enclose the comma expression.

Example:
void fn()

{

int a;

a = int(1, 2); // Error!

a = int((1, 2)); // OK

}

243 default arguments are not part of a function’s type

This message indicates that a declaration has been found that requires default arguments to

be part of a function’s type. Either declaring a function typedef or a pointer to a function

with default arguments are examples of incorrect declarations.

Example:
typedef int TD(int, int a = 14);

int (*p)(int, int a = 14) = 0;

244 missing default arguments

Gaps in a succession of default arguments are not allowed in the C++ language.

Example:
void fn(int = 1, int, int = 3);

245 overloaded operator cannot have default arguments

Preventing overloaded operators from having default arguments enforces the property that

binary operators will only be called from a use of a binary operator. Allowing default

arguments would allow a binary operator + to function as a unary operator +.

Diagnostic Messages 51

Chapter 1

Example:
class C

{

public:

C operator +(int a = 10);

};

246 left expression is not a pointer to a constant object

One cannot assign a pointer to a constant type to a pointer to a non-constant type. This

would allow a constant object to be modified via the non-constant pointer. Use a cast if

this is absolutely necessary.

Example:
char* fun(const char* p)

{

char* q;

q = p;

return q;

}

247 cannot redefine default argument for ’%S’

Default arguments can only be defined once in a program regardless of whether the value

of the default argument is identical.

Example:
static int foo(int a = 10);

static int foo(int a = 10)

{

return a+a;

}

248 using default arguments would be overload ambiguous with ’%S’

The declaration declares enough default arguments that the function is indistinguishable

from another function of the same name.

Example:
void fn(int);

void fn(int, int = 1);

Calling the function ’fn’ with one argument is ambiguous because it could match either the

first ’fn’ without any default arguments or the second ’fn’ with a default argument applied.

249 using default arguments would be overload ambiguous with ’%S’ using default arguments

The declaration declares enough default arguments that the function is indistinguishable

from another function of the same name with default arguments.

52 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn(int, int = 1);

void fn(int, char = ’a’);

Calling the function ’fn’ with one argument is ambiguous because it could match either the

first ’fn’ with a default argument or the second ’fn’ with a default argument applied.

250 missing default argument for ’%S’

In C++, one is allowed to add default arguments to the right hand arguments of a function

declaration in successive declarations. The message indicates that the declaration is only

valid if there was a default argument previously declared for the next argument.

Example:
void fn1(int , int);

void fn1(int , int = 3);

void fn1(int = 2, int); // OK

void fn2(int , int);

void fn2(int = 2, int); // Error!

251 enum references must have an identifier

There is no way to reference an anonymous enum. If all enums are named, the cause of

this message is most likely a missing identifier.

Example:
enum { X, Y, Z }; // anonymous enum

void fn()

{

enum *p;

}

252 class declaration has not been seen for ’~%s’

A destructor has been used in a context where its class is not visible.

Example:
class C;

void fun(C* p)

{

p->~S();

}

253 ’::’ qualifier cannot be used in this context

Qualified identifiers in a class context are allowed for declaring friend member functions.

The Open Watcom C++ compiler also allows code that is qualified with its own class so

that declarations can be moved in and out of class definitions easily.

Diagnostic Messages 53

Chapter 1

Example:
struct N {

void bar();

};

struct S {

void S::foo() { // OK

}

void N::bar() { // error

}

};

254 ’%S’ has not been declared as a member

In a definition of a class member, the indicated declaration must already have been declared

when the class was defined.

Example:
class C

{

public:

int c;

int goop();

};

int C::x = 1;

C::not_decled() { }

255 default argument expression cannot use function argument ’%S’

Default arguments must be evaluated at each call. Since the order of evaluation for

arguments is undefined, a compiler must diagnose all default arguments that depend on

other arguments.

Example:
void goop(int d)

{

struct S {

// cannot access "d"

int foo(int c, int b = d)

{

return b + c;

};

};

}

256 default argument expression cannot use local variable ’%S’

Default arguments must be evaluated at each call. Since a local variable is not always

available in all contexts (e.g., file scope initializers), a compiler must diagnose all default

arguments that depend on local variables.

54 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void goop(void)

{

int a;

struct S {

// cannot access "a"

int foo(int c, int b = a)

{

return b + c;

};

};

}

257 access declarations may only be ’public’ or ’protected’

Access declarations are used to increase access. A private access declaration is useless

because there is no access level for which private is an increase in access.

Example:
class Base

{

int pri;

protected:

int pro;

public:

int pub;

};

class Derived : public Base

{

private: Base::pri;

};

258 cannot declare both a function and variable of the same name (’%N’)

Functions can be overloaded in C++ but they cannot be overloaded in the presence of a

variable of the same name. Likewise, one cannot declare a variable in the same scope as a

set of overloaded functions of the same name.

Example:
int foo();

int foo;

struct S {

int bad();

int bad;

};

259 class in access declaration (’%T’) must be a direct base class

Access declarations can only be applied to direct (immediate) base classes.

Diagnostic Messages 55

Chapter 1

Example:
struct B {

int f;

};

struct C : B {

int g;

};

struct D : private C {

B::f;

};

In the above example, "C" is a direct base class of "D" and "B" is a direct base class of "C",

but "B" is not a direct base class of "D".

260 overloaded functions (’%N’) do not have the same access

If an access declaration is referencing a set of overloaded functions, then they all must have

the same access. This is due to the lack of a type in an access declaration.

Example:
class C

{

static int foo(int); // private

public:

static int foo(float); // public

};

class B : private C

{

public: C::foo;

};

261 cannot grant access to ’%N’

A derived class cannot change the access of a base class member with an access

declaration. The access declaration can only be used to restore access changed by

inheritance.

Example:
class Base

{

public:

int pub;

protected:

int pro;

};

class Der : private Base

{

public: Base::pub; // ok

public: Base::pro; // changes access

};

56 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

262 cannot reduce access to ’%N’

A derived class cannot change the access of a base class member with an access

declaration. The access declaration can only be used to restore access changed by

inheritance.

Example:
class Base

{

public:

int pub;

protected:

int pro;

};

class Der : public Base

{

protected: Base::pub; // changes access

protected: Base::pro; // ok

};

263 nested class ’%N’ has not been defined

The current state of the C++ language supports nested types. Unfortunately, this means

that some working C code will not work unchanged.

Example:
struct S {

struct T;

T *link;

};

In the above example, the class "T" will be reported as not being defined by the end of the

class declaration. The code can be corrected in the following manner.

Example:
struct S {

struct T;

T *link;

struct T {

};

};

264 user-defined conversion must be a non-static member function

A user-defined conversion is a special member function that allows the class to be

converted implicitly (or explicitly) to an arbitrary type. In order to do this, it must have

access to an instance of the class so it is restricted to being a non-static member function.

Diagnostic Messages 57

Chapter 1

Example:
struct S

{

static operator int();

};

265 destructor must be a non-static member function

A destructor is a special member function that will perform cleanup on a class before the

storage for the class will be released. In order to do this, it must have access to an instance

of the class so it is restricted to being a non-static member function.

Example:
struct S

{

static ~S();

};

266 ’%N’ must be a non-static member function

The operator function in the message is restricted to being a non-static member function.

This usually means that the operator function is treated in a special manner by the compiler.

Example:
class C

{

public:

static operator =(C&, int);

};

267 ’%N’ must have one argument

The operator function in the message is only allowed to have one argument. An operator

like operator ~ is one such example because it represents a unary operator.

Example:
class C

{

public: int c;

};

C& operator~(const C&, int);

268 ’%N’ must have two arguments

The operator function in the message must have two arguments. An operator like operator

+= is one such example because it represents a binary operator.

58 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C

{

public: int c;

};

C& operator += (const C&);

269 ’%N’ must have either one argument or two arguments

The operator function in the message must have either one argument or two arguments. An

operator like operator + is one such example because it represents either a unary or a

binary operator.

Example:
class C

{

public: int c;

};

C& operator+(const C&, int, float);

270 ’%N’ must have at least one argument

The operator new and operator new [] member functions must have at least one argument

for the size of the allocation. After that, any arguments are up to the programmer. The

extra arguments can be supplied in a new expression via the placement syntax.

Example:
#include <stddef.h>

struct S {

void * operator new(size_t, char);

};

void fn()

{

S *p = new (’a’) S;

}

271 ’%N’ must have a return type of void

The C++ language requires that operator delete and operator delete [] have a return type of

void.

Example:
class C

{

public:

int c;

C* operator delete(void*);

C* operator delete [](void*);

};

Diagnostic Messages 59

Chapter 1

272 ’%N’ must have a return type of pointer to void

The C++ language requires that both operator new and operator new [] have a return type

of void *.

Example:
#include <stddef.h>

class C

{

public:

int c;

C* operator new(size_t size);

C* operator new [](size_t size);

};

273 the first argument of ’%N’ must be of type size_t

The C++ language requires that the first argument for operator new and operator new [] be

of the type "size_t". The definition for "size_t" can be included by using the standard

header file <stddef.h>.

Example:
void *operator new(int size);

void *operator new(double size, char c);

void *operator new [](int size);

void *operator new [](double size, char c);

274 the first argument of ’%N’ must be of type pointer to void

The C++ language requires that the first argument for operator delete and operator delete

[] be a void *.

Example:
class C;

void operator delete(C*);

void operator delete [](C*);

275 the second argument of ’%N’ must be of type size_t

The C++ language requires that the second argument for operator delete and operator

delete [] be of type "size_t". The two argument form of operator delete and operator delete

[] is optional and it can only be present inside of a class declaration. The definition for

"size_t" can be included by using the standard header file <stddef.h>.

Example:
struct S {

void operator delete(void *, char);

void operator delete [](void *, char);

};

60 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

276 the second argument of ’operator ++’ or ’operator --’ must be int

The C++ language requires that the second argument for operator ++ be int. The two

argument form of operator ++ is used to overload the postfix operator "++". The postfix

operator "--" can be overloaded similarly.

Example:
class C {

public:

long cv;

};

C& operator ++(C&, unsigned);

277 return type of ’%S’ must allow the ’->’ operator to be applied

This restriction is a result of the transformation that the compiler performs when the

operator -> is overloaded. The transformation involves transforming the expression to

invoke the operator with "->" applied to the result of operator ->.

Example:
struct S {

int a;

S *operator ->();

};

void fn(S &q)

{

q->a = 1; // becomes (q.operator ->())->a = 1;

}

278 ’%N’ must take at least one argument of a class/enum or a reference to a class/enum

Overloaded operators can only be defined for classes and enumerations. At least one

argument, must be a class or an enum type in order for the C++ compiler to distinguish the

operator from the built-in operators.

Example:
class C {

public:

long cv;

};

C& operator ++(unsigned, int);

279 too many initializers

The compiler has detected extra initializers.

Example:
int a[3] = { 1, 2, 3, 4 };

Diagnostic Messages 61

Chapter 1

280 too many initializers for character string

A string literal used in an initialization of a character array is viewed as providing the

terminating null character. If the number of array elements isn’t enough to accept the

terminating character, this message is output.

Example:
char ac[3] = "abc";

281 expecting ’%s’ but found expression

This message is output when some bracing or punctuation is expected but an expression

was encountered.

Example:
int b[3] = 3;

282 anonymous struct/union member ’%N’ cannot be declared in this class

An anonymous member cannot be declared with the same name as its containing class.

Example:
struct S {

union {

int S; // Error!

char b;

};

};

283 unexpected ’%s’ during initialization

This message is output when some unexpected bracing or punctuation is encountered

during initialization.

Example:
int e = { { 1 };

284 nested type ’%N’ cannot be declared in this class

A nested type cannot be declared with the same name as its containing class.

Example:
struct S {

typedef int S; // Error!

};

285 enumerator ’%N’ cannot be declared in this class

An enumerator cannot be declared with the same name as its containing class.

62 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

enum E {

S, // Error!

T

};

};

286 static member ’%N’ cannot be declared in this class

A static member cannot be declared with the same name as its containing class.

Example:
struct S {

static int S; // Error!

};

287 constructor cannot have a return type

A constructor cannot have a return type (even void). The constructor is a special member

function that is not required to be identical in form to all other member functions. This

allows different implementations to have different uses for any return values.

Example:
class C {

public:

C& C(int);

};

288 constructor cannot be a static member

A constructor is a special member function that takes raw storage and changes it into an

instance of a class. In order to do this, it must have access to storage for the instance of the

class so it is restricted to being a non-static member function.

Example:
class C {

public:

static C(int);

};

289 invalid copy constructor argument list (causes infinite recursion)

A copy constructor’s first argument must be a reference argument. Furthermore, any

default arguments must also be reference arguments. Without the reference, a copy

constructor would require a copy constructor to execute in order to prepare its arguments.

Unfortunately, this would be calling itself since it is the copy constructor.

Diagnostic Messages 63

Chapter 1

Example:
struct S {

S(S const &); // copy constructor

};

290 constructor cannot be declared const or volatile

A constructor must be able to operate on all instances of classes regardless of whether they

are const or volatile.

Example:
class C {

public:

C(int) const;

C(float) volatile;

};

291 constructor cannot be virtual

Virtual functions cannot be called for an object before it is constructed. For this reason, a

virtual constructor is not allowed in the C++ language. Techniques for simulating a virtual

constructor are known, one such technique is described in the ARM p.263.

Example:
class C {

public:

virtual C(int);

};

292 types do not match in simple type destructor

A simple type destructor is available for "destructing" simple types. The destructor has no

effect. Both of the types must be identical, for the destructor to have meaning.

Example:
void foo(int *p)

{

p->int::~double();

}

293 overloaded operator is ambiguous for operands used

The Open Watcom C++ compiler performs exhaustive analysis using formalized

techniques in order to decide what implicit conversions should be applied for overloading

operators. Because of this, Open Watcom C++ detects ambiguities that may escape other

C++ compilers. The most common ambiguity that Open Watcom C++ detects involves

classes having constructors with single arguments and a user-defined conversion.

64 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

S(int);

operator int();

int a;

};

int fn(int b, int i, S s)

{

// i : s.operator int()

// OR S(i) : s

return b ? i : s;

}

In the above example, "i" and "s" must be brought to a common type. Unfortunately, there

are two common types so the compiler cannot decide which one it should choose, hence an

ambiguity.

294 feature not implemented

The compiler does not support the indicated feature.

295 invalid friend declaration

This message indicates that the compiler found extra declaration specifiers like auto, float,

or const in the friend declaration.

Example:
class C

{

friend float;

};

296 friend declarations may only be declared in a class

This message indicates that a friend declaration was found outside a class scope (i.e., a

class definition). Friends are only meaningful for class types.

Example:
extern void foo();

friend void foo();

297 class friend declaration needs ’class’ or ’struct’ keyword

The C++ language has evolved to require that all friend class declarations be of the form

"class S" or "struct S". The Open Watcom C++ compiler accepts the older syntax with a

warning but rejects the syntax in pure ISO/ANSI C++ mode.

Diagnostic Messages 65

Chapter 1

Example:
struct S;

struct T {

friend S; // should be "friend class S;"

};

298 class friend declarations cannot contain a class definition

A class friend declaration cannot define a new class. This is a restriction required in the

C++ language.

Example:
struct S {

friend struct X {

int f;

};

};

299 ’%T’ has already been declared as a friend

The class in the message has already been declared as a friend. Remove the extra friend

declaration.

Example:
class S;

class T {

friend class S;

int tv;

friend class S;

};

300 function ’%S’ has already been declared as a friend

The function in the message has already been declared as a friend. Remove the extra friend

declaration.

Example:
extern void foo();

class T {

friend void foo();

int tv;

friend void foo();

};

301 ’friend’, ’virtual’ or ’inline’ modifiers are not part of a function’s type

This message indicates that the modifiers may be incorrectly placed in the declaration. If

the declaration is intended, it cannot be accepted because the modifiers can only be applied

to functions that have code associated with them.

66 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
typedef friend (*PF)(void);

302 cannot assign right expression to element on left

This message indicates that the assignment cannot be performed. It usually arises in

assignments of a class type to an arithmetic type.

Example:
struct S

{ int sv;

};

S s;

int foo()

{

int k;

k = s;

return k;

}

303 constructor is ambiguous for operands used

The operands provided for the constructor did not select a unique constructor.

Example:
struct S {

S(int);

S(char);

};

S x = S(1.0);

304 class ’%s’ has not been defined

The name before a ’::’ scope resolution operator must be defined unless a member pointer

is being declared.

Example:
struct S;

int S::* p; // OK

int S::a = 1; // Error!

305 all bit-fields in a union must be named

This is a restriction in the C++ language. The same effect can be achieved with a named

bitfield.

Diagnostic Messages 67

Chapter 1

Example:
union u

{ unsigned bit1 :10;

unsigned :6;

};

306 cannot convert expression to type of cast

The cast is trying to convert an expression to a completely unrelated type. There is no way

the compiler can provide any meaning for the intended cast.

Example:
struct T {

};

void fn()

{

T y = (T) 0;

}

307 conversion ambiguity: [expression] to [cast type]

The cast caused a constructor overload to occur. The operands provided for the constructor

did not select a unique constructor.

Example:
struct S {

S(int);

S(char);

};

void fn()

{

S x = (S) 1.0;

}

308 an anonymous class without a declarator is useless

There is no way to reference the type in this kind of declaration. A name must be provided

for either the class or a variable using the class as its type.

Example:
struct {

int a;

int b;

};

309 global anonymous union must be declared static

This is a restriction in the C++ language. Since there is no unique name for the anonymous

union, it is difficult for C++ translators to provide a correct implementation of external

linkage anonymous unions.

68 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
static union {

int a;

int b;

};

310 anonymous struct/union cannot have storage class in this context

Anonymous unions (or structs) declared in class scopes cannot be static. Any other storage

class is also disallowed.

Example:
struct S {

static union {

int iv;

unsigned us;

};

};

311 union contains a protected member

A union cannot have a protected member because a union cannot be a base class.

Example:
static union {

int iv;

protected:

unsigned sv;

} u;

312 anonymous struct/union contains a private member ’%S’

An anonymous union (or struct) cannot have member functions or friends so it cannot have

private members since no code could access them.

Example:
static union {

int iv;

private:

unsigned sv;

};

313 anonymous struct/union contains a function member ’%S’

An anonymous union (or struct) cannot have any function members. This is a restriction in

the C++ language.

Example:
static union {

int iv;

void foo(); // error

unsigned sv;

};

Diagnostic Messages 69

Chapter 1

314 anonymous struct/union contains a typedef member ’%S’

An anonymous union (or struct) cannot have any nested types. This is a restriction in the

C++ language.

Example:
static union {

int iv;

unsigned sv;

typedef float F;

F fv;

};

315 anonymous struct/union contains an enumeration member ’%S’

An anonymous union (or struct) cannot have any enumeration members. This is a

restriction in the C++ language.

Example:
static union {

int iv;

enum choice { good, bad, indifferent };

choice c;

unsigned sv;

};

316 anonymous struct/union member ’%s’ is not distinct in enclosing scope

Since an anonymous union (or struct) provides its member names to the enclosing scope,

the names must not collide with other names in the enclosing scope.

Example:
int iv;

unsigned sv;

static union {

int iv;

unsigned sv;

};

317 unions cannot have members with destructors

A union should only be used to organize memory in C++. Allowing union members to

have destructors would mean that the same piece of memory could be destructed twice.

Example:
struct S {

int sv1, sv2, sv3;

};

struct T {

~T();

};

static union

{

S su;

T tu;

};

70 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

318 unions cannot have members with user-defined assignment operators

A union should only be used to organize memory in C++. Allowing union members to

have assignment operators would mean that the same piece of memory could be assigned

twice.

Example:
struct S {

int sv1, sv2, sv3;

};

struct T {

int tv;

operator = (int);

operator = (float);

};

static union

{

S su;

T tu;

} u;

319 anonymous struct/union cannot have any friends

An anonymous union (or struct) cannot have any friends. This is a restriction in the C++

language.

Example:
struct S {

int sv1, sv2, sv3;

};

static union {

S su1;

S su2;

friend class S;

};

320 specific versions of template classes can only be defined in file scope

Currently, specific versions of class templates can only be declared at file scope. This

simple restriction was chosen in favour of more freedom with possibly subtle restrictions.

Example:

Diagnostic Messages 71

Chapter 1

template <class G> class S {

G x;

};

struct Q {

struct S<int> {

int x;

};

};

void foo()

{

struct S<double> {

double x;

};

}

321 anonymous union in a function may only be static or auto

The current C++ language definition only allows auto anonymous unions. The Open

Watcom C++ compiler allows static anonymous unions. Any other storage class is not

allowed.

322 static data members are not allowed in a local class

Static data members are not allowed in a local class because there is no way to define the

static member in file scope.

Example:
int foo()

{

struct local {

static int s;

};

local lv;

lv.s = 3;

return lv.s;

}

323 conversion ambiguity: [return value] to [return type of function]

The cast caused a constructor overload to occur. The operands provided for the constructor

did not select a unique constructor.

Example:
struct S {

S(int);

S(char);

};

S fn()

{

return 1.0;

}

72 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

324 conversion of return value is impossible

The return is trying to convert an expression to a completely unrelated type. There is no

way the compiler can provide any meaning for the intended return type.

Example:
struct T {

};

T fn()

{

return 0;

}

325 function cannot return a pointer based on __self

A function cannot return a pointer that is based on __self.

Example:
void __based(__self) *fn(unsigned);

326 defining ’%S’ is not possible because its type has unknown size

In order to define a variable, the size must be known so that the correct amount of storage

can be reserved.

Example:
class S;

S sv;

327 typedef cannot be initialized

Initializing a typedef is meaningless in the C++ language.

Example:
typedef int INT = 15;

328 storage class of ’%S’ conflicts with previous declaration

The symbol declaration conflicts with a previous declaration with regard to storage class.

A symbol cannot be both static and extern.

329 modifiers of ’%S’ conflict with previous declaration

The symbol declaration conflicts with a previous declaration with regard to modifiers.

Correct the program by using the same modifiers for both declarations.

Diagnostic Messages 73

Chapter 1

330 function cannot be initialized

A function cannot be initialized with an initializer syntax intended for variables. A

function body is the only way to provide a definition for a function.

331 access permission of nested class ’%T’ conflicts with previous declaration

Example:
struct S {

struct N; // public

private:

struct N { // private

};

};

332 *** FATAL *** internal error in front end

If this message appears, please report the problem directly to the Open Watcom

development team. See https://discord.com/channels/922934435744206908 .

333 cannot convert argument to type specified in function prototype

It is impossible to convert the indicated argument in the function.

Example:
extern int foo(int&);

extern int m;

extern int n;

int k = foo(m + n);

In the example, the value of "m+n" cannot be converted to a reference (it could be

converted to a constant reference), as shown in the following example.

Example:
extern int foo(const int&);

extern int m;

extern int n;

int k = foo(m + n);

334 conversion ambiguity: [argument] to [argument type in prototype]

An argument in the function call could not be converted since there is more than one

constructor or user-defined conversion which could be used to convert the argument.

74 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S;

struct T

{

T(S&);

};

struct S

{

operator T();

};

S s;

extern int foo(T);

int k = foo(s); // ambiguous

In the example, the argument "s" could be converted by both the constructor in class "T"

and by the user-conversion in class "S".

335 cannot be based on based pointer ’%S’

A based pointer cannot be based on another based pointer.

Example:
__segment s;

void __based(s) *p;

void __based(p) *q;

336 declaration specifiers are required to declare ’%N’

The compiler has detected that the name does not represent a function. Only function

declarations can leave out declaration specifiers. This error also shows up when a typedef

name declaration is missing.

Example:
x;

typedef int;

337 static function declared in block scope

The C++ language does not allow static functions to be declared in block scope. This error

can be triggered when the intent is to define a static variable. Due to the complexities of

parsing C++, statements that appear to be variable definitions may actually parse as

function prototypes. A work-around for this problem is contained in the example.

Example:

Diagnostic Messages 75

Chapter 1

struct C {

};

struct S {

S(C);

};

void foo()

{

static S a(C()); // function prototype!

static S b((C()));// variable definition

}

338 cannot define a __based reference

A C++ reference cannot be based on anything. Based modifiers can only be used with

pointers.

Example:
__segment s;

void fn(int __based(s) & x);

339 conversion ambiguity: conversion to common pointer type

A conversion to a common base class of two different pointers has been attempted. The

pointer conversion could not be performed because the destination type points to an

ambiguous base class of one of the source types.

340 cannot construct object from argument(s)

There is not an appropriate constructor for the set of arguments provided.

341 number of arguments for function ’%S’ is incorrect

The number of arguments in the function call does not match the number declared for the

indicated non-overloaded function.

Example:
extern int foo(int, int);

int k = foo(1, 2, 3);

In the example, the function was declared to have two arguments. Three arguments were

used in the call.

342 private base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a private base class.

The access check did not succeed so the conversion is not allowed.

76 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct Priv

{

int p;

};

struct Der : private Priv

{

int d;

};

extern Der *pd;

Priv *pp = (Priv*)pd;

343 private base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a private base class.

The access check did not succeed so the conversion is not allowed.

Example:
struct Priv

{

int p;

};

struct Der : private Priv

{

int d;

};

Priv *foo(Der *p)

{

return p;

}

344 cannot subtract pointers to different objects

Pointer subtraction can be performed only for objects of the same type.

Example:
#include <stddef.h>

ptrdiff_t diff(float *fp, int *ip)

{

return fp - ip;

}

In the example, a diagnostic results from the attempt to subtract a pointer to an int object

from a pointer to a float object.

345 private base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a private base class.

The access check did not succeed so the conversion is not allowed.

Diagnostic Messages 77

Chapter 1

Example:
struct Priv

{

int p;

};

struct Der : private Priv

{

int d;

};

int foo(Der *pd, Priv *pp)

{

return pd == pp;

}

346 protected base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a protected base class.

The access check did not succeed so the conversion is not allowed.

Example:
struct Prot

{

int p;

};

struct Der : protected Prot

{

int d;

};

extern Der *pd;

Prot *pp = (Prot*)pd;

347 protected base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a protected base class.

The access check did not succeed so the conversion is not allowed.

Example:
struct Prot

{

int p;

};

struct Der : protected Prot

{

int d;

};

Prot *foo(Der *p)

{

return p;

}

78 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

348 cannot define a member pointer with a memory model modifier

A member pointer describes how to access a field from a class. Because of this a member

pointer must be independent of any memory model considerations.

Example:
struct S;

int near S::*mp;

349 protected base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a protected base class.

The access check did not succeed so the conversion is not allowed.

Example:
struct Prot

{

int p;

};

struct Der : protected Prot

{

int d;

};

int foo(Der *pd, Prot *pp)

{

return pd == pp;

}

350 non-type parameter supplied for a type argument

A non-type parameter (e.g., an address or a constant expression) has been supplied for a

template type argument. A type should be used instead.

351 type parameter supplied for a non-type argument

A type parameter (e.g., int) has been supplied for a template non-type argument. An

address or a constant expression should be used instead.

352 cannot access enclosing function’s auto variable ’%S’

A local class member function cannot access its enclosing function’s automatic variables.

Example:
void goop(void)

{

int a;

struct S

{

int foo(int c, int b)

{

return b + c + a;

};

};

}

Diagnostic Messages 79

Chapter 1

353 cannot initialize pointer to non-constant with a pointer to constant

A pointer to a non-constant type cannot be initialized with a pointer to a constant type

because this would allow constant data to be modified via the non-constant pointer to it.

Example:
extern const int *pic;

extern int *pi = pic;

354 pointer expression is always >= 0

The indicated pointer expression will always be true because the pointer value is always

treated as an unsigned quantity, which will be greater or equal to zero.

Example:
extern char *p;

unsigned k = (0 <= p); // always 1

355 pointer expression is never < 0

The indicated pointer expression will always be false because the pointer value is always

treated as an unsigned quantity, which will be greater or equal zero.

Example:
extern char *p;

unsigned k = (0 >= p); // always 0

356 type cannot be used in this context

This message is issued when a type name is being used in a context where a non-type name

should be used.

Example:
struct S {

typedef int T;

};

void fn(S *p)

{

p->T = 1;

}

357 virtual function may only be declared in a class

Virtual functions can only be declared inside of a class. This error may be a result of

forgetting the "C::" qualification of a virtual function’s name.

80 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
virtual void foo();

struct S

{

int f;

virtual void bar();

};

virtual void bar()

{

f = 9;

}

358 ’%T’ referenced as a union

A class type defined as a class or struct has been referenced as a union (i.e., union S).

Example:
struct S

{

int s1, s2;

};

union S var;

359 union ’%T’ referenced as a class

A class type defined as a union has been referenced as a struct or a class (i.e., class S).

Example:
union S

{

int s1, s2;

};

struct S var;

360 typedef ’%N’ defined without an explicit type

The typedef declaration was found to not have an explicit type in the declaration. If int is

the desired type, use an explicit int keyword to specify the type.

Example:
typedef T;

361 member function was not defined in its class

Member functions of local classes must be defined in their class if they will be defined at

all. This is a result of the C++ language not allowing nested function definitions.

Example:
void fn()

{

struct S {

int bar();

};

}

Diagnostic Messages 81

Chapter 1

362 local class can only have its containing function as a friend

A local class can only be referenced from within its containing function. It is impossible to

define an external function that can reference the type of the local class.

Example:
extern void ext();

void foo()

{

class S

{

int s;

public:

friend void ext();

int q;

};

}

363 local class cannot have ’%S’ as a friend

The only classes that a local class can have as a friend are classes within its own containing

scope.

Example:
struct ext

{

goop();

};

void foo()

{

class S

{

int s;

public:

friend class ext;

int q;

};

}

364 adjacent >=, <=, >, < operators

This message is warning about the possibility that the code may not do what was intended.

An expression like "a > b > c" evaluates one relational operator to a 1 or a 0 and then

compares it against the other variable.

Example:
extern int a;

extern int b;

extern int c;

int k = a > b > c;

82 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

365 cannot access enclosing function’s argument ’%S’

A local class member function cannot access its enclosing function’s arguments.

Example:
void goop(int d)

{

struct S

{

int foo(int c, int b)

{

return b + c + d;

};

};

}

366 support for switch ’%s’ is not implemented

Actions for the indicated switch have not been implemented. The switch is supported for

compatibility with the Open Watcom C compiler.

367 conditional expression in if statement is always true

The compiler has detected that the expression will always be true. If this is not the

expected behaviour, the code may contain a comparison of an unsigned value against zero

(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero

for addresses can also result in trivially true expressions.

Example:
#define TEST 143

int foo(int a, int b)

{

if(TEST) return a;

return b;

}

368 conditional expression in if statement is always false

The compiler has detected that the expression will always be false. If this is not the

expected behaviour, the code may contain a comparison of an unsigned value against zero

(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero

for addresses can also result in trivially false expressions.

Example:
#define TEST 14-14

int foo(int a, int b)

{

if(TEST) return a;

return b;

}

Diagnostic Messages 83

Chapter 1

369 selection expression in switch statement is a constant value

The expression in the switch statement is a constant. This means that only one case label

will be executed. If this is not the expected behaviour, check the switch expression.

Example:
#define TEST 0

int foo(int a, int b)

{

switch (TEST) {

case 0:

return a;

default:

return b;

}

}

370 constructor is required for a class with a const member

If a class has a constant member, a constructor is required in order to initialize it.

Example:
struct S

{

const int s;

int i;

};

371 constructor is required for a class with a reference member

If a class has a reference member, a constructor is required in order to initialize it.

Example:
struct S

{

int& r;

int i;

};

372 inline member friend function ’%S’ is not allowed

A friend that is a member function of another class cannot be defined. Inline friend rules

are currently in flux so it is best to avoid inline friends.

373 invalid modifier for auto variable

An automatic variable cannot have a memory model adjustment because they are always

located on the stack (or in a register). There are also other types of modifiers that are not

allowed for auto variables such as thread-specific data modifiers.

84 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int fn(int far x)

{

int far y = x + 1;

return y;

}

374 object (or object pointer) required to access non-static data member

A reference to a member in a class has occurred. The member is non-static so in order to

access it, an object of the class is required.

Example:
struct S {

int m;

static void fn()

{

m = 1; // Error!

}

};

375 user-defined conversion has not been declared

The named user-defined conversion has not been declared in the class of any of its base

classes.

Example:
struct S {

operator int();

int a;

};

double fn(S *p)

{

return p->operator double();

}

376 virtual function must be a non-static member function

A member function cannot be both a static function and a virtual function. A static

member function does not have a this argument whereas a virtual function must have a this

argument so that the virtual function table can be accessed in order to call it.

Example:
struct S

{

static virtual int foo(); // error

virtual int bar(); // ok

static int stat(); // ok

};

Diagnostic Messages 85

Chapter 1

377 protected base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a protected base class.

The access check did not succeed so the conversion is not allowed.

Example:
class C

{

protected:

C(int);

public:

int c;

};

int cfun(C);

int i = cfun(14);

The last line is erroneous since the constructor is protected.

378 private base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a private base class.

The access check did not succeed so the conversion is not allowed.

Example:
class C

{

C(int);

public:

int c;

};

int cfun(C);

int i = cfun(14);

The last line is erroneous since the constructor is private.

379 delete expression will invoke a non-virtual destructor

In C++, it is possible to assign a base class pointer the value of a derived class pointer so

that code that makes use of base class virtual functions can be used. A problem that occurs

is that a delete has to know the correct size of the type in some instances (i.e., when a two

argument version of operator delete is defined for a class). This problem is solved by

requiring that a destructor be defined as virtual if polymorphic deletes must work. The

delete expression will virtually call the correct destructor, which knows the correct size of

the complete object. This message informs you that the class you are deleting has virtual

functions but it has a non-virtual destructor. This means that the delete will not work

correctly in all circumstances.

86 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#include <stddef.h>

struct B {

int b;

void operator delete(void *, size_t);

virtual void fn();

~B();

};

struct D : B {

int d;

void operator delete(void *, size_t);

virtual void fn();

~D();

};

void dfn(B *p)

{

delete p; // could be a pointer to D!

}

380 ’offsetof’ is not allowed for a function

A member function does not have an offset like simple data members. If this is required,

use a member pointer.

Example:
#include <stddef.h>

struct S

{

int fun();

};

int s = offsetof(S, fun);

381 ’offsetof’ is not allowed for an enumeration

An enumeration does not have an offset like simple data members.

Example:
#include <stddef.h>

struct S

{

enum SE { S1, S2, S3, S4 };

SE var;

};

int s = offsetof(S, SE);

Diagnostic Messages 87

Chapter 1

382 could not initialize for code generation

The source code has been parsed and fully analysed when this error is emitted. The

compiler attempted to start generating object code but due to some problem (e.g., out of

memory, no file handles) could not initialize itself. Try changing the compilation

environment to eliminate this error.

383 ’offsetof’ is not allowed for an undefined type

The class type used in offsetof must be completely defined, otherwise data member offsets

will not be known.

Example:
#include <stddef.h>

struct S {

int a;

int b;

int c[offsetof(S, b)];

};

384 attempt to override virtual function ’%S’ with a different return type

A function cannot be overloaded with identical argument types and a different return type.

This is due to the fact that the C++ language does not consider the function’s return type

when overloading. The exception to this rule in the C++ language involves restricted

changes in the return type of virtual functions. The derived virtual function’s return type

can be derived from the return type of the base virtual function.

Example:
struct B {

virtual B *fn();

};

struct D : B {

virtual D *fn();

};

385 attempt to overload function ’%S’ with a different return type

A function cannot be overloaded with identical argument types and a different return type.

This is due to the fact that the C++ language does not consider the function’s return type

when overloading.

Example:
int foo(char);

unsigned foo(char);

88 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

386 attempt to use pointer to undefined class

An attempt was made to indirect or increment a pointer to an undefined class. Since the

class is undefined, the size is not known so the compiler cannot compile the expression

properly.

Example:
class C;

extern C* pc1;

C* pc2 = ++pc1; // C not defined

int foo(C*p)

{

return p->x; // C not defined

}

387 expression is useful only for its side effects

The indicated expression is not meaningful. The expression, however, does contain one or

more side effects.

Example:
extern int* i;

void func()

{

*(i++);

}

In the example, the expression is a reference to an integer which is meaningless in itself.

The incrementation of the pointer in the expression is a side effect.

388 integral constant will be truncated during assignment or initialization

This message indicates that the compiler knows that a constant value will not be preserved

after the assignment. If this is acceptable, cast the constant value to the appropriate type in

the assignment.

Example:
unsigned char c = 567;

389 integral value may be truncated during assignment or initialization

This message indicates that the compiler knows that all values will not be preserved after

the assignment. If this is acceptable, cast the value to the appropriate type in the

assignment.

Example:
extern unsigned s;

unsigned char c = s;

Diagnostic Messages 89

Chapter 1

390 cannot generate default constructor to initialize ’%T’ since constructors were declared

A default constructor will not be generated by the compiler if there are already constructors

declared. Try using default arguments to change one of the constructors to a default

constructor or define a default constructor explicitly.

Example:
class C {

C(const C&);

public :

int c;

};

C cv;

391 assignment found in boolean expression

This is a construct that can lead to errors if it was intended to be an equality (using "==")

test.

Example:
int foo(int a, int b)

{

if(a = b) {

return b;

}

return a; // always return 1 ?

}

392 definition: ’%F’

This informational message indicates where the symbol in question was defined. The

message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;

int b = 89;

The variable ’a’ is not referenced in the preceding example and so will cause a warning to

be generated. Following the warning, the informational message indicates the line at which

’a’ was declared.

393 included from %s(%u)

This informational message indicates the line number of the file including the file in which

an error or warning was diagnosed. A number of such messages will allow you to trace

back through the #include directives which are currently being processed.

90 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

394 reference object must be initialized

A reference cannot be set except through initialization. Also references cannot be 0 so they

must always be initialized.

Example:
int & ref;

395 option requires an identifier

The specified option is not recognized by the compiler since there was no identifier after it

(i.e., "-nt=module").

396 ’main’ cannot be overloaded

There can only be one entry point for a C++ program. The "main" function cannot be

overloaded.

Example:
int main();

int main(int);

397 ’new’ expression cannot allocate a void

Since the void type has no size and there are no values of void type, one cannot allocate an

instance of void.

Example:
void *p = new void;

398 ’new’ expression cannot allocate a function

A function type cannot be allocated since there is no meaningful size that can be used. The

new expression can allocate a pointer to a function.

Example:
typedef int tdfun(int);

tdfun *tdv = new tdfun;

399 ’new’ expression allocates a const or volatile object

The pool of raw memory cannot be guaranteed to support const or volatile semantics.

Usually const and volatile are used for statically allocated objects.

Example:
typedef const int con_int;

con_int* p = new con_int;

Diagnostic Messages 91

Chapter 1

400 cannot convert right expression for initialization

The initialization is trying to convert an argument expression to a completely unrelated

type. There is no way the compiler can provide any meaning for the intended conversion.

Example:
struct T {

};

T x = 0;

401 conversion ambiguity: [initialization expression] to [type of object]

The initialization caused a constructor overload to occur. The operands provided for the

constructor did not select a unique constructor.

Example:
struct S {

S(int);

S(char);

};

S x = 1.0;

402 class template ’%S’ has already been declared as a friend

The class template in the message has already been declared as a friend. Remove the extra

friend declaration.

Example:
template <class T>

class S;

class X {

friend class S;

int f;

friend class S;

};

403 private base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a private base class.

The access check did not succeed so the conversion is not allowed.

404 protected base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a protected base class.

The access check did not succeed so the conversion is not allowed.

92 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

405 cannot return a pointer or reference to a constant object

A pointer or reference to a constant object cannot be returned.

Example:
int *foo(const int *p)

{

return p;

}

406 cannot pass a pointer or reference to a constant object

A pointer or reference to a constant object could not be passed as an argument.

Example:
int *bar(int *);

int *foo(const int *p)

{

return bar(p);

}

407 class templates must be named

There is no syntax in the C++ language to reference an unnamed class template.

Example:
template <class T>

class {

};

408 function templates can only name functions

Variables cannot be overloaded in C++ so it is not possible to have many different

instances of a variable with different types.

Example:
template <class T>

T x[1];

409 template argument ’%S’ is not used in the function argument list

This restriction ensures that function templates can be bound to types during overload

resolution. Functions currently can only be overloaded based on argument types.

Example:
template <class T>

int foo(int *);

template <class T>

T bar(int *);

Diagnostic Messages 93

Chapter 1

410 destructor cannot be declared const or volatile

A destructor must be able to operate on all instances of classes regardless of whether they

are const or volatile.

411 static member function cannot be declared const or volatile

A static member function does not have an implicit this argument so the const and volatile

function qualifiers cannot be used.

412 only member functions can be declared const or volatile

A non-member function does not have an implicit this argument so the const and volatile

function qualifiers cannot be used.

413 ’const’ or ’volatile’ modifiers are not part of a function’s type

The const and volatile qualifiers for a function cannot be used in typedefs or pointers to

functions. The trailing qualifiers are used to change the type of the implicit this argument

so that member functions that do not modify the object can be declared accurately.

Example:
// const is illegal

typedef void (*baddcl)() const;

struct S {

void fun() const;

int a;

};

// "this" has type "S const *"

void S::fun() const

{

this->a = 1; // Error!

}

414 type cannot be defined in an argument

A new type cannot be defined in an argument because the type will only be visible within

the function. This amounts to defining a function that can never be called because C++

uses name equivalence for type checking.

Example:
extern foo(struct S { int s; });

415 type cannot be defined in return type

This is a restriction in the current C++ language. A function prototype should only use

previously declared types in order to guarantee that it can be called from other functions.

The restriction is required for templates because the compiler would have to wait until the

end of a class definition before it could decide whether a class template or function

template is being defined.

94 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
template <class T>

class C {

T value;

} fn(T x) {

C y;

y.x = 0;

return y;

};

A common problem that results in this error is to forget to terminate a class or enum

definition with a semicolon.

Example:
struct S {

int x,y;

S(int, int);

} // missing semicolon ’;’

S::S(int x, int y) : x(x), y(y) {

}

416 data members cannot be initialized inside a class definition

This message appears when an initialization is attempted inside of a class definition. In the

case of static data members, initialization must be done outside the class definition.

Ordinary data members can be initialized in a constructor.

Example:
struct S {

static const int size = 1;

};

417 only virtual functions may be declared pure

The C++ language requires that all pure functions be declared virtual. A pure function

establishes an interface that must consist of virtual functions because the functions are

required to be defined in the derived class.

Example:
struct S {

void foo() = 0;

};

418 destructor is not declared in its proper class

The destructor name is not declared in its own class or qualified by its own class. This is

required in the C++ language.

Diagnostic Messages 95

Chapter 1

419 cannot call non-const function for a constant object

A function that does not promise to not modify an object cannot be called for a constant

object. A function can declare its intention to not modify an object by using the const

qualifier.

Example:
struct S {

void fn();

};

void cfn(const S *p)

{

p->fn(); // Error!

}

420 memory initializer list may only appear in a constructor definition

A memory initializer list should be declared along with the body of the constructor

function.

421 cannot initialize member ’%N’ twice

A member cannot be initialized twice in a member initialization list.

422 cannot initialize base class ’%T’ twice

A base class cannot be constructed twice in a member initialization list.

423 ’%T’ is not a direct base class

A base class initializer in a member initialization list must either be a direct base class or a

virtual base class.

424 ’%N’ cannot be initialized because it is not a member

The name used in the member initialization list does not name a member in the class.

425 ’%N’ cannot be initialized because it is a member function

The name used in the member initialization list does not name a non-static data member in

the class.

426 ’%N’ cannot be initialized because it is a static member

The name used in the member initialization list does not name a non-static data member in

the class.

96 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

427 ’%N’ has not been declared as a member

This message indicates that the member does not exist in the qualified class. This usually

occurs in the context of access declarations.

428 const/reference member ’%S’ must have an initializer

The const or reference member does not have an initializer so the constructor is not

completely defined. The member initialization list is the only way to initialize these types

of members.

429 abstract class ’%T’ cannot be used as an argument type

An abstract class can only exist as a base class of another class. The C++ language does

not allow an abstract class to be used as an argument type.

430 abstract class ’%T’ cannot be used as a function return type

An abstract class can only exist as a base class of another class. The C++ language does

not allow an abstract class to be used as a return type.

431 defining ’%S’ is not possible because ’%T’ is an abstract class

An abstract class can only exist as a base class of another class. The C++ language does

not allow an abstract class to be used as either a member or a variable.

432 cannot convert to an abstract class ’%T’

An abstract class can only exist as a base class of another class. The C++ language does

not allow an abstract class to be used as the destination type in a conversion.

433 mangled name for ’%S’ has been truncated

The name used in the object file that encodes the name and full type of the symbol is often

called a mangled name. The warning indicates that the mangled name had to be truncated

due to limitations in the object file format.

434 cannot convert to a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.

The behaviour of the conversion would be undefined also.

435 cannot convert a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.

The behaviour of the conversion would be undefined also.

Diagnostic Messages 97

Chapter 1

436 cannot construct an abstract class

An instance of an abstract class cannot be created because an abstract class can only be

used as a base class.

437 cannot construct an undefined class

An instance of an undefined class cannot be created because the size is not known.

438 string literal concatenated during array initialization

This message indicates that a missing comma (’,’) could have made a quiet change in the

program. Otherwise, ignore this message.

439 maximum size of segment ’%s’ has been exceeded for ’%S’

The indicated symbol has grown in size to a point where it has caused the segment it is

defined inside of to be exhausted.

440 maximum data item size has been exceeded for ’%S’

A non-huge data item is larger than 64k bytes in size. This message only occurs during

16-bit compilation of C++ code.

441 function attribute has been repeated

A function attribute (like the __export attribute) has been repeated. Remove the extra

attribute to correct the declaration.

442 modifier has been repeated

A modifier (like the far modifier) has been repeated. Remove the extra modifier to correct

the declaration.

443 illegal combination of memory model modifiers

Memory model modifiers must be used individually because they cannot be combined

meaningfully.

444 argument name ’%N’ has already been used

The indicated argument name has already been used in the same argument list. This is not

allowed in the C++ language.

445 function definition for ’%S’ must be declared with an explicit argument list

A function cannot be defined with a typedef. The argument list must be explicit.

98 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

446 user-defined conversion cannot convert to its own class or base class

A user-defined conversion cannot be declared as a conversion either to its own class or to a

base class of itself.

Example:
struct B {

};

struct D : private B {

operator B();

};

447 user-defined conversion cannot convert to void

A user-defined conversion cannot be declared as a conversion to void.

Example:
struct S {

operator void();

};

448 expecting identifier

An identifier was expected during processing.

449 symbol ’%S’ does not have a segment associated with it

A pointer cannot be based on a member because it has no segment associated with it. A

member describes a layout of storage that can occur in any segment.

450 symbol ’%S’ must have integral or pointer type

If a symbol is based on another symbol, it must be integral or a pointer type. An integral

type indicates the segment value that will be used. A pointer type means that all accesses

will be added to the pointer value to construct a full pointer.

451 symbol ’%S’ cannot be accessed in all contexts

The symbol that the pointer is based on is in another class so it cannot be accessed in all

contexts that the based pointer can be accessed.

452 cannot convert class expression to be copied

A convert class expression could not be copied.

453 conversion ambiguity: multiple copy constructors

More than one constructor could be used to copy a class object.

Diagnostic Messages 99

Chapter 1

454 function template ’%S’ already has a definition

The function template has already been defined with a function body. A function template

cannot be defined twice even if the function body is identical.

Example:
template <class T>

void f(T *p)

{

}

template <class T>

void f(T *p)

{

}

455 function templates cannot have default arguments

A function template must not have default arguments because there are certain types of

default arguments that do not force the function argument to be a specific type.

Example:
template <class T>

void f2(T *p = 0)

{

}

456 ’main’ cannot be a function template

This is a restriction in the C++ language because "main" cannot be overloaded. A function

template provides the possibility of having more than one "main" function.

457 ’%S’ was previously declared as a typedef

The C++ language only allows function and variable names to coexist with names of

classes or enumerations. This is due to the fact that the class and enumeration names can

still be referenced in their elaborated form after the non-type name has been declared.

Example:
typedef int T;

int T(int) // error!

{

}

enum E { A, B, C };

void E()

{

enum E x = A; // use "enum E"

}

class C { };

void C()

{

class C x; // use "class C"

}

100 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

458 ’%S’ was previously declared as a variable/function

The C++ language only allows function and variable names to coexist with names of

classes or enumerations. This is due to the fact that the class and enumeration names can

still be referenced in their elaborated form after the non-type name has been declared.

Example:
int T(int)

{

}

typedef int T; // error!

void E()

{

}

enum E { A, B, C };

enum E x = A; // use "enum E"

void C()

{

}

class C { };

class C x; // use "class C"

459 private base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a private base class.

The access check did not succeed so the conversion is not allowed.

460 protected base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a protected base class.

The access check did not succeed so the conversion is not allowed.

461 maximum size of DGROUP has been exceeded for ’%S’ in segment ’%s’

The indicated symbol’s size has caused the DGROUP contribution of this module to exceed

64k. Changing memory models or declaring some data as far data are two ways of fixing

this problem.

462 type of return value is not the enumeration type of function

The return value does not have the proper enumeration type. Keep in mind that integral

values are not automatically converted to enum types like the C language.

Diagnostic Messages 101

Chapter 1

463 linkage must be first in a declaration; probable cause: missing ’;’

This message usually indicates a missing semicolon (’;’). The linkage specification must

be the first part of a declaration if it is used.

464 ’main’ cannot be a static function

This is a restriction in the C++ language because "main" must have external linkage.

465 ’main’ cannot be an inline function

This is a restriction in the C++ language because "main" must have external linkage.

466 ’main’ cannot be referenced

This is a restriction in the C++ language to prevent implementations from having to work

around multiple invocations of "main". This can occur if an implementation has to

generate special code in "main" to construct all of the statically allocated classes.

467 cannot call a non-volatile function for a volatile object

A function that does not promise to not modify an object using volatile semantics cannot be

called for a volatile object. A function can declare its intention to modify an object only

through volatile semantics by using the volatile qualifier.

Example:
struct S {

void fn();

};

void cfn(volatile S *p)

{

p->fn(); // Error!

}

468 cannot convert pointer to constant or volatile objects to pointer to void

You cannot convert a pointer to constant or volatile objects to ’void*’.

Example:
extern const int* pci;

extern void *vp;

int k = (pci == vp);

469 cannot convert pointer to constant or non-volatile objects to pointer to volatile void

You cannot convert a pointer to constant or non-volatile objects to ’volatile void*’.

102 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern const int* pci;

extern volatile void *vp;

int k = (pci == vp);

470 address of function is too large to be converted to pointer to void

The address of a function can be converted to ’void*’ only when the size of a ’void*’

object is large enough to contain the function pointer.

Example:
void __far foo();

void __near *v = &foo;

471 address of data object is too large to be converted to pointer to void

The address of an object can be converted to ’void*’ only when the size of a ’void*’ object

is large enough to contain the pointer.

Example:
int __far *ip;

void __near *v = ip;

472 expression with side effect in sizeof discarded

The indicated expression will be discarded; consequently, any side effects in that

expression will not be executed.

Example:
int a = 14;

int b = sizeof(a++);

In the example, the variable a will still have a value 14 after b has been initialized.

473 function argument(s) do not match those in prototype

The C++ language requires great precision in specifying arguments for a function. For

instance, a pointer to char is considered different than a pointer to unsigned char

regardless of whether char is an unsigned quantity. This message occurs when a

non-overloaded function is invoked and one or more of the arguments cannot be converted.

It also occurs when the number of arguments differs from the number specified in the

prototype.

474 conversion ambiguity: [expression] to [class object]

The conversion of the expression to a class object is ambiguous.

Diagnostic Messages 103

Chapter 1

475 cannot assign right expression to class object

The expression on the right cannot be assigned to the indicated class object.

476 argument count is %d since there is an implicit ’this’ argument

This informational message indicates the number of arguments for the function mentioned

in the error message. The function is a member function with a this argument so it may

have one more argument than expected.

477 argument count is %d since there is no implicit ’this’ argument

This informational message indicates the number of arguments for the function mentioned

in the error message. The function is a member function without a this argument so it may

have one less argument than expected.

478 argument count is %d for a non-member function

This informational message indicates the number of arguments for the function mentioned

in the error message. The function is not a member function but it could be declared as a

friend function.

479 conversion ambiguity: multiple copy constructors to copy array ’%S’

More than one constructor to copy the indicated array exists.

480 variable/function has the same name as the class/enum ’%S’

In C++, a class or enum name can coexist with a variable or function of the same name in a

scope. This warning is indicating that the current declaration is making use of this feature

but the typedef name was declared in another file. This usually means that there are two

unrelated uses of the same name.

481 class/enum has the same name as the function/variable ’%S’

In C++, a class or enum name can coexist with a variable or function of the same name in a

scope. This warning is indicating that the current declaration is making use of this feature

but the function/variable name was declared in another file. This usually means that there

are two unrelated uses of the same name. Furthermore, all references to the class or enum

must be elaborated (i.e., use ’class C’ instead of ’C’) in order for subsequent references to

compile properly.

482 cannot create a default constructor

A default constructor could not be created, because other constructors were declared for the

class in question.

104 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct X {

X(X&);

};

struct Y {

X a[10];

};

Y yvar;

In the example, the variable "yvar" causes a default constructor for the class "Y" to be

generated. The default constructor for "Y" attempts to call the default constructor for "X"

in order to initialize the array "a" in class "Y". The default constructor for "X" cannot be

defined because another constructor has been declared.

483 attempting to access default constructor for %T

This informational message indicates that a default constructor was referenced but could

not be generated.

484 cannot align symbol ’%S’ to segment boundary

The indicated symbol requires more than one segment of storage and the symbol’s

components cannot be aligned to the segment boundary.

485 friend declaration does not specify a class or function

A class or function must be declared as a friend.

Example:
struct T {

// should be class or function declaration

friend int;

};

486 cannot take address of overloaded function

This message indicates that an overloaded function’s name was used in a context where a

final type could not be found. Because a final type was not specified, the compiler cannot

select one function to use in the expression. Initialize a properly-typed temporary with the

appropriate function and use the temporary in the expression.

Example:
int foo(char);

int foo(unsigned);

extern int (*p)(char);

int k = (p == &foo); // fails

The first foo can be passed as follows:

Diagnostic Messages 105

Chapter 1

Example:
int foo(char);

int foo(unsigned);

extern int (*p)(char);

// introduce temporary

static int (*temp)(char) = &foo;

// ok

int k = (p == temp);

487 cannot use address of overloaded function as a variable argument

This message indicates that an overloaded function’s name was used as a argument for a

"..." style function. Because a final function type is not present, the compiler cannot select

one function to use in the expression. Initialize a properly-typed temporary with the

appropriate function and use the temporary in the call.

Example:
int foo(char);

int foo(unsigned);

int ellip_fun(int, ...);

int k = ellip_fun(14, &foo); // fails

The first foo can be passed as follows:

Example:
int foo(char);

int foo(unsigned);

int ellip_fun(int, ...);

static int (*temp)(char) = &foo; // introduce

temporary

int k = ellip_fun(14, temp); // ok

488 ’%N’ cannot be overloaded

The indicated function cannot be overloaded. Functions that fall into this category include

operator delete.

489 symbol ’%S’ has already been initialized

The indicated symbol has already been initialized. It cannot be initialized twice even if the

initialization value is identical.

490 delete expression is a pointer to a function

A pointer to a function cannot be allocated so it cannot be deleted.

106 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

491 delete of a pointer to const data

Since deleting a pointer may involve modification of data, it is not always safe to delete a

pointer to const data.

Example:
struct S { };

void fn(S const *p, S const *q) {

delete p;

delete [] q;

}

492 delete expression is not a pointer to data

A delete expression can only delete pointers. For example, trying to delete an int is not

allowed in the C++ language.

Example:
void fn(int a)

{

delete a; // Error!

}

493 template argument is not a constant expression

The compiler has found an incorrect expression provided as the value for a constant value

template argument. The only expressions allowed for scalar template arguments are

integral constant expressions.

494 template argument is not an external linkage symbol

The compiler has found an incorrect expression provided as the value for a pointer value

template argument. The only expressions allowed for pointer template arguments are

addresses of symbols. Any symbols must have external linkage or must be static class

members.

495 conversion of const reference to volatile reference

The constant value can be modified by assigning into the volatile reference. This would

allow constant data to be modified quietly.

Example:
void fn(const int &rci)

{

int volatile &r = rci; // Error!

}

Diagnostic Messages 107

Chapter 1

496 conversion of volatile reference to const reference

The volatile value can be read incorrectly by accessing the const reference. This would

allow volatile data to be accessed without correct volatile semantics.

Example:
void fn(volatile int &rvi)

{

int const &r = rvi; // Error!

}

497 conversion of const or volatile reference to plain reference

The constant value can be modified by assigning into the plain reference. This would allow

constant data to be modified quietly. In the case of volatile data, any access to the plain

reference will not respect the volatility of the data and thus would be incorrectly accessing

the data.

Example:
void fn(const int &rci, volatile int &rvi)

{

int &r1 = rci; // Error!

int &r2 = rvi; // Error!

}

498 syntax error before ’%s’; probable cause: incorrectly spelled type name

The identifier in the error message has not been declared as a type name in any scope at this

point in the code. This may be the cause of the syntax error.

499 object (or object pointer) required to access non-static member function

A reference to a member function in a class has occurred. The member is non-static so in

order to access it, an object of the class is required.

Example:
struct S {

int m();

static void fn()

{

m(); // Error!

}

};

500 object (or object pointer) cannot be used to access function

The indicated object (or object pointer) cannot be used to access function.

108 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

501 object (or object pointer) cannot be used to access data

The indicated object (or object pointer) cannot be used to access data.

502 cannot access member function in enclosing class

A member function in enclosing class cannot be accessed.

503 cannot access data member in enclosing class

A data member in enclosing class cannot be accessed.

504 syntax error before type name ’%s’

The identifier in the error message has been declared as a type name at this point in the

code. This may be the cause of the syntax error.

505 implementation restriction: cannot generate thunk from ’%S’

This implementation restriction is due to the use of a shared code generator between Open

Watcom compilers. The virtual this adjustment thunks are generated as functions linked

into the virtual function table. The functions rely on knowing the correct number of

arguments to pass on to the overriding virtual function but in the case of ellipsis (...)

functions, the number of arguments cannot be known when the thunk function is being

generated by the compiler. The target symbol is listed in a diagnostic message. The work

around for this problem is to recode the source so that the virtual functions make use of the

va_list type found in the stdarg header file.

Example:

Diagnostic Messages 109

Chapter 1

#include <iostream.h>

#include <stdarg.h>

struct B {

virtual void fun(char *, ...);

};

struct D : B {

virtual void fun(char *, ...);

};

void B::fun(char *f, ...)

{

va_list args;

va_start(args, f);

while(*f) {

cout << va_arg(args, char) << endl;

++f;

}

va_end(args);

}

void D::fun(char *f, ...)

{

va_list args;

va_start(args, f);

while(*f) {

cout << va_arg(args, int) << endl;

++f;

}

va_end(args);

}

The previous example can be changed to the following code with corresponding changes to

the contents of the virtual functions.

Example:
#include <iostream.h>

#include <stdarg.h>

struct B {

void fun(char *f, ...)

{

va_list args;

va_start(args, f);

_fun(f, args);

va_end(args);

}

virtual void _fun(char *, va_list);

};

110 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

~b

struct D : B {

// this can be removed since using B::fun

// will result in the same behaviour

// since _fun is a virtual function

void fun(char *f, ...)

{

va_list args;

va_start(args, f);

_fun(f, args);

va_end(args);

}

virtual void _fun(char *, va_list);

};

~b

void B::_fun(char *f, va_list args)

{

while(*f) {

cout << va_arg(args, char) << endl;

++f;

}

}

~b

void D::_fun(char *f, va_list args)

{

while(*f) {

cout << va_arg(args, int) << endl;

++f;

}

}

~b

// no changes are required for users of the class

B x;

D y;

void dump(B *p)

{

p->fun("1234", ’a’, ’b’, ’c’, ’d’);

p->fun("12", ’a’, ’b’);

}

~b

void main()

{

dump(&x);

dump(&y);

}

Diagnostic Messages 111

Chapter 1

506 conversion of __based(void) pointer to virtual base class

An __based(void) pointer to a class object cannot be converted to a pointer to virtual base

class, since this conversion applies only to specific objects.

Example:
struct Base {};

struct Derived : virtual Base {};

Derived __based(void) *p_derived;

Base __based(void) *p_base = p_derived; // error

The conversion would be allowed if the base class were not virtual.

507 class for target operand is not derived from class for source operand

A member pointer conversion can only be performed safely when converting a base class

member pointer to a derived class member pointer.

508 conversion ambiguity: [pointer to class member] to [assignment object]

The base class in the original member pointer is not a unique base class of the derived class.

509 conversion of pointer to class member involves a private base class

The member pointer conversion required access to a private base class. The access check

did not succeed so the conversion is not allowed.

510 conversion of pointer to class member involves a protected base class

The member pointer conversion required access to a protected base class. The access check

did not succeed so the conversion is not allowed.

511 item is neither a non-static member function nor data member

A member pointer can only be created for non-static member functions and non-static data

members. Static members can have their address taken just like their file scope

counterparts.

512 function address cannot be converted to pointer to class member

The indicated function address cannot be converted to pointer to class member.

513 conversion ambiguity: [address of function] to [pointer to class member]

The indicated conversion is ambiguous.

112 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

514 addressed function is in a private base class

The addressed function is in a private base class.

515 addressed function is in a protected base class

The addressed function is in a protected base class.

516 class for object is not defined

The left hand operand for the "." or ".*" operator must be of a class type that is completely

defined.

Example:
class C;

int fun(C& x)

{

return x.y; // class C not defined

}

517 left expression is not a class object

The left hand operand for the ".*" operator must be of a class type since member pointers

can only be used with classes.

518 right expression is not a pointer to class member

The right hand operand for the ".*" operator must be a member pointer type.

519 cannot convert pointer to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer

because it is not a derived class.

520 conversion ambiguity: [pointer] to [class of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.

521 conversion of pointer to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.

522 conversion of pointer to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.

Diagnostic Messages 113

Chapter 1

523 cannot convert object to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer

because it is not a derived class.

524 conversion ambiguity: [object] to [class object of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.

525 conversion of object to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.

526 conversion of object to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.

527 conversion of pointer to class member from a derived to a base class

A member pointer can only be converted from a base class to a derived class. This is the

opposite of the conversion rule for pointers.

528 form is ’#pragma inline_recursion en’ where ’en’ is ’on’ or ’off’

This pragma indicates whether inline expansion will occur for an inline function which is

called (possibly indirectly) a subsequent time during an inline expansion. Either ’on’ or

’off’ must be specified.

529 expression for number of array elements must be integral

The expression for the number of elements in a new expression must be integral because it

is used to calculate the size of the allocation (which is an integral quantity). The compiler

will not automatically convert to an integer because of rounding and truncation issues with

floating-point values.

530 function accessed with ’.*’ or ’->*’ can only be called

The result of the ".*" and "->*" operators can only be called because it is often specific to

the instance used for the left hand operand.

531 left operand must be a pointer, pointer to class member, or arithmetic

The left operand must be a pointer, pointer to class member, or arithmetic.

532 right operand must be a pointer, pointer to class member, or arithmetic

The right operand must be a pointer, pointer to class member, or arithmetic.

114 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

533 neither pointer to class member can be converted to the other

The two member pointers being compared are from two unrelated classes. They cannot be

compared since their members can never be related.

534 left operand is not a valid pointer to class member

The specified operator requires a pointer to member as the left operand.

Example:
struct S;

void fn(int S::* mp, int *p)

{

if(p == mp)

p[0] = 1;

}

535 right operand is not a valid pointer to class member

The specified operator requires a pointer to member as the right operand.

Example:
struct S;

void fn(int S::* mp, int *p)

{

if(mp == p)

p[0] = 1;

}

536 cannot use ’.*’ nor ’->*’ with pointer to class member with zero value

The compiler has detected a NULL pointer use with a member pointer dereference.

537 operand is not a valid pointer to class member

The operand cannot be converted to a valid pointer to class member.

Example:
struct S;

int S::* fn()

{

int a;

return a;

}

538 destructor can be invoked only with ’.’ or ’->’

This is a restriction in the C++ language. An explicit invocation of a destructor is not

recommended for objects that have their destructor called automatically.

Diagnostic Messages 115

Chapter 1

539 class of destructor must be class of object being destructed

Destructors can only be called for the exact static type of the object being destroyed.

540 destructor is not properly qualified

An explicit destructor invocation can only be qualified with its own class.

541 pointers to class members reference different object types

Conversion of member pointers can only occur if the object types are identical. This is

necessary to ensure type safety.

542 operand must be pointer to class or struct

The left hand operand of a ’->*’ operator must be a pointer to a class. This is a restriction

in the C++ language.

543 expression must have void type

If one operand of the ’:’ operator has void type, then the other operand must also have void

type.

544 expression types do not match for ’:’ operator

The compiler could not bring both operands to a common type. This is necessary because

the result of the conditional operator must be a unique type.

545 cannot create an undefined type with ’operator new’

A new expression cannot allocate an undefined type because it must know how large an

allocation is required and it must also know whether there are any constructors to execute.

546 delete of a pointer to an undefined type

A delete expression cannot safely deallocate an undefined type because it must know

whether there are any destructors to execute. In spite of this, the ISO/ANSI C++ Working

Paper requires that an implementation support this usage.

Example:
struct U;

void foo(U *p, U *q) {

delete p;

delete [] q;

}

116 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

547 cannot access ’%S’ through a private base class

The indicated symbol cannot be accessed because it requires access to a private base class.

548 cannot access ’%S’ through a protected base class

The indicated symbol cannot be accessed because it requires access to a protected base

class.

549 ’sizeof’ operand contains compiler generated information

The type used in the ’sizeof’ operand contains compiler generated information. Clearing a

struct with a call to memset() would invalidate all of this information.

550 cannot convert ’:’ operands to a common reference type

The two reference types cannot be converted to a common reference type. This can happen

when the types are not related through base class inheritance.

551 conversion ambiguity: [reference to object] to [type of opposite ’:’ operand]

One of the reference types is an ambiguous base class of the other. This prevents the

compiler from converting the operand to a unique common type.

552 conversion of reference to ’:’ object involves a private base class

The conversion of the reference operands requires a conversion through a private base

class.

553 conversion of reference to ’:’ object involves a protected base class

The conversion of the reference operands requires a conversion through a protected base

class.

554 expression must have type arithmetic, pointer, or pointer to class member

This message means that the type cannot be converted to any of these types, also. All of

the mentioned types can be compared against zero (’0’) to produce a true or false value.

555 expression for ’while’ is always false

The compiler has detected that the expression will always be false. If this is not the

expected behaviour, the code may contain a comparison of an unsigned value against zero

(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero

for addresses can also result in trivially false expressions.

Diagnostic Messages 117

Chapter 1

556 testing expression for ’for’ is always false

The compiler has detected that the expression will always be false. If this is not the

expected behaviour, the code may contain a comparison of an unsigned value against zero

(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero

for addresses can also result in trivially false expressions.

557 message number ’%d’ is invalid

The message number used in the #pragma does not match the message number for any

warning message. This message can also indicate that a number or ’*’ (meaning all

warnings) was not found when it was expected.

558 warning level must be an integer in range 0 to 9

The new warning level that can be used for the warning can be in the range 0 to 9. The

level 0 means that the warning will be treated as an error (compilation will not succeed).

Levels 1 up to 9 are used to classify warnings. The -w option sets an upper limit on the

level for warnings. By setting the level above the command line limit, you effectively

ignore all cases where the warning shows up.

559 function ’%S’ cannot be defined because it is generated by the compiler

The indicated function cannot be defined because it is generated by the compiler. The

compiler will automatically generate default constructors, copy constructors, assignment

operators, and destructors according to the rules of the C++ language. This message

indicates that you did not declare the function in the class definition.

560 neither environment variable nor file found for ’@’ name

The indirection operator for the command line will first check for an environment variable

of the name and use the contents for the command line. If an environment variable is not

found, a check for a file with the same name will occur.

561 more than 5 indirections during command line processing

The Open Watcom C++ compiler only allows a fixed number nested indirections using files

or environment variables, to prevent runaway chains of indirections.

562 cannot take address of non-static member function

The only way to create a value that described the non-static member function is to use a

member pointer.

563 cannot generate default ’%S’ because class contains either a constant or a reference

member

An assignment operator cannot be generated because the class contains members that

cannot be assigned into.

118 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

564 cannot convert pointer to non-constant or volatile objects to pointer to const void

A pointer to non-constant or volatile objects cannot be converted to ’const void*’.

565 cannot convert pointer to non-constant or non-volatile objects to pointer to const volatile

void

A pointer to non-constant or non-volatile objects cannot be converted to ’const volatile

void*’.

566 cannot initialize pointer to non-volatile with a pointer to volatile

A pointer to a non-volatile type cannot be initialized with a pointer to a volatile type

because this would allow volatile data to be modified without volatile semantics via the

non-volatile pointer to it.

567 cannot pass a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be passed in this context.

568 cannot return a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be returned.

569 left expression is not a pointer to a volatile object

One cannot assign a pointer to a volatile type to a pointer to a non-volatile type. This

would allow a volatile object to be modified via the non-volatile pointer. Use a cast if this

is absolutely necessary.

570 virtual function override for ’%S’ is ambiguous

This message indicates that there are at least two overrides for the function in the base

class. The compiler cannot arbitrarily choose one so it is up to the programmer to make

sure there is an unambiguous choice. Two of the overriding functions are listed as

informational messages.

571 initialization priority must be number 0-255, ’library’, or ’program’

An incorrect module initialization priority has been provided. Check the User’s Guide for

the correct format of the priority directive.

572 previous case label defined %L

This informational message indicates where a preceding case label is defined.

Diagnostic Messages 119

Chapter 1

573 previous default label defined %L

This informational message indicates where a preceding default label is defined.

574 label defined %L

This informational message indicates where a label is defined.

575 label referenced %L

This informational message indicates where a label is referenced.

576 object thrown has type: %T

This informational message indicates the type of the object being thrown.

577 object thrown has an ambiguous base class %T

It is illegal to throw an object with a base class to which a conversion would be ambiguous.

Example:
struct ambiguous{ };

struct base1 : public ambiguous { };

struct base2 : public ambiguous { };

struct derived : public base1, public base2 { };

foo(derived &object)

{

throw object;

}

The throw will cause an error to be displayed because an object of type "derived" cannot be

converted to an object of type "ambiguous".

578 form is ’#pragma inline_depth level’ where ’level’ is 0 to 255

This pragma sets the number of times inline expansion will occur for an inline function

which contains calls to inline functions. The level must be a number from zero to 255.

When the level is zero, no inline expansion occurs.

579 pointer or reference truncated by cast

The cast expression causes a conversion of a pointer value to another pointer value of

smaller size. This can be caused by __near or __far qualifiers (i.e., casting a far pointer to

a near pointer). Function pointers can also have a different size than data pointers in

certain memory models. Because this message indicates that some information is being

lost, check the code carefully.

120 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

580 cannot find a constructor for given initializer argument list

The initializer list provided for the new expression does not uniquely identify a single

constructor.

581 variable ’%N’ can only be based on a string in this context

All of the based modifiers can only be applied to pointer types. The only based modifier

that can be applied to non-pointer types is the ’__based(__segname("WATCOM"))’ style.

582 memory model modifiers are not allowed for class members

Class members describe the arrangement and interpretation of memory and, as such,

assume the memory model of the address used to access the member.

583 redefinition of the typedef name ’%S’ ignored

The compiler has detected that a slightly different type has been assigned to a typedef

name. The type is functionally equivalent but typedef redefinitions should be precisely

identical.

584 constructor for variable ’%S’ cannot be bypassed

The variable may not be constructed when code is executing at the position the message

indicated. The C++ language places these restrictions to prevent the use of unconstructed

variables.

585 syntax error; missing start of function body after constructor initializer

Member initializers can only be used in a constructor’s definition.

Example:
struct S {

int a;

S(int x = 1) : a(x)

{

}

};

586 conversion ambiguity: [expression] to [type of default argument]

A conversion to an ambiguous base class was detected in the default argument expression.

587 conversion of expression for default argument is impossible

A conversion to a unrelated class was detected in the default argument expression.

Diagnostic Messages 121

Chapter 1

588 syntax error before template name ’%s’

The identifier in the error message has been declared as a template name at this point in the

code. This may be the cause of the syntax error.

589 private base class accessed to convert default argument

A conversion to a private base class was detected in the default argument expression.

590 protected base class accessed to convert default argument

A conversion to a protected base class was detected in the default argument expression.

591 operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot

be assigned into because a brand new value is always created. Assigning a new value to a

temporary is a meaningless operation.

592 left operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot

be assigned into because a brand new value is always created. Assigning a new value to a

temporary is a meaningless operation.

593 right operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot

be assigned into because a brand new value is always created. Assigning a new value to a

temporary is a meaningless operation.

594 construct resolved as a declaration/type

The C++ language contains language ambiguities that force compilers to rely on extra

information in order to understand certain language constructs. The extra information

required to disambiguate the language can be deduced by looking ahead in the source file.

Once a single interpretation has been found, the compiler can continue analysing source

code. See the ARM p.93 for more details. This warning is intended to inform the

programmer that an ambiguous construct has been resolved in a certain direction. In this

case, the construct has been determined to be part of a type. The final resolution varies

between compilers so it is wise to change the source code so that the construct is not

ambiguous. This is especially important in cases where the resolution is more than three

tokens away from the start of the ambiguity.

595 construct resolved as an expression

The C++ language contains language ambiguities that force compilers to rely on extra

information in order to understand certain language constructs. The extra information

required to disambiguate the language can be deduced by looking ahead in the source file.

Once a single interpretation has been found, the compiler can continue analysing source

code. See the ARM p.93 for more details. This warning is intended to inform the

programmer that an ambiguous construct has been resolved in a certain direction. In this

case, the construct has been determined to be part of an expression (a function-like cast).

The final resolution varies between compilers so it is wise to change the source code so that

122 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

the construct is not ambiguous. This is especially important in cases where the resolution is

more than three tokens away from the start of the ambiguity.

596 construct cannot be resolved

The C++ language contains language ambiguities that force compilers to rely on extra

information in order to understand certain language constructs. The extra information

required to disambiguate the language can be deduced by looking ahead in the source file.

Once a single interpretation has been found, the compiler can continue analysing source

code. See the ARM p.93 for more details. This warning is intended to inform the

programmer that an ambiguous construct could not be resolved by the compiler. Please

report this to the Open Watcom developement team so that the problem can be analysed.

See https://discord.com/channels/922934435744206908 .

597 encountered another ambiguous construct during disambiguation

The C++ language contains language ambiguities that force compilers to rely on extra

information in order to understand certain language constructs. The extra information

required to disambiguate the language can be deduced by looking ahead in the source file.

Once a single interpretation has been found, the compiler can continue analysing source

code. See the ARM p.93 for more details. This warning is intended to inform the

programmer that another ambiguous construct was found inside an ambiguous construct.

The compiler will correctly disambiguate the construct. The programmer is advised to

change code that exhibits this warning because this is definitely uncharted territory in the

C++ language.

598 ellipsis (...) argument contains compiler generated information

A class with virtual functions or virtual bases is being passed to a function that will not

know the type of the argument. Since this information can be encoded in a variety of ways,

the code may not be portable to another environment.

Example:
struct S

{ virtual int foo();

};

static S sv;

extern int bar(S, ...);

static int test = bar(sv, 14, 64);

The call to "bar" causes a warning, since the structure S contains information associated

with the virtual function for that class.

599 cannot convert argument for ellipsis (...) argument

This argument cannot be used as an ellipsis (...) argument to a function.

Diagnostic Messages 123

Chapter 1

600 conversion ambiguity: [argument] to [ellipsis (...) argument]

A conversion ambiguity was detected while converting an argument to an ellipsis (...)

argument.

601 converted function type has different #pragma from original function type

Since a #pragma can affect calling conventions, one must be very careful performing casts

involving different calling conventions.

602 class value used as return value or argument in converted function type

The compiler has detected a cast between "C" and "C++" linkage function types. The

calling conventions are different because of the different language rules for copying

structures.

603 class value used as return value or argument in original function type

The compiler has detected a cast between "C" and "C++" linkage function types. The

calling conventions are different because of the different language rules for copying

structures.

604 must look ahead to determine whether construct is a declaration/type or an expression

The C++ language contains language ambiguities that force compilers to rely on extra

information in order to understand certain language constructs. The extra information

required to disambiguate the language can be deduced by looking ahead in the source file.

Once a single interpretation has been found, the compiler can continue analysing source

code. See the ARM p.93 for more details. This warning is intended to inform the

programmer that an ambiguous construct has been used. The final resolution varies

between compilers so it is wise to change the source code so that the construct is not

ambiguous.

605 assembler: ’%s’

An error has been detected by the #pragma inline assembler.

606 default argument expression cannot reference ’this’

The order of evaluation for function arguments is unspecified in the C++ language

document. Thus, a default argument must be able to be evaluated before the ’this’

argument (or any other argument) is evaluated.

607 #pragma aux must reference a "C" linkage function ’%S’

The method of assigning pragma information via the #pragma syntax is provided for

compatibility with Open Watcom C. Because C only allows one function per name, this

was adequate for the C language. Since C++ allows functions to be overloaded, a new

method of referencing pragmas has been introduced.

124 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#pragma aux this_in_SI parm caller [si] [ax];

struct S {

void __pragma("this_in_SI") foo(int);

void __pragma("this_in_SI") foo(char);

};

608 assignment is ambiguous for operands used

An ambiguity was detected while attempting to convert the right operand to the type of the

left operand.

Example:
struct S1 {

int a;

};

struct S2 : S1 {

int b;

};

struct S3 : S2, S1 {

int c;

};

S1* fn(S3 *p)

{

return p;

}

In the example, class S1 occurs ambiguously for an object or pointer to an object of type

S3. A pointer to an S3 object cannot be converted to a pointer to an S1 object.

609 pragma name ’%s’ is not defined

Pragmas are defined with the #pragma aux syntax. See the User’s Guide for the details of

defining a pragma name. If the pragma has been defined then check the spelling between

the definition and the reference of the pragma name.

610 ’%S’ could not be generated by the compiler

An error occurred while the compiler tried to generate the specified function. The error

prevented the compiler from generating the function properly so the compilation cannot

continue.

611 ’catch’ does not immediately follow a ’try’ or ’catch’

The catch handler syntax must be used in conjunction with a try block.

Diagnostic Messages 125

Chapter 1

Example:
void f()

{

try {

// code that may throw an exception

} catch(int x) {

// handle ’int’ exceptions

} catch(...) {

// handle all other exceptions

}

}

612 preceding catch specified ’...’

Since an ellipsis "..." catch handler will handle any type of exception, no further catch

handlers can exist afterwards because they will never execute. Reorder the catch handlers

so that the "..." catch handler is the last handler.

613 argument to extern "C" function contains compiler generated information

A class with virtual functions or virtual bases is being passed to a function that will not

know the type of the argument. Since this information can be encoded in a variety of ways,

the code may not be portable to another environment.

Example:
struct S

{ virtual int foo();

};

static S sv;

extern "C" int bar(S);

static int test = bar(sv);

The call to "bar" causes a warning, since the structure S contains information associated

with the virtual function for that class.

614 previous try block defined %L

This informational message indicates where a preceding try block is defined.

615 previous catch block defined %L

This informational message indicates where a preceding catch block is defined.

616 catch handler can never be invoked

Because the handlers for a try block are tried in order of appearance, the type specified in a

preceding catch can ensure that the current handler will never be invoked. This occurs

when a base class (or reference) precedes a derived class (or reference); when a pointer to a

base class (or reference to the pointer) precedes a pointer to a derived class (or reference to

the pointer); or, when "void*" or "void*&" precedes a pointer or a reference to the pointer.

126 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct BASE {};

struct DERIVED : public BASE {};

foo()

{

try {

// code for try

} catch(BASE b) { // [1]

// code

} catch(DERIVED) { // warning: [1]

// code

} catch(BASE* pb) { // [2]

// code

} catch(DERIVED* pd) {// warning: [2]

// code

} catch(void* pv) { // [3]

// code

} catch(int* pi) { // warning: [3]

// code

} catch(BASE& br) { // warning: [1]

// code

} catch(float*& pfr) {// warning: [3]

// code

}

}

Each erroneous catch specification indicates the preceding catch block which caused the

error.

617 cannot overload extern "C" functions (the other function is ’%S’)

The C++ language only allows you to overload functions that are strictly C++ functions.

The compiler will automatically generate the correct code to distinguish each particular

function based on its argument types. The extern "C" linkage mechanism only allows you

to define one "C" function of a particular name because the C language does not support

function overloading.

618 function will be overload ambiguous with ’%S’ using default arguments

The declaration declares a function that is indistinguishable from another function of the

same name with default arguments.

Example:
void fn(int, int = 1);

void fn(int);

Calling the function ’fn’ with one argument is ambiguous because it could match either the

first ’fn’ with a default argument applied or the second ’fn’ without any default arguments.

Diagnostic Messages 127

Chapter 1

619 linkage specification is different than previous declaration ’%S’

The linkage specification affects the binding of names throughout a program. It is

important to maintain consistency because subtle problems could arise when the incorrect

function is called. Usually this error prevents an unresolved symbol error during linking

because the name of a declaration is affected by its linkage specification.

Example:
extern "C" void fn(void);

void fn(void)

{

}

620 not enough segment registers available to generate ’%s’

Through a combination of options, the number of available segment registers is too small.

This can occur when too many segment registers are pegged. This can be fixed by

changing the command line options to only peg the segment registers that must absolutely

be pegged.

621 pure virtual destructors must have a definition

This is an anomaly for pure virtual functions. A destructor is the only special function that

is inherited and allowed to be virtual. A derived class must be able to call the base class

destructor so a pure virtual destructor must be defined in a C++ program.

622 jump into try block

Jumps cannot enter try blocks.

Example:
foo(int a)

{

if(a) goto tr_lab;

try {

tr_lab:

throw 1234;

} catch(int) {

if(a) goto tr_lab;

}

if(a) goto tr_lab;

}

All the preceding goto’s are illegal. The error is detected at the label for forward jumps and

at the goto’s for backward jumps.

128 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

623 jump into catch handler

Jumps cannot enter catch handlers.

Example:
foo(int a)

{

if(a)goto ca_lab;

try {

if(a)goto ca_lab;

} catch(int) {

ca_lab:

}

if(a)goto ca_lab;

}

All the preceding goto’s are illegal. The error is detected at the label for forward jumps and

at the goto’s for backward jumps.

624 catch block does not immediately follow try block

At least one catch handler must immediately follow the "}" of a try block.

Example:
extern void goop();

void foo()

{

try {

goop();

} // a catch block should follow!

}

In the example, there were no catch blocks after the try block.

625 exceptions must be enabled to use feature (use ’xs’ option)

Exceptions are enabled by specifying the ’xs’ option when the compiler is invoked. The

error message indicates that a feature such as try, catch, throw, or function exception

specification has been used without enabling exceptions.

626 I/O error reading ’%s’: %s"

When attempting to read data from a source or header file, the indicated system error

occurred. Likely there is a hardware problem, or the file system has become corrupt.

627 text following pre-processor directive

A #else or #endif directive was found which had tokens following it rather than an end of

line. Some UNIX style preprocessors allowed this, but it is not legal under standard C or

C++. Make the tokens into a comment.

Diagnostic Messages 129

Chapter 1

628 expression is not meaningful

This message indicates that the indicated expression is not meaningful. An expression is

meaningful when a function is invoked, when an assignment or initialization is performed,

or when the expression is casted to void.

Example:
void foo(int i, int j)

{

i + j; // not meaningful

}

629 expression has no side effect

The indicated expression does not cause a side effect. A side effect is caused by invoking a

function, by an assignment or an initialization, or by reading a volatile variable.

Example:
int k;

void foo(int i, int j)

{

i + j, // no side effect (note comma)

k = 3;

}

630 source conversion type is ’%T’

This informational message indicates the type of the source operand, for the preceding

conversion diagnostic.

631 target conversion type is ’%T’

This informational message indicates the target type of the conversion, for the preceding

conversion diagnostic.

632 redeclaration of ’%S’ has different attributes

A function cannot be made virtual or pure virtual in a subsequent declaration. All

properties of a function should be described in the first declaration of a function. This is

especially important for member functions because the properties of a class are affected by

its member functions.

Example:
struct S {

void fun();

};

virtual void S::fun()

{

}

130 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

633 template class instantiation for ’%T’ was %L

This informational message indicates that the error or warning was detected during the

instantiation of a class template. The final type of the template class is shown as well as the

location in the source where the instantiation was initiated.

634 template function instantiation for ’%S’ was %L

This informational message indicates that the error or warning was detected during the

instantiation of a function template. The final type of the template function is shown as

well as the location in the source where the instantiation was initiated.

635 template class member instantiation was %L

This informational message indicates that the error or warning was detected during the

instantiation of a member of a class template. The location in the source where the

instantiation was initiated is shown.

636 function template binding for ’%S’ was %L

This informational message indicates that the error or warning was detected during the

binding process of a function template. The binding process occurs at the point where

arguments are analysed in order to infer what types should be used in a function template

instantiation. The function template in question is shown along with the location in the

source code that initiated the binding process.

637 function template binding of ’%S’ was %L

This informational message indicates that the error or warning was detected during the

binding process of a function template. The binding process occurs at the point where a

function prototype is analysed in order to see if the prototype matches any function

template of the same name. The function template in question is shown along with the

location in the source code that initiated the binding process.

638 ’%s’ defined %L

This informational message indicates where the class in question was defined. The

message is displayed following an error or warning diagnostic for the class in question.

Example:
class S;

int foo(S*p)

{

return p->x;

}

The variable p is a pointer to an undefined class and so will cause an error to be generated.

Following the error, the informational message indicates the line at which the class S was

declared.

Diagnostic Messages 131

Chapter 1

639 form is ’#pragma template_depth level’ where ’level’ is a non-zero number

This pragma sets the number of times templates will be instantiated for nested

instantiations. The depth check prevents infinite compile times for incorrect programs.

640 possible non-terminating template instantiation (use "#pragma template_depth %d" to

increase depth)

This message indicates that a large number of expansions were required to complete a

template class or template function instantiation. This may indicate that there is an

erroneous use of a template. If the program will complete given more depth, try using the

suggested #pragma in the error message to increase the depth. The number provided is

double the previous value.

641 cannot inherit a partially defined base class ’%T’

This message indicates that the base class was in the midst of being defined when it was

inherited. The storage requirements for a class type must be known when inheritance is

involved because the layout of the final class depends on knowing the complete contents of

all base classes.

Example:
struct Partial {

struct Nested : Partial {

int n;

};

};

642 ambiguous function: %F defined %L

This informational message shows the functions that were detected to be ambiguous.

Example:
int amb(char); // will be ambiguous

int amb(unsigned char); // will be ambiguous

int amb(char, char);

int k = amb(14);

The constant value 14 has an int type and so the attempt to invoke the function amb is

ambiguous. The first two functions are ambiguous (and will be displayed); the third is not

considered (nor displayed) since it is declared to have a different number of arguments.

643 cannot convert argument %d defined %L

This informational message indicates the first argument which could not be converted to

the corresponding type for the declared function. It is displayed when there is exactly one

function declared with the indicated name.

132 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

644 ’this’ cannot be converted

This informational message indicates the this pointer for the function which could not be

converted to the type of the this pointer for the declared function. It is displayed when

there is exactly one function declared with the indicated name.

645 rejected function: %F defined %L

This informational message shows the overloaded functions which were rejected from

consideration during function-overload resolution. These functions are displayed when

there is more than one function with the indicated name.

646 ’%T’ operator can be used

Following a diagnosis of operator ambiguity, this information message indicates that the

operator can be applied with operands of the type indicated in the message.

Example:
struct S {

S(int);

operator int();

S operator+(int);

};

S s(15);

int k = s + 123; // "+" is ambiguous

In the example, the "+" operation is ambiguous because it can implemented as by the

addition of two integers (with S::operator int applied to the second operand) or by a

call to S::operator+. This informational message indicates that the first is possible.

647 cannot #undef ’%s’

The predefined macros __cplusplus, __DATE__, __FILE__, __LINE__,

__STDC__, __TIME__, __FUNCTION__ and __func__ cannot be undefined using

the #undef directive.

Example:
#undef __cplusplus

#undef __DATE__

#undef __FILE__

#undef __LINE__

#undef __STDC__

#undef __TIME__

#undef __FUNCTION__

#undef __func__

All of the preceding directives are not permitted.

Diagnostic Messages 133

Chapter 1

648 cannot #define ’%s’

The predefined macros __cplusplus, __DATE__, __FILE__, __LINE__,

__STDC__, and __TIME__ cannot be defined using the #define directive.

Example:
#define __cplusplus 1

#define __DATE__ 2

#define __FILE__ 3

#define __LINE__ 4

#define __STDC__ 5

#define __TIME__ 6

All of the preceding directives are not permitted.

649 template function ’%F’ defined %L

This informational message indicates where the function template in question was defined.

The message is displayed following an error or warning diagnostic for the function

template in question.

Example:
template <class T>

void foo(T, T *)

{

}

void bar()

{

foo(1); // could not instantiate

}

The function template for foo cannot be instantiated for a single argument causing an error

to be generated. Following the error, the informational message indicates the line at which

foo was declared.

650 ambiguous function template: %F defined %L

This informational message shows the function templates that were detected to be

ambiguous for the arguments at the call point.

651 cannot instantiate %S

This message indicates that the function template could not be instantiated for the

arguments supplied. It is displayed when there is exactly one function template declared

with the indicated name.

134 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

652 rejected function template: %F defined %L

This informational message shows the overloaded function template which was rejected

from consideration during function-overload resolution. These functions are displayed

when there is more than one function or function template with the indicated name.

653 operand cannot be a function

The indicated operation cannot be applied to a function.

Example:
int Fun();

int j = ++Fun; // illegal

In the example, the attempt to increment a function is illegal.

654 left operand cannot be a function

The indicated operation cannot be applied to the left operand which is a function.

Example:
extern int Fun();

void foo()

{

Fun = 0; // illegal

}

In the example, the attempt to assign zero to a function is illegal.

655 right operand cannot be a function

The indicated operation cannot be applied to the right operand which is a function.

Example:
extern int Fun();

void foo()

{

void* p = 3[Fun]; // illegal

}

In the example, the attempt to subscript a function is illegal.

656 define this function inside its class definition (may improve code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty

function body. An empty function body can usually provide optimization opportunities so

the compiler is indicating that by defining the function inside its class definition, the

compiler may be able to perform some important optimizations.

Diagnostic Messages 135

Chapter 1

Example:
struct S {

~S();

};

S::~S() {

}

657 define this function inside its class definition (could have improved code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty

function body. An empty function body can usually provide optimization opportunities so

the compiler is indicating that by defining the function inside its class definition, the

compiler may be able to perform some important optimizations. This particular warning

indicates that the compiler has already found an opportunity in previous code but it found

out too late that the constructor or destructor had an empty function body.

Example:
struct S {

~S();

};

struct T : S {

~T() {}

};

S::~S() {

}

658 cannot convert address of overloaded function ’%S’

This information message indicates that an address of an overloaded function cannot be

converted to the indicated type.

Example:
int ovload(char);

int ovload(float);

int routine(int (*)(int);

int k = routine(ovload);

The first argument for the function routine cannot be converted, resulting in the

informational message.

659 expression cannot have void type

The indicated expression cannot have a void type.

Example:
main(int argc, char* argv)

{

if((void)argc) {

return 5;

} else {

return 9;

}

}

136 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Conditional expressions, such as the one illustrated in the if statement cannot have a void

type.

660 cannot reference a bit field

The smallest addressable unit is a byte. You cannot reference a bit field.

Example:
struct S

{ int bits :6;

int bitfield :10;

};

S var;

int& ref = var.bitfield; // illegal

661 cannot assign to object having an undefined class

An assignment cannot be be made to an object whose class has not been defined.

Example:
class X; // declared, but not defined

extern X& foo(); // returns reference (ok)

extern X obj;

void goop()

{

obj = foo(); // error

}

662 cannot create member pointer to constructor

A member pointer value cannot reference a constructor.

Example:
class C {

C();

};

int foo()

{

return 0 == &C::C;

}

663 cannot create member pointer to destructor

A member pointer value cannot reference a destructor.

Example:
class C {

~C();

};

int foo()

{

return 0 == &C::~C;

}

Diagnostic Messages 137

Chapter 1

664 attempt to initialize a non-constant reference with a temporary object

A temporary value cannot be converted to a non-constant reference type.

Example:
struct C {

C(C&);

C(int);

};

C & c1 = 1;

C c2 = 2;

The initializations of c1 and c2 are erroneous, since temporaries are being bound to

non-const references. In the case of c1, an implicit constructor call is required to convert

the integer to the correct object type. This results in a temporary object being created to

initialize the reference. Subsequent code can modify this temporary’s state. The

initialization of c2, is erroneous for a similar reason. In this case, the temporary is being

bound to the non-const reference argument of the copy constructor.

665 temporary object used to initialize a non-constant reference

Ordinarily, a temporary value cannot be bound to a non-constant reference. There is

enough legacy code present that the Open Watcom C++ compiler issues a warning in cases

that should be errors. This may change in the future so it is advisable to correct the code as

soon as possible.

666 assuming unary ’operator &’ not overloaded for type ’%T’

An explicit address operator can be applied to a reference to an undefined class. The Open

Watcom C++ compiler will assume that the address is required but it does not know

whether this was the programmer’s intention because the class definition has not been seen.

Example:
struct S;

S * fn(S &y) {

// assuming no operator ’&’ defined

return &y;

}

667 ’va_start’ macro will not work without an argument before ’...’

The warning indicates that it is impossible to access the arguments passed to the function

without declaring an argument before the "..." argument. The "..." style of argument list

(without any other arguments) is only useful as a prototype or if the function is designed to

ignore all of its arguments.

138 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn(...)

{

}

668 ’va_start’ macro will not work with a reference argument before ’...’

The warning indicates that taking the address of the argument before the "..." argument,

which ’va_start’ does in order to access the variable list of arguments, will not give the

expected result. The arguments will have to be rearranged so that an acceptable argument

is declared before the "..." argument or a dummy int argument can be inserted after the

reference argument with the corresponding adjustments made to the callers of the function.

Example:
#include <stdarg.h>

void fn(int &r, ...)

{

va_list args;

// address of ’r’ is address of

// object ’r’ references so

// ’va_start’ will not work properly

va_start(args, r);

va_end(args);

}

669 ’va_start’ macro will not work with a class argument before ’...’

This warning is specific to C++ compilers that quietly convert class arguments to class

reference arguments. The warning indicates that taking the address of the argument before

the "..." argument, which ’va_start’ does in order to access the variable list of arguments,

will not give the expected result. The arguments will have to be rearranged so that an

acceptable argument is declared before the "..." argument or a dummy int argument can be

inserted after the class argument with the corresponding adjustments made to the callers of

the function.

Example:
#include <stdarg.h>

struct S {

S();

};

void fn(S c, ...)

{

va_list args;

// Open Watcom C++ passes a pointer to

// the temporary created for passing

// ’c’ rather than pushing ’c’ on the

// stack so ’va_start’ will not work

// properly

va_start(args, c);

va_end(args);

}

Diagnostic Messages 139

Chapter 1

670 function modifier conflicts with previous declaration ’%S’

The symbol declaration conflicts with a previous declaration with regard to function

modifiers. Either the previous declaration did not have a function modifier or it had a

different one.

Example:
#pragma aux never_returns aborts;

void fn(int, int);

void __pragma("never_returns") fn(int, int);

671 function modifier cannot be used on a variable

The symbol declaration has a function modifier being applied to a variable or non-function.

The cause of this may be a declaration with a missing function argument list.

Example:
int (* __pascal ok)();

int (* __pascal not_ok);

672 ’%T’ contains the following pure virtual functions

This informational message indicates that the class contains pure virtual function

declarations. The class is definitely abstract as a result and cannot be used to declare

variables. The pure virtual functions declared in the class are displayed immediately

following this message.

Example:
struct A {

void virtual fn(int) = 0;

};

A x;

673 ’%T’ has no implementation for the following pure virtual functions

This informational message indicates that the class is derived from an abstract class but the

class did not override enough virtual function declarations. The pure virtual functions

declared in the class are displayed immediately following this message.

Example:
struct A {

void virtual fn(int) = 0;

};

struct D : A {

};

D x;

140 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

674 pure virtual function ’%F’ defined %L

This informational message indicates that the pure virtual function has not been overridden.

This means that the class is abstract.

Example:
struct A {

void virtual fn(int) = 0;

};

struct D : A {

};

D x;

675 restriction: standard calling convention required for ’%S’

The indicated function may be called by the C++ run-time system using the standard

calling convention. The calling convention specified for the function is incompatible with

the standard convention. This message may result when __pascal is specified for a

default constructor, a copy constructor, or a destructor. It may also result when parm

reverse is specified in a #pragma for the function.

676 number of arguments in function call is incorrect

The number of arguments in the function call does not match the number declared for the

function type.

Example:
extern int (*pfn)(int, int);

int k = pfn(1, 2, 3);

In the example, the function pointer was declared to have two arguments. Three arguments

were used in the call.

677 function has type ’%T’

This informational message indicates the type of the function being called.

678 invalid octal constant

The constant started with a ’0’ digit which makes it look like an octal constant but the

constant contained the digits ’8’ and ’9’. The problem could be an incorrect octal constant

or a missing ’.’ for a floating constant.

Example:
int i = 0123456789; // invalid octal constant

double d = 0123456789; // missing ’.’?

Diagnostic Messages 141

Chapter 1

679 class template definition started %L

This informational message indicates where the class template definition started so that any

problems with missing braces can be fixed quickly and easily.

Example:
template <class T>

struct S {

void f1() {

// error missing ’}’

};

template <class T>

struct X {

void f2() {

}

};

680 constructor initializer started %L

This informational message indicates where the constructor initializer started so that any

problems with missing parenthesis can be fixed quickly and easily.

Example:
struct S {

S(int x) : a(x), b(x // missing parenthesis

{

}

};

681 zero size array must be the last data member

The language extension that allows a zero size array to be declared in a class definition

requires that the array be the last data member in the class.

Example:
struct S {

char a[];

int b;

};

682 cannot inherit a class that contains a zero size array

The language extension that allows a zero size array to be declared in a class definition

disallows the use of the class as a base class. This prevents the programmer from

corrupting storage in derived classes through the use of the zero size array.

Example:
struct B {

int b;

char a[];

};

struct D : B {

int d;

};

142 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

683 zero size array ’%S’ cannot be used in a class with base classes

The language extension that allows a zero size array to be declared in a class definition

requires that the class not have any base classes. This is required because the C++ compiler

must be free to organize base classes in any manner for optimization purposes.

Example:
struct B {

int b;

};

struct D : B {

int d;

char a[];

};

684 cannot catch abstract class object

C++ does not allow abstract classes to be instantiated and so an abstract class object cannot

be specified in a catch clause. It is permissible to catch a reference to an abstract class.

Example:
class Abstract {

public:

virtual int foo() = 0;

};

class Derived : Abstract {

public:

int foo();

};

int xyz;

void func(void) {

try {

throw Derived();

} catch(Abstract abstract) { // object

xyz = 1;

}

}

The catch clause in the preceding example would be diagnosed as improper, since an

abstract class is specified. The example could be coded as follows.

Example:

Diagnostic Messages 143

Chapter 1

class Abstract {

public:

virtual int foo() = 0;

};

class Derived : Abstract {

public:

int foo();

};

int xyz;

void func(void) {

try {

throw Derived();

} catch(Abstract & abstract) { // reference

xyz = 1;

}

}

685 non-static member function ’%S’ cannot be specified

The indicated non-static member function cannot be used in this context. For example,

such a function cannot be used as the second or third operand of the conditional operator.

Example:
struct S {

int foo();

int bar();

int fun();

};

int S::fun(int i) {

return (i ? foo : bar)();

}

Neither foo nor bar can be specified as shown in the example. The example can be

properly coded as follows:

Example:
struct S {

int foo();

int bar();

int fun();

};

int S::fun(int i) {

return i ? foo() : bar();

}

144 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

686 attempt to convert pointer or reference from a base to a derived class

A pointer or reference to a base class cannot be converted to a pointer or reference,

respectively, of a derived class, unless there is an explicit cast. The return statements in

the following example will be diagnosed.

Example:
struct Base {};

struct Derived : Base {};

Base b;

Derived* ReturnPtr() { return &b; }

Derived& ReturnRef() { return b; }

The following program would be acceptable:

Example:
struct Base {};

struct Derived : Base {};

Base b;

Derived* ReturnPtr() { return (Derived*)&b; }

Derived& ReturnRef() { return (Derived&)b; }

687 expression for ’while’ is always true

The compiler has detected that the expression will always be true. Consequently, the loop

will execute infinitely unless there is a break statement within the loop or a throw

statement is executed while executing within the loop. If such an infinite loop is required,

it can be coded as for(;) without causing warnings.

688 testing expression for ’for’ is always true

The compiler has detected that the expression will always be true. Consequently, the loop

will execute infinitely unless there is a break statement within the loop or a throw

statement is executed while executing within the loop. If such an infinite loop is required,

it can be coded as for(;) without causing warnings.

689 conditional expression is always true (non-zero)

The indicated expression is a non-zero constant and so will always be true.

690 conditional expression is always false (zero)

The indicated expression is a zero constant and so will always be false.

Diagnostic Messages 145

Chapter 1

691 expecting a member of ’%T’ to be defined in this context

A class template member definition must define a member of the associated class template.

The complexity of the C++ declaration syntax can make this error hard to identify visually.

Example:
template <class T>

struct S {

typedef int X;

static X fn(int);

static X qq;

};

template <class T>

S<T>::X fn(int) {// should be ’S<T>::fn’

return fn(2);

}

template <class T>

S<T>::X qq = 1; // should be ’S<T>::q’

S<int> x;

692 cannot throw an abstract class

An abstract class cannot be thrown since copies of that object may have to be made (which

is impossible);

Example:
struct abstract_class {

abstract_class(int);

virtual int foo() = 0;

};

void goop()

{

throw abstract_class(17);

}

The throw expression is illegal since it specifies an abstract class.

693 cannot create pre-compiled header file ’%s’

The compiler has detected a problem while trying to open the pre-compiled header file for

write access.

694 error occurred while writing pre-compiled header file

The compiler has detected a problem while trying to write some data to the pre-compiled

header file.

146 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

695 error occurred while reading pre-compiled header file

The compiler has detected a problem while trying to read some data from the pre-compiled

header file.

696 pre-compiled header file being recreated

The existing pre-compiled header file may either be corrupted or is a version that the

compiler cannot use due to updates to the compiler. A new version of the pre-compiled

header file will be created.

697 pre-compiled header file being recreated (different compile options)

The compiler has detected that the command line options have changed enough so the

contents of the pre-compiled header file cannot be used. A new version of the

pre-compiled header file will be created.

698 pre-compiled header file being recreated (different #include file)

The compiler has detected that the first #include file name is different so the contents of the

pre-compiled header file cannot be used. A new version of the pre-compiled header file

will be created.

699 pre-compiled header file being recreated (different current directory)

The compiler has detected that the working directory is different so the contents of the

pre-compiled header file cannot be used. A new version of the pre-compiled header file

will be created.

700 pre-compiled header file being recreated (different INCLUDE path)

The compiler has detected that the INCLUDE path is different so the contents of the

pre-compiled header file cannot be used. A new version of the pre-compiled header file

will be created.

701 pre-compiled header file being recreated (’%s’ has been modified)

The compiler has detected that an include file has changed so the contents of the

pre-compiled header file cannot be used. A new version of the pre-compiled header file

will be created.

702 pre-compiled header file being recreated (macro ’%s’ is different)

The compiler has detected that a macro definition is different so the contents of the

pre-compiled header file cannot be used. The macro was referenced during processing of

the header file that created the pre-compiled header file so the contents of the pre-compiled

header may be affected. A new version of the pre-compiled header file will be created.

Diagnostic Messages 147

Chapter 1

703 pre-compiled header file being recreated (macro ’%s’ is not defined)

The compiler has detected that a macro has not been defined so the contents of the

pre-compiled header file cannot be used. The macro was referenced during processing of

the header file that created the pre-compiled header file so the contents of the pre-compiled

header may be affected. A new version of the pre-compiled header file will be created.

704 command line specifies smart windows callbacks and DS not equal to SS

An illegal combination of switches has been detected. The windows smart callbacks option

cannot be combined with either of the build DLL or DS not equal to SS options.

705 class ’%N’ cannot be used with #pragma dump_object_model

The indicated name has not yet been declared or has been declared but not yet been defined

as a class. Consequently, the object model cannot be dumped.

706 repeated modifier is ’%s’

This informational message indicates what modifier was repeated in the declaration.

Example:
typedef int __far FARINT;

FARINT __far *p; // repeated __far modifier

707 semicolon (’;’) may be missing after class/enum definition

This informational message indicates that a missing semicolon (’;’) may be the cause of the

error.

Example:
struct S {

int x,y;

S(int, int);

} // missing semicolon ’;’

S::S(int x, int y) : x(x), y(y) {

}

708 cannot return a type of unknown size

A value of an unknown type cannot be returned.

Example:
class S;

S foo();

int goo()

{

foo();

}

In the example, foo cannot be invoked because the class which it returns has not been

defined.

148 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

709 cannot initialize array member ’%S’

An array class member cannot be specified as a constructor initializer.

Example:
class S {

public:

int arr[3];

S();

};

S::S() : arr(1, 2, 3) {}

In the example, arr cannot be specified as a constructor initializer. Instead, the array may

be initialized within the body of the constructor.

Example:
class S {

public:

int arr[3];

S();

};

S::S()

{

arr[0] = 1;

arr[1] = 2;

arr[2] = 3;

}

710 file ’%s’ will #include itself forever

The compiler has detected that the file in the message has been #include from within itself

without protecting against infinite inclusion. This can happen if #ifndef and #define header

file protection has not been used properly.

Example:
#include __FILE__

711 ’mutable’ may only be used for non-static class members

A declaration in file scope or block scope cannot have a storage class of mutable.

Example:
mutable int a;

712 ’mutable’ member cannot also be const

A mutable member can be modified even if its class object is const. Due to the semantics

of mutable, the programmer must decide whether a member will be const or mutable

because it cannot be both at the same time.

Diagnostic Messages 149

Chapter 1

Example:
struct S {

mutable const int * p; // OK

mutable int * const q; // error

};

713 left operand cannot be of type bool

The left hand side of an assignment operator cannot be of type bool except for simple

assignment. This is a restriction required in the C++ language.

Example:
bool q;

void fn()

{

q += 1;

}

714 operand cannot be of type bool

The operand of both postfix and prefix "--" operators cannot be of type bool. This is a

restriction required in the C++ language.

Example:
bool q;

void fn()

{

--q; // error

q--; // error

}

715 member ’%N’ has not been declared in ’%T’

The compiler has found a member which has not been previously declared. The symbol

may be spelled differently than the declaration, or the declaration may simply not be

present.

Example:
struct X { int m; };

void fn(X *p)

{

p->x = 1;

}

716 integral value may be truncated

This message indicates that the compiler knows that all values will not be preserved after

the assignment or initialization. If this is acceptable, cast the value to the appropriate type

in the assignment or initialization.

150 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
char inc(char c)

{

return c + 1;

}

717 left operand type is ’%T’

This informational message indicates the type of the left hand side of the expression.

718 right operand type is ’%T’

This informational message indicates the type of the right hand side of the expression.

719 operand type is ’%T’

This informational message indicates the type of the operand.

720 expression type is ’%T’

This informational message indicates the type of the expression.

721 virtual function ’%S’ cannot have its return type changed

This restriction is due to the relatively new feature in the C++ language that allows return

values to be changed when a virtual function has been overridden. It is not possible to

support both features because in order to support changing the return value of a function,

the compiler must construct a "wrapper" function that will call the virtual function first and

then change the return value and return. It is not possible to do this with "..." style

functions because the number of parameters is not known.

Example:
struct B {

};

struct D : virtual B {

};

struct X {

virtual B *fn(int, ...);

};

struct Y : X {

virtual D *fn(int, ...);

};

722 __declspec(’%N’) is not supported

The identifier used in the __declspec declaration modifier is not supported by Open

Watcom C++.

Diagnostic Messages 151

Chapter 1

723 attempt to construct a far object when the data model is near

Constructors cannot be applied to objects which are stored in far memory when the default

memory model for data is near.

Example:
struct Obj

{ char *p;

Obj();

};

Obj far obj;

The last line causes this error to be displayed when the memory model is small (switch

-ms), since the memory model for data is near.

724 -zo is an obsolete switch (has no effect)

The -zo option was required in an earlier version of the compiler but is no longer used.

725 "%s"

This is a user message generated by the #pragma message or by #warning preprocessor

directive.

Example:
#pragma message("my very own warning");

or

#warning my very own warning

726 no reference to formal parameter ’%S’

There are no references to the declared formal parameter. The simplest way to remove this

warning in C++ is to remove the name from the argument declaration.

Example:
int fn1(int a, int b, int c)

{

// ’b’ not referenced

return a + c;

}

int fn2(int a, int /* b */, int c)

{

return a + c;

}

152 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

727 cannot dereference a pointer to void

A pointer to void is used as a generic pointer but it cannot be dereferenced.

Example:
void fn(void *p)

{

return *p;

}

728 class modifiers for ’%T’ conflict with class modifiers for ’%T’

A conflict between class modifiers for classes related through inheritance has been

detected. A conflict will occur if two base classes have class modifiers that are different.

The conflict can be resolved by ensuring that all classes related through inheritance have

the same class modifiers. The default resolution is to have no class modifier for the derived

base.

Example:
struct __cdecl B1 {

void fn(int);

};

struct __stdcall B2 {

void fn(int);

};

struct D : B1, B2 {

};

729 invalid hexadecimal constant

The constant started with a ’0x’ prefix which makes it look like a hexadecimal constant but

the constant was not followed by any hexadecimal digits.

Example:
unsigned i = 0x; // invalid hex constant

730 return type of ’operator ->’ will not allow ’->’ to be applied

This restriction is a result of the transformation that the compiler performs when the

operator -> is overloaded. The transformation involves transforming the expression to

invoke the operator with "->" applied to the result of operator ->. This warning indicates

that the operator -> can never be used as an overloaded operator. The only way the

operator can be used is to explicitly call it by name.

Example:
struct S {

int a;

void *operator ->();

};

void *fn(S &q)

{

return q.operator ->();

}

Diagnostic Messages 153

Chapter 1

731 class should have a name since it needs a constructor or a destructor

The class definition does not have a class name but it includes members that have

constructors or destructors. Since the class has C++ semantics, it should be have a name in

case the constructor or destructor needs to be referenced.

Example:
struct P {

int x,y;

P();

};

typedef struct {

P c;

int v;

} T;

732 class should have a name since it inherits a class

The class definition does not have a class name but it inherits a class. Since the class has

C++ semantics, it should be have a name in case the constructor or destructor needs to be

referenced.

Example:
struct P {

int x,y;

P();

};

typedef struct : P {

int v;

} T;

733 cannot open pre-compiled header file ’%s’

The compiler has detected a problem while trying to open the pre-compiled header file for

read/write access.

734 invalid second argument to va_start

The second argument to the va_start macro should be the name of the argument just before

the "..." in the argument list.

735 ’//’ style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style

comment ("//"). The warning can be removed by switching to a C style comment ("/**/").

If you require the comment to be terminated at the end of the line, make sure that the

backslash character is not the last character in the line.

154 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#define XX 23 // comment start \

comment \

end

int x = XX; // comment start ...\

comment end

736 cannot open file ’%s’ for write access

The compiler has detected a problem while trying to open the indicated file for write

access.

737 implicit conversion of pointers to integral types of same size

According to the ISO/ANSI Draft Working Paper, a string literal is an array of char.

Consequently, it is illegal to initialize or assign the pointer resulting from that literal to a

pointer of either unsigned char or signed char, since these pointers point at objects of a

different type.

738 option requires a number

The specified option is not recognized by the compiler since there was no number after it

(i.e., "-w=1"). Numbers must be non-negative decimal numbers.

739 option -fc specified more than once

The -fc option can be specified at most once on a command line.

740 option -fc specified in batch file of commands

The -fc option cannot be specified on a line in the batch file of command lines specified by

the -fc option on the command line used to invoke the compiler.

741 file specified by -fc is empty or cannot be read

The file specified using the -fc option is either empty or an input/output error was

diagnosed for the file.

742 cannot open file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An

input/output error is also possible.

743 input/output error reading the file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An

input/output error is also possible.

Diagnostic Messages 155

Chapter 1

744 ’%N’ does not have a return type specified (int assumed)

In C++, operator functions should have an explicit return type specified. In future revisions

of the ISO/ANSI C++ standard, the use of default int type specifiers may be prohibited so

removing any dependencies on default int early will prevent problems in the future.

Example:
struct S {

operator = (S const &);

operator += (S const &);

};

745 cannot initialize reference to non-constant with a constant object

A reference to a non-constant object cannot be initialized with a reference to a constant

type because this would allow constant data to be modified via the non-constant pointer to

it.

Example:
extern const int *pic;

extern int & ref = pic;

746 processing %s

This informational message indicates where an error or warning was detected while

processing the switches specified on the command line, in environment variables, in

command files (using the ’@’ notation), or in the batch command file (specified using the

-fc option).

747 class ’%T’ has not been defined

This informational message indicates a class which was not defined. This is noted

following an error or warning message because it often helps to a user to determine the

cause of that diagnostic.

748 cannot catch undefined class object

C++ does not allow abstract classes to be copied and so an undefined class object cannot be

specified in a catch clause. It is permissible to catch a reference to an undefined class.

749 class ’%T’ cannot be used since its definition has errors

The analysis of the expression could not continue due to previous errors diagnosed in the

class definition.

750 function prototype in block scope missing ’extern’

This warning can be triggered when the intent is to define a variable with a constructor.

Due to the complexities of parsing C++, statements that appear to be variable definitions

may actually parse as a function prototype. A work-around for this problem is contained in

the example. If a prototype is desired, add the extern storage class to remove this warning.

156 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct C {

};

struct S {

S(C);

};

void foo()

{

S a(C()); // function prototype!

S b((C()));// variable definition

int bar(int);// warning

extern int sam(int); // no warning

}

751 function prototype is ’%T’

This informational message indicates what the type of the function prototype is for the

message in question.

752 class ’%T’ contains a zero size array

This warning is triggered when a class with a zero sized array is used in an array or as a

class member. This is a questionable practice since a zero sized array at the end of a class

often indicates a class that is dynamically sized when it is constructed.

Example:
struct C {

C *next;

char name[];

};

struct X {

C q;

};

C a[10];

753 invalid ’new’ modifier

The Open Watcom C++ compiler does not support new expression modifiers but allows

them to match the ambient memory model for compatibility. Invalid memory model

modifiers are also rejected by the compiler.

Example:
int *fn(unsigned x)

{

return new __interrupt int[x];

}

Diagnostic Messages 157

Chapter 1

754 ’__declspec(thread)’ data ’%S’ must be link-time initialized

This error message indicates that the data item in question either requires a constructor,

destructor, or run-time initialization. This cannot be supported for thread-specific data at

this time.

Example:
#include <stdlib.h>

struct C {

C();

};

struct D {

~D();

};

C __declspec(thread) c;

D __declspec(thread) d;

int __declspec(thread) e = rand();

755 code may not work properly if this module is split across a code segment

The "zm" option allows the compiler to generate functions into separate segments that have

different names so that more than 64k of code can be generated in one object file.

Unfortunately, if an explicit near function is coded in a large code model, the possibility

exists that the linker can place the near function in a separate code segment than a function

that calls it. This would cause a linker error followed by an execution error if the

executable is executed. The "zmf" option can be used if you require explicit near functions

in your code.

Example:
// These functions may not end up in the

// same code segment if the -zm option

// is used. If this is the case, the near

// call will not work since near functions

// must be in the same code segment to

// execute properly.

static int near near_fn(int x)

{

return x + 1;

}

int far_fn(int y)

{

return near_fn(y * 2);

}

756 #pragma extref: symbol ’%N’ not declared

This error message indicates that the symbol referenced by #pragma extref has not been

declared in the context where the pragma was encountered.

158 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

757 #pragma extref: overloaded function ’%S’ cannot be used

An external reference can be emitted only for external functions which are not overloaded.

758 #pragma extref: ’%N’ is not a function or data

This error message indicates that the symbol referenced by #pragma extref cannot have an

external reference emitted for it because the referenced symbol is neither a function nor a

data item. An external reference can be emitted only for external functions which are not

overloaded and for external data items.

759 #pragma extref: ’%S’ is not external

This error message indicates that the symbol referenced by #pragma extref cannot have an

external reference emitted for it because the symbol is not external. An external reference

can be emitted only for external functions which are not overloaded and for external data

items.

760 pre-compiled header file being recreated (debugging info may change)

The compiler has detected that the module being compiled was used to create debugging

information for use by other modules. In order to maintain correctness, the pre-compiled

header file must be recreated along with the object file.

761 octal escape sequence out of range; truncated

This message indicates that the octal escape sequence produces an integer that cannot fit

into the required character type.

Example:
char *p = "\406";

762 binary operator ’%s’ missing right operand

There is no expression to the right of the indicated binary operator.

763 binary operator ’%s’ missing left operand

There is no expression to the left of the indicated binary operator.

764 expression contains extra operand(s)

The expression contains operand(s) without an operator

765 expression contains consecutive operand(s)

More than one operand found in a row.

Diagnostic Messages 159

Chapter 1

766 unmatched right parenthesis ’)’

The expression contains a right parenthesis ")" without a matching left parenthesis.

767 unmatched left parenthesis ’(’

The expression contains a left parenthesis "(" without a matching right parenthesis.

768 no expression between parentheses ’()’

There is a matching set of parenthesis "()" which do not contain an expression.

769 expecting ’:’ operator in conditional expression

A conditional expression exists without the ’:’ operator.

770 expecting ’?’ operator in conditional expression

A conditional expression exists without the ’?’ operator.

771 expecting first operand in conditional expression

A conditional expression exists without the first operand.

772 expecting second operand in conditional expression

A conditional expression exists without the second operand.

773 expecting third operand in conditional expression

A conditional expression exists without the third operand.

774 expecting operand after unary operator ’%s’

A unary operator without being followed by an operand.

775 ’%s’ unexpected in constant expression

’%s’ not allowed in constant expression

776 assembler: ’%s’

A warning has been issued by the #pragma inline assembler.

777 expecting ’id’ after ’::’ but found ’%s’

The ’::’ operator has an invalid token following it.

160 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#define fn(x) ((x)+1)

struct S {

int inc(int y) {

return ::fn(y);

}

};

778 only constructors can be declared explicit

Currently, only constructors can be declared with the explicit keyword.

Example:
int explicit fn(int x) {

return x + 1;

}

779 const_cast type must be pointer, member pointer, or reference

The type specified in a const_cast operator must be a pointer, a pointer to a member of a

class, or a reference.

Example:
extern int const *p;

long lp = const_cast<long>(p);

780 const_cast expression must be pointer to same kind of object

Ignoring const and volatile qualification, the expression must be a pointer to the same type

of object as that specified in the const_cast operator.

Example:
extern int const * ip;

long* lp = const_cast<long*>(ip);

781 const_cast expression must be lvalue of the same kind of object

Ignoring const and volatile qualification, the expression must be an lvalue or reference to

the same type of object as that specified in the const_cast operator.

Example:
extern int const i;

long& lr = const_cast<long&>(i);

782 expression must be pointer to member from same class in const_cast

The expression must be a pointer to member from the same class as that specified in the

const_cast operator.

Diagnostic Messages 161

Chapter 1

Example:
struct B {

int ib;

};

struct D : public B {

};

extern int const B::* imb;

int D::* imd const_cast<int D::*>(imb);

783 expression must be member pointer to same type as specified in const_cast

Ignoring const and volatile qualification, the expression must be a pointer to member of the

same type as that specified in the const_cast operator.

Example:
struct B {

int ib;

long lb;

};

int D::* imd const_cast<int D::*>(&B::lb);

784 reinterpret_cast expression must be pointer or integral object

When a pointer type is specified in the reinterpret_cast operator, the expression must be a

pointer or an integer.

Example:
extern float fval;

long* lp = const_cast<long*>(fval);

The expression has float type and so is illegal.

785 reinterpret_cast expression cannot be casted to reference type

When a reference type is specified in the reinterpret_cast operator, the expression must be

an lvalue (or have reference type). Additionally, constness cannot be casted away.

Example:
extern long f;

extern const long f2;

long& lr1 = const_cast<long&>(f + 2);

long& lr2 = const_cast<long&>(f2);

Both initializations are illegal. The first cast expression is not an lvalue. The second cast

expression attempts to cast away constness.

786 reinterpret_cast expression cannot be casted to pointer to member

When a pointer to member type is specified in the reinterpret_cast operator, the expression

must be a pointer to member. Additionally, constness cannot be casted away.

162 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern long f;

struct S {

const long f2;

S();

};

long S::* mp1 = const_cast<long S:: *>(f);

long S::* mp2 = const_cast<long S:: *>(&S::f2);

Both initializations are illegal. The first cast expression does not involve a member pointer.

The second cast expression attempts to cast away constness.

787 only integral arithmetic types can be used with reinterpret_cast

Pointers can only be casted to sufficiently large integral types.

Example:
void* p;

float f = reinterpret_cast<float>(p);

The cast is illegal because float type is specified.

788 only integral arithmetic types can be used with reinterpret_cast

Only integral arithmetic types can be casted to pointer types.

Example:
float flt;

void* p = reinterpret_cast<void*>(flt);

The cast is illegal because flt has float type which is not integral.

789 cannot cast away constness

A cast or implicit conversion is illegal because a conversion to the target type would

remove constness from a pointer, reference, or pointer to member.

Example:
struct S {

int s;

};

extern S const * ps;

extern int const S::* mps;

S* ps1 = ps;

S& rs1 = *ps;

int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove constness.

Diagnostic Messages 163

Chapter 1

790 size of integral type in cast less than size of pointer

An object of the indicated integral type is too small to contain the value of the indicated

pointer.

Example:
int x;

char p = reinterpret_cast<char>(&x);

char q = (char)(&x);

Both casts are illegal since a char is smaller than a pointer.

791 type cannot be used in reinterpret_cast

The type specified with reinterpret_cast must be an integral type, a pointer type, a pointer to

a member of a class, or a reference type.

Example:
void* p;

float f = reinterpret_cast<float>(p);

void* q = (reinterpret_cast<void>(p), p);

The casts specify illegal types.

792 only pointers can be casted to integral types with reinterpret_cast

The expression must be a pointer type.

Example:
void* p;

float f = reinterpret_cast<float>(p);

void* q = (reinterpret_cast<void>(p), p);

The casts specify illegal types.

793 only integers and pointers can be casted to pointer types with reinterpret_cast

The expression must be a pointer or integral type.

Example:
void* x;

void* p = reinterpret_cast<void*>(16);

void* q = (reinterpret_cast<void*>(x), p);

The casts specify illegal types.

794 static_cast cannot convert the expression

The indicated expression cannot be converted to the type specified with the static_cast

operator. Perhaps reinterpret_cast or dynamic_cast should be used instead;

164 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

795 static_cast cannot be used with the type specified

A static cast cannot be used with a function type or array type.

Example:
typedef int fun(int);

extern int poo(long);

int i = (static_cast<fun)(poo))(22);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

796 static_cast cannot be used with the reference type specified

The expression could not be converted to the specified type using static_cast.

Example:
long lng;

int& ref = static_cast<int&>(lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

797 static_cast cannot be used with the pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
long lng;

int* ref = static_cast<int*>(lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

798 static_cast cannot be used with the member pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
struct S {

long lng;

};

int S::* mp = static_cast<int S::*>(&S::lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

799 static_cast type is ambiguous

More than one constructor and/or used-defined conversion function can be used to convert

the expression to the indicated type.

Diagnostic Messages 165

Chapter 1

800 cannot cast from ambiguous base class

When more than one base class of a given type exists, with respect to a derived class, it is

impossible to cast from the base class to the derived class.

Example:
struct Base { int b1; };

struct DerA public Base { int da; };

struct DerB public Base { int db; };

struct Derived public DerA, public DerB { int d; }

Derived* foo(Base* p)

{

return static_cast<Derived*>(p);

}

The cast fails since Base is an ambiguous base class for Derived.

801 cannot cast to ambiguous base class

When more than one base class of a given type exists, with respect to a derived class, it is

impossible to cast from the derived class to the base class.

Example:
struct Base { int b1; };

struct DerA public Base { int da; };

struct DerB public Base { int db; };

struct Derived public DerA, public DerB { int d; }

Base* foo(Derived* p)

{

return (Base*)p;

}

The cast fails since Base is an ambiguous base class for Derived.

802 can only static_cast integers to enumeration type

When an enumeration type is specified with static_cast, the expression must be an integer.

Example:
enum sex { male, female };

sex father = static_cast<sex>(1.0);

The cast is illegal because the expression is not an integer.

803 dynamic_cast cannot be used with the type specified

A dynamic cast can only specify a reference to a class or a pointer to a class or void. When

a class is referenced, it must have virtual functions defined within that class or a base class

of that class.

166 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

804 dynamic_cast cannot convert the expression

The indicated expression cannot be converted to the type specified with the dynamic_cast

operator. Only a pointer or reference to a class object can be converted. When a class

object is referenced, it must have virtual functions defined within that class or a base class

of that class.

805 dynamic_cast requires class ’%T’ to have virtual functions

The indicated class must have virtual functions defined within that class or a base class of

that class.

806 base class for type in dynamic_cast is ambiguous (will fail)

The type in the dynamic_cast is a pointer or reference to an ambiguous base class.

Example:
struct A { virtual void f(){}; };

struct D1 : A { };

struct D2 : A { };

struct D : D1, D2 { };

A *foo(D *p) {

// will always return NULL

return(dynamic_cast< A* >(p));

}

807 base class for type in dynamic_cast is private (may fail)

The type in the dynamic_cast is a pointer or reference to a private base class.

Example:
struct V { virtual void f(){}; };

struct A : private virtual V { };

struct D : public virtual V, A { };

V *foo(A *p) {

// returns NULL if ’p’ points to an ’A’

// returns non-NULL if ’p’ points to a ’D’

return(dynamic_cast< V* >(p));

}

808 base class for type in dynamic_cast is protected (may fail)

The type in the dynamic_cast is a pointer or reference to a protected base class.

Example:
struct V { virtual void f(){}; };

struct A : protected virtual V { };

struct D : public virtual V, A { };

V *foo(A *p) {

// returns NULL if ’p’ points to an ’A’

// returns non-NULL if ’p’ points to a ’D’

return(dynamic_cast< V* >(p));

}

Diagnostic Messages 167

Chapter 1

809 type cannot be used with an explicit cast

The indicated type cannot be specified as the type of an explicit cast. For example, it is

illegal to cast to an array or function type.

810 cannot cast to an array type

It is not permitted to cast to an array type.

Example:
typedef int array_type[5];

int array[5];

int* p = (array_type)array;

811 cannot cast to a function type

It is not permitted to cast to a function type.

Example:
typedef int fun_type(void);

void* p = (fun_type)0;

812 implementation restriction: cannot generate RTTI info for ’%T’ (%d classes)

The information for one class must fit into one segment. If the segment size is restricted to

64k, the compiler may not be able to emit the correct information properly if it requires

more than 64k of memory to represent the class hierarchy.

813 more than one default constructor for ’%T’

The compiler found more than one default constructor signature in the class definition.

There must be only one constructor declared that accepts no arguments.

Example:
struct C {

C();

C(int = 0);

};

C cv;

814 user-defined conversion is ambiguous

The compiler found more than one user-defined conversion which could be performed.

The indicated functions that could be used are shown.

Example:
struct T {

T(S const&);

};

struct S {

operator T const& ();

};

extern S sv;

T const & tref = sv;

168 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Either the constructor or the conversion function could be used; consequently, the

conversion is ambiguous.

815 range of possible values for type ’%T’ is %s to %s

This informational message indicates the range of values possible for the indicated

unsigned type.

Example:
unsigned char uc;

if(uc >= 0);

Being unsigned, the char is always >= 0, so a warning will be issued. Following the

warning, this informational message indicates the possible range of values for the unsigned

type involved.

816 range of possible values for type ’%T’ is %s to %s

This informational message indicates the range of values possible for the indicated signed

type.

Example:
signed char c;

if(c <= 127);

Because the value of signed char is always <= 127, a warning will be issued. Following the

warning, this informational message indicates the possible range of values for the signed

type involved.

817 constant expression in comparison has value %s

This informational message indicates the value of the constant expression involved in a

comparison which caused a warning to be issued.

Example:
unsigned char uc;

if(uc >= 0);

Being unsigned, the char is always >= 0, so a warning will be issued. Following the

warning, this informational message indicates the constant value (0 in this case) involved in

the comparison.

818 constant expression in comparison has value %s

This informational message indicates the value of the constant expression involved in a

comparison which caused a warning to be issued.

Diagnostic Messages 169

Chapter 1

Example:
signed char c;

if(c <= 127);

Because the value of char is always <= 127, a warning will be issued. Following the

warning, this informational message indicates the constant value (127 in this case) involved

in the comparison.

819 conversion of const reference to non-const reference

A reference to a constant object is being converted to a reference to a non-constant object.

This can only be accomplished by using an explicit or const_cast cast.

Example:
extern int const & const_ref;

int & non_const_ref = const_ref;

820 conversion of volatile reference to non-volatile reference

A reference to a volatile object is being converted to a reference to a non-volatile object.

This can only be accomplished by using an explicit or const_cast cast.

Example:
extern int volatile & volatile_ref;

int & non_volatile_ref = volatile_ref;

821 conversion of const volatile reference to plain reference

A reference to a constant and volatile object is being converted to a reference to a

non-volatile and non-constant object. This can only be accomplished by using an explicit

or const_cast cast.

Example:
extern int const volatile & const_volatile_ref;

int & non_const_volatile_ref = const_volatile_ref;

822 current declaration has type ’%T’

This informational message indicates the type of the current declaration that caused the

message to be issued.

Example:
extern int __near foo(int);

extern int __far foo(int);

823 only a non-volatile const reference can be bound to temporary

The expression being bound to a reference will need to be converted to a temporary of the

type referenced. This means that the reference will be bound to that temporary and so the

reference must be a non-volatile const reference.

170 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern int * pi;

void * & r1 = pi; // error

void * const & r2 = pi; // ok

void * volatile & r3 = pi; // error

void * const volatile & r4 = pi;// error

824 conversion of pointer to member across a virtual base

In November 1995, the Draft Working Paper was amended to disallow pointer to member

conversions when the source class is a virtual base of the target class. This situation is

treated as a warning (unless -za is specified to require strict conformance), as a temporary

measure. In the future, an error will be diagnosed for this situation.

Example:
struct B {

int b;

};

struct D : virtual B {

int d;

};

int B::* mp_b = &B::b;

int D::* mp_d = mp_b; // conversion across a

virtual base

825 declaration cannot be in the same scope as namespace ’%S’

A namespace name must be unique across the entire C++ program. Any other use of a

name cannot be in the same scope as the namespace.

Example:
namespace x {

int q;

};

int x;

826 ’%S’ cannot be in the same scope as a namespace

A namespace name must be unique across the entire C++ program. Any other use of a

name cannot be in the same scope as the namespace.

Example:
int x;

namespace x {

int q;

};

Diagnostic Messages 171

Chapter 1

827 File: %s

This informative message is written when the -ew switch is specified on a command line.

It indicates the name of the file in which an error or warning was detected. The message

precedes a group of one or more messages written for the file in question. Within each

group, references within the file have the format (line[,column]).

828 %s

This informative message is written when the -ew switch is specified on a command line.

It indicates the location of an error when the error was detected either before or after the

source file was read during the compilation process.

829 %s: %s

This informative message is written when the -ew switch is specified on a command line.

It indicates the location of an error when the error was detected while processing the

switches specified in a command file or by the contents of an environment variable. The

switch that was being processed is displayed following the name of the file or the

environment variable.

830 %s: %S

This informative message is written when the -ew switch is specified on a command line.

It indicates the location of an error when the error was detected while generating a function,

such as a constructor, destructor, or assignment operator or while generating the machine

instructions for a function which has been analysed. The name of the function is given

following text indicating the context from which the message originated.

831 possible override is ’%S’

The indicated function is ambiguous since that name was defined in more than one base

class and one or more of these functions is virtual. Consequently, it cannot be decided

which is the virtual function to be used in a class derived from these base classes.

832 function being overridden is ’%S’

This informational message indicates a function which cannot be overridden by a virtual

function which has ellipsis parameters.

833 name does not reference a namespace

A namespace alias definition must reference a namespace definition.

Example:
typedef int T;

namespace a = T;

172 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

834 namespace alias cannot be changed

A namespace alias definition cannot change which namespace it is referencing.

Example:
namespace ns1 { int x; }

namespace ns2 { int x; }

namespace a = ns1;

namespace a = ns2;

835 cannot throw undefined class object

C++ does not allow undefined classes to be copied and so an undefined class object cannot

be specified in a throw expression.

836 symbol has different type than previous symbol in same declaration

This warning indicates that two symbols in the same declaration have different types. This

may be intended but it is often due to a misunderstanding of the C++ declaration syntax.

Example:
// change to:

// char *p;

// char q;

// or:

// char *p, *q;

char* p, q;

837 companion definition is ’%S’

This informational message indicates the other symbol that shares a common base type in

the same declaration.

838 syntax error; default argument cannot be processed

The default argument contains unbalanced braces or parenthesis. The default argument

cannot be processed in this form.

839 default argument started %L

This informational message indicates where the default argument started so that any

problems with missing braces or parenthesis can be fixed quickly and easily.

Example:
struct S {

int f(int t= (4+(3-7), // missing parenthesis

);

};

Diagnostic Messages 173

Chapter 1

840 ’%N’ cannot be declared in a namespace

A namespace cannot contain declarations or definitions of operator new or operator delete

since they will never be called implicitly in a new or delete expression.

Example:
namespace N {

void *operator new(unsigned);

void operator delete(void *);

};

841 namespace cannot be defined in a non-namespace scope

A namespace can only be defined in either the global namespace scope (file scope) or a

namespace scope.

Example:
struct S {

namespace N {

int x;

};

}

842 namespace ’::’ qualifier cannot be used in this context

Qualified identifiers in a class context are allowed for declaring friend functions. A

namespace qualified name can only be declared in a namespace scope that encloses the

qualified name’s namespace.

Example:
namespace M {

namespace N {

void f();

void g();

namespace O {

void N::f() {

// error

}

}

}

void N::g() {

// OK

}

}

843 cannot cast away volatility

A cast or implicit conversion is illegal because a conversion to the target type would

remove volatility from a pointer, reference, or pointer to member.

174 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

int s;

};

extern S volatile * ps;

extern int volatile S::* mps;

S* ps1 = ps;

S& rs1 = *ps;

int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove volatility.

844 cannot cast away constness and volatility

A cast or implicit conversion is illegal because a conversion to the target type would

remove constness and volatility from a pointer, reference, or pointer to member.

Example:
struct S {

int s;

};

extern S const volatile * ps;

extern int const volatile S::* mps;

S* ps1 = ps;

S& rs1 = *ps;

int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove constness and

volatility.

845 cannot cast away unaligned

A cast or implicit conversion is illegal because a conversion to the target type would add

alignment to a pointer, reference, or pointer to member.

Example:
struct S {

int s;

};

extern S _unaligned * ps;

extern int _unaligned S::* mps;

S* ps1 = ps;

S& rs1 = *ps;

int S::* mp1 = mps;

The three initializations are illegal since they are attempts to add alignment.

846 subscript expression must be integral

Both of the operands of the indicated index expression are pointers. There may be a

missing indirection or function call.

Diagnostic Messages 175

Chapter 1

Example:
int f();

int *p;

int g() {

return p[f];

}

847 extension: non-standard user-defined conversion

An extended conversion was allowed. The latest draft of the C++ working paper does not

allow a user-defined conversion to be used in this context. As an extension, the WATCOM

compiler supports the conversion since substantial legacy code would not compile without

the extension.

848 useless using directive ignored

This warning indicates that for most purposes, the using namespace directive can be

removed.

Example:
namespace A {

using namespace A; // useless

};

849 base class virtual function has not been overridden

This warning indicates that a virtual function name has been overridden but in an

incomplete manner, namely, a virtual function signature has been omitted in the overriding

class.

Example:
struct B {

virtual void f() const;

};

struct D : B {

virtual void f();

};

850 virtual function is ’%S’

This message indicates which virtual function has not been overridden.

851 macro ’%s’ defined %L

This informational message indicates where the macro in question was defined. The

message is displayed following an error or warning diagnostic for the macro in question.

176 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#define mac(a,b,c) a+b+c

int i = mac(6,7,8,9,10);

The expansion of macro mac is erroneous because it contains too many arguments. The

informational message will indicate where the macro was defined.

852 expanding macro ’%s’ defined %L

These informational messages indicate the macros that are currently being expanded, along

with the location at which they were defined. The message(s) are displayed following a

diagnostic which is issued during macro expansion.

853 conversion to common class type is impossible

The conversion to a common class is impossible. One or more of the left and right

operands are class types. The informational messages indicate these types.

Example:
class A { A(); };

class B { B(); };

extern A a;

extern B b;

int i = (a == b);

The last statement is erroneous since a conversion to a common class type is impossible.

854 conversion to common class type is ambiguous

The conversion to a common class is ambiguous. One or more of the left and right

operands are class types. The informational messages indicate these types.

Example:
class A { A(); };

class B : public A { B(); };

class C : public A { C(); };

class D : public B, public C { D(); };

extern A a;

extern D d;

int i = (a == d);

The last statement is erroneous since a conversion to a common class type is ambiguous.

855 conversion to common class type requires private access

The conversion to a common class violates the access permission which was private. One

or more of the left and right operands are class types. The informational messages indicate

these types.

Diagnostic Messages 177

Chapter 1

Example:
class A { A(); };

class B : private A { B(); };

extern A a;

extern B b;

int i = (a == b);

The last statement is erroneous since a conversion to a common class type violates the

(private) access permission.

856 conversion to common class type requires protected access

The conversion to a common class violates the access permission which was protected.

One or more of the left and right operands are class types. The informational messages

indicate these types.

Example:
class A { A(); };

class B : protected A { B(); };

extern A a;

extern B b;

int i = (a == b);

The last statement is erroneous since a conversion to a common class type violates the

(protected) access permission.

857 namespace lookup is ambiguous

A lookup for a name resulted in two or more non-function names being found. This is not

allowed according to the C++ working paper.

Example:
namespace M {

int i;

}

namespace N {

int i;

using namespace M;

}

void f() {

using namespace N;

i = 7; // error

}

858 ambiguous namespace symbol is ’%S’

This informational message shows a symbol that conflicted with another symbol during a

lookup.

178 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

859 attempt to static_cast from a private base class

An attempt was made to static_cast a pointer or reference to a private base class to a

derived class.

Example:
struct PrivateBase {

};

struct Derived : private PrivateBase {

};

extern PrivateBase* pb;

extern PrivateBase& rb;

Derived* pd = static_cast<Derived*>(pb);

Derived& rd = static_cast<Derived&>(rb);

The last two statements are erroneous since they would involve a static_cast from a private

base class.

860 attempt to static_cast from a protected base class

An attempt was made to static_cast a pointer or reference to a protected base class to a

derived class.

Example:
struct ProtectedBase {

};

struct Derived : protected ProtectedBase {

};

extern ProtectedBase* pb;

extern ProtectedBase& rb;

Derived* pd = static_cast<Derived*>(pb);

Derived& rd = static_cast<Derived&>(rb);

The last two statements are erroneous since they would involve a static_cast from a

protected base class.

861 qualified symbol cannot be defined in this scope

This message indicates that the scope of the symbol is not nested in the current scope. This

is a restriction in the C++ language.

Example:

Diagnostic Messages 179

Chapter 1

namespace A {

struct S {

void ok();

void bad();

};

void ok();

void bad();

};

void A::S::ok() {

}

void A::ok() {

}

namespace B {

void A::S::bad() {

// error!

}

void A::bad() {

// error!

}

};

862 using declaration references non-member

This message indicates that the entity referenced by the using declaration is not a class

member even though the using declaration is in class scope.

Example:
namespace B {

int x;

};

struct D {

using B::x;

};

863 using declaration references class member

This message indicates that the entity referenced by the using declaration is a class member

even though the using declaration is not in class scope.

Example:
struct B {

int m;

};

using B::m;

864 invalid suffix for a constant

An invalid suffix was coded for a constant.

180 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
__int64 a[] = {

0i7, // error

0i8,

0i15, // error

0i16,

0i31, // error

0i32,

0i63, // error

0i64,

};

865 class in using declaration (’%T’) must be a base class

A using declaration declared in a class scope can only reference entities in a base class.

Example:
struct B {

int f;

};

struct C {

int g;

};

struct D : private C {

B::f;

};

866 name in using declaration is already in scope

A using declaration can only reference entities in other scopes. It cannot reference entities

within its own scope.

Example:
namespace B {

int f;

using B::f;

};

867 conflict with a previous using-decl ’%S’

A using declaration can only reference entities in other scopes. It cannot reference entities

within its own scope.

Example:
namespace B {

int f;

using B::f;

};

Diagnostic Messages 181

Chapter 1

868 conflict with current using-decl ’%S’

A using declaration can only reference entities in other scopes. It cannot reference entities

within its own scope.

Example:
namespace B {

int f;

using B::f;

};

869 use of ’%N’ requires build target to be multi-threaded

The compiler has detected a use of a run-time function that will create a new thread but the

current build target indicates only single-threaded C++ source code is expected.

Depending on the user’s environment, enabling multi-threaded applications can involve

using the "-bm" option or selecting multi-threaded applications through a dialogue.

870 implementation restriction: cannot use 64-bit value in switch statement

The use of 64-bit values in switch statements has not been implemented.

871 implementation restriction: cannot use 64-bit value in case statement

The use of 64-bit values in case statements has not been implemented.

872 implementation restriction: cannot use __int64 as bit-field base type

The use of __int64 for the base type of a bit-field has not been implemented.

873 based function object cannot be placed in non-code segment "%s".

Use __segname with the default code segment "_CODE", or a code segment with the

appropriate suffix (indicated by informational message).

Example:
int __based(__segname("foo")) f() {return 1;}

Example:
int __based(__segname("_CODE")) f() {return 1;}

874 Use a segment name ending in "%s", or the default code segment "_CODE".

This informational message explains how to use __segname to name a code segment.

875 RTTI must be enabled to use feature (use ’xr’ option)

RTTI must be enabled by specifying the ’xr’ option when the compiler is invoked. The

error message indicates that a feature such as dynamic_cast, or typeid has been used

without enabling RTTI.

182 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

876 ’typeid’ class type must be defined

The compile-time type of the expression or type must be completely defined if it is a class

type.

Example:
struct S;

void foo(S *p) {

typeid(*p);

typeid(S);

}

877 cast involves unrelated member pointers

This warning is issued to indicate that a dangerous cast of a member pointer has been used.

This occurs when there is an explicit cast between sufficiently unrelated types of member

pointers that the cast must be implemented using a reinterpret_cast. These casts were

illegal, but became legal when the new-style casts were added to the draft working paper.

Example:
struct C1 {

int foo();

};

struct D1 {

int poo();

};

typedef int (C1::* C1mp)();

C1mp fmp = (C1mp)&D1::poo;

The cast on the last line of the example would be diagnosed.

878 unexpected type modifier found

A __declspec modifier was found that could not be applied to an object or could not be

used in this context.

Example:
__declspec(thread) struct S {

};

879 invalid bit-field name ’%N’

A bit-field can only have a simple identifier as its name. A qualified name is also not

allowed for a bit-field.

Diagnostic Messages 183

Chapter 1

Example:
struct S {

int operator + : 1;

};

880 %u padding byte(s) added

This warning indicates that some extra bytes have been added to a class in order to align

member data to its natural alignment.

Example:
#pragma pack(push,8)

struct S {

char c;

double d;

};

#pragma pack(pop);

881 cannot be called with a ’%T *’

This message indicates that the virtual function cannot be called with a pointer or reference

to the current class.

882 cast involves an undefined member pointer

This warning is issued to indicate that a dangerous cast of a member pointer has been used.

This occurs when there is an explicit cast between sufficiently unrelated types of member

pointers that the cast must be implemented using a reinterpret_cast. In this case, the host

class of at least one member pointer was not a fully defined class and, as such, it is

unknown whether the host classes are related through derivation. These casts were illegal,

but became legal when the new-style casts were added to the draft working paper.

Example:
struct C1 {

int foo();

};

struct D1;

typedef int (C1::* C1mp)();

typedef int (D1::* D1mp)();

C1mp fn(D1mp x) {

return (C1mp) x;

}

// D1 may derive from C1

The cast on the last line of the example would be diagnosed.

184 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

883 cast changes both member pointer object and class type

This warning is issued to indicate that a dangerous cast of a member pointer has been used.

This occurs when there is an explicit cast between sufficiently unrelated types of member

pointers that the cast must be implemented using a reinterpret_cast. In this case, the host

classes of the member pointers are related through derivation and the object type is also

being changed. The cast can be broken up into two casts, one that changes the host class

without changing the object type, and another that changes the object type without

changing the host class.

Example:
struct C1 {

int fn1();

};

struct D1 : C1 {

int fn2();

};

typedef int (C1::* C1mp)();

typedef void (D1::* D1mp)();

C1mp fn(D1mp x) {

return (C1mp) x;

}

The cast on the last line of the example would be diagnosed.

884 virtual function ’%S’ has a different calling convention

This error indicates that the calling conventions specified in the virtual function prototypes

are different. This means that virtual function calls will not function properly since the

caller and callee may not agree on how parameters should be passed. Correct the problem

by deciding on one calling convention and change the erroneous declaration.

Example:
struct B {

virtual void __cdecl foo(int, int);

};

struct D : B {

void foo(int, int);

};

885 #endif matches #if in different source file

This warning may indicate a #endif nesting problem since the traditional usage of #if

directives is confined to the same source file. This warning may often come before an error

and it is hoped will provide information to solve a preprocessing directive problem.

Diagnostic Messages 185

Chapter 1

886 preprocessing directive found %L

This informational message indicates the location of a preprocessing directive associated

with the error or warning message.

887 unary ’-’ of unsigned operand produces unsigned result

When a unary minus (’-’) operator is applied to an unsigned operand, the result has an

unsigned type rather than a signed type. This warning often occurs because of the

misconception that ’-’ is part of a numeric token rather than as a unary operator. The

work-around for the warning is to cast the unary minus operand to the appropriate signed

type.

Example:
extern void u(int);

extern void u(unsigned);

void fn(unsigned x) {

u(-x);

u(-2147483648);

}

888 trigraph expansion produced ’%c’

Trigraph expansion occurs at a very low-level so it can affect string literals that contain

question marks. This warning can be disabled via the command line or #pragma warning

directive.

Example:
// string expands to "(?]?~????"!

char *e = "(???)???-????";

// possible work-arounds

char *f = "(" "???" ")" "???" "-" "????";

char *g = "(\?\?\?)\?\?\?-\?\?\?\?";

889 hexadecimal escape sequence out of range; truncated

This message indicates that the hexadecimal escape sequence produces an integer that

cannot fit into the required character type.

Example:
char *p = "\x0aCache Timings\x0a";

890 undefined macro ’%s’ evaluates to 0

The ISO C/C++ standard requires that undefined macros evaluate to zero during

preprocessor expression evaluation. This default behaviour can often mask incorrectly

spelled macro references. The warning is useful when used in critical environments where

all macros will be defined.

186 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#if _PRODUCTI0N // should be _PRODUCTION

#endif

891 char constant has value %u (more than 8 bits)

The ISO C/C++ standard requires that multi-char character constants be accepted with an

implementation defined value. This default behaviour can often mask incorrectly specified

character constants.

Example:
int x = ’\0x1a’; // warning

int y = ’\x1a’;

892 promotion of unadorned char type to int

This message is enabled by the hidden -jw option. The warning may be used to locate all

places where an unadorned char type (i.e., a type that is specified as char and neither

signed char nor unsigned char). This may cause portability problems since compilers

have freedom to specify whether the unadorned char type is to be signed or unsigned. The

promotion to int will have different values, depending on the choice being made.

893 switch statement has no case labels

The switch statement referenced in the warning did not have any case labels. Without case

labels, a switch statement will always jump to the default case code.

Example:
void fn(int x)

{

switch(x) {

default:

++x;

}

}

894 unexpected character (%u) in source file

The compiler has encountered a character in the source file that is not in the allowable set

of input characters. The decimal representation of the character byte is output for

diagnostic purposes.

Example:
// invalid char ’\0’

895 ignoring whitespace after line splice

The compiler is ignoring some whitespace characters that occur after the line splice. This

warning is useful when the source code must be compiled with other compilers that do not

allow this extension.

Diagnostic Messages 187

Chapter 1

Example:
#define XXXX int \

x;

XXXX

896 empty member declaration

The compiler is warning about an extra semicolon found in a class definition. The extra

semicolon is valid C++ but some C++ compilers do not accept this as valid syntax.

Example:
struct S { ; };

897 ’%S’ makes use of a non-portable feature (zero-sized array)

The compiler is warning about the use of a non-portable feature in a declaration or

definition. This warning is available for environments where diagnosing the use of

non-portable features is useful in improving the portability of the code.

Example:
struct D {

int d;

char a[];

};

898 in-class initialization is only allowed for const static integral members

Example:
struct A {

static int i = 0;

};

899 cannot convert expression to target type

The implicit cast is trying to convert an expression to a completely unrelated type. There is

no way the compiler can provide any meaning for the intended cast.

Example:
struct T {

};

void fn()

{

bool b = T;

}

900 unknown template specialization of ’%S’

188 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
template<class T>

struct A { };

template<class T>

void A<T *>::f() {

}

901 wrong number of template arguments for ’%S’

Example:
template<class T>

struct A { };

template<class T, class U>

struct A<T, U> { };

}

902 cannot explicitly specialize member of ’%S’

Example:
template<class T>

struct A { };

template<>

struct A<int> {

void f();

};

template<>

void A<int>::f() {

}

903 specialization arguments for ’%S’ match primary template

Example:
template<class T>

struct A { };

template<class T>

struct A<T> { };

904 partial template specialization for ’%S’ ambiguous

Example:
template<class T, class U>

struct A { };

template<class T, class U>

struct A<T *, U> { };

template<class T, class U>

struct A<T, U *> { };

A<int *, int *> a;

Diagnostic Messages 189

Chapter 1

905 static assertion failed ’%s’

Example:
static_assert(false, "false");

906 Exported templates are not supported by Open Watcom C++

Example:
export template< class T >

struct A {

};

907 redeclaration of member function ’%S’ not allowed

Example:
struct A {

void f();

void f();

};

908 candidate defined %L

909 Invalid register name ’%s’ in #pragma

The register name is invalid/unknown.

910 Archaic syntax: class/struct missing in explicit template instantiation

Archaic syntax has been used. The standard requires a class or struct keyword to be used.

Example:
template< class T >

class MyTemplate { };

template MyTemplate< int >;

Example:
template class MyTemplate< int >;

911 destructor for type void cannot be called

Since the void type has no size and there are no values of void type, one cannot destruct an

instance of void.

912 ’typename’ keyword used outside template

The typename keyword is only allowed inside templates.

190 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

913 ’%N’ does not have a return type specified

In C++, functions must have an explicit return type specified, default int type is no longer

assumed.

Example:
f ();

914 ’main’ must return ’int’

The "main" function shall have a return type of type int.

Example:
void main()

{ }

915 explicit may only be used within class definition

The explicit specifier shall be used only in the declaration of a constructor within its class

definition.

Example:
struct A {

explicit A();

};

explicit A::A()

{ }

916 virtual may only be used within class definition

The virtual specifier shall be used only in the initial declaration of a class member function.

Example:
struct A {

virtual void f();

};

virtual void A::f()

{ }

917 cannot redefine default template argument ’%N’

A template-parameter shall not be given default arguments by two different declarations in

the same scope.

Example:
template< class T = int >

class X;

template< class T = int >

class X {

};

Diagnostic Messages 191

Chapter 1

918 cannot have default template arguments in partial specializations

A partial specialization cannot have default template arguments.

Example:
template< class T >

class X {

};

template< class T = int >

class X< T * > {

};

919 delete of a pointer to void

If the dynamic type of the object to be deleted differs from its static type, the behavior is

undefined. This implies that an object cannot be deleted using a pointer of type void*

because there are no objects of type void.

Example:
void fn(void *p, void *q) {

delete p;

delete [] q;

}

920 ’long char’ is deprecated, use wchar_t instead

The standard C++ ’wchar_t’ type specifier should be used instead of the Open Watcom

specific ’long char’ type specifier.

Example:
void fn() {

long char c;

}

921 namespace ’%I’ not allowed in using-declaration

Specifying a namespace-name is not allowed in a using-declaration, a using-directive must

be used instead.

Example:
namespace ns { }

using ns;

922 candidate %C defined %L

923 qualified name ’%I’ does not name a class

192 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
namespace ns {

}

struct ns::A {

};

924 expected class type, but got ’%T’

Example:
template< class T >

struct A : public T {

};

A< int > a;

925 syntax error near ’%s’; probable cause: incorrectly spelled type name

The identifier in the error message has not been declared as a type name in any scope at this

point in the code. This may be the cause of the syntax error.

926 syntax error: ’%s’ has not been declared as a member

The identifier in the error message has not been declared as member. This may be the

cause of the syntax error.

Example:
struct A { };

void fn() {

A::undeclared = 0;

}

927 syntax error: ’%s’ has not been declared

The identifier in the error message has not been declared. This may be the cause of the

syntax error.

Example:
void fn() {

::undeclared = 0;

}

928 syntax error: identifier ’%s’, but expected: ’%s’

929 syntax error: token ’%s’, but expected: ’%s’

930 member ’%S’ cannot be declared in this class

A member cannot be declared with the same name as its containing class if the class has a

user-declared constructor.

Diagnostic Messages 193

Chapter 1

Example:
struct S {

S() { }

int S; // Error!

};

931 cv-qualifier in cast to ’%T’ is meaningless

A top-level cv-qualifier for a non-class rvalue is meaningless.

Example:
const int i = (const int) 0;

932 cv-qualifier in return type ’%T’ is meaningless

A top-level cv-qualifier for a non-class rvalue is meaningless.

Example:
const int f() {

return 0;

}

933 use of C-style cast to ’%T’ is discouraged

Use of C-style casts "(type) (expr)" is discouraged in favour of explicit C++ casts like

static_cast, const_cast, dynamic_cast and reinterpret_cast.

Example:
const signed int *f(unsigned int *psi) {

return (signed int *) psi;

}

934 unable to match function template definition ’%S’

The function template definition cannot be matched to an earlier declaration.

Example:
template< class T >

struct A

{

A();

};

template< class T >

A< int >::A()

{ }

935 form is ’#pragma enable_message(msgnum)’

This pragma enables the specified warning message.

194 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

936 form is ’#pragma disable_message(msgnum)’

This pragma disables the specified warning message.

937 option requires a character

The specified option is not recognized by the compiler since there was no character after it

(i.e., "-p#@").

938 ’auto’ is no longer a storage specifier in C++11 mode

When C++11 is enabled, the auto can no longer appear as a storage specifier.

939 Implicit conversion from ’decltype(nullptr)’ to ’bool’.

When C++11 is enabled, an implicit conversion from std::nullptr_t to bool is suspicious.

940 %s

This is a internal error message generated by compiler.

Diagnostic Messages 195

